linux/linux-5.18.11/arch/riscv/net/bpf_jit_comp32.c

1358 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* BPF JIT compiler for RV32G
*
* Copyright (c) 2020 Luke Nelson <luke.r.nels@gmail.com>
* Copyright (c) 2020 Xi Wang <xi.wang@gmail.com>
*
* The code is based on the BPF JIT compiler for RV64G by Björn Töpel and
* the BPF JIT compiler for 32-bit ARM by Shubham Bansal and Mircea Gherzan.
*/
#include <linux/bpf.h>
#include <linux/filter.h>
#include "bpf_jit.h"
/*
* Stack layout during BPF program execution:
*
* high
* RV32 fp => +----------+
* | saved ra |
* | saved fp | RV32 callee-saved registers
* | ... |
* +----------+ <= (fp - 4 * NR_SAVED_REGISTERS)
* | hi(R6) |
* | lo(R6) |
* | hi(R7) | JIT scratch space for BPF registers
* | lo(R7) |
* | ... |
* BPF_REG_FP => +----------+ <= (fp - 4 * NR_SAVED_REGISTERS
* | | - 4 * BPF_JIT_SCRATCH_REGS)
* | |
* | ... | BPF program stack
* | |
* RV32 sp => +----------+
* | |
* | ... | Function call stack
* | |
* +----------+
* low
*/
enum {
/* Stack layout - these are offsets from top of JIT scratch space. */
BPF_R6_HI,
BPF_R6_LO,
BPF_R7_HI,
BPF_R7_LO,
BPF_R8_HI,
BPF_R8_LO,
BPF_R9_HI,
BPF_R9_LO,
BPF_AX_HI,
BPF_AX_LO,
/* Stack space for BPF_REG_6 through BPF_REG_9 and BPF_REG_AX. */
BPF_JIT_SCRATCH_REGS,
};
/* Number of callee-saved registers stored to stack: ra, fp, s1--s7. */
#define NR_SAVED_REGISTERS 9
/* Offset from fp for BPF registers stored on stack. */
#define STACK_OFFSET(k) (-4 - (4 * NR_SAVED_REGISTERS) - (4 * (k)))
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
#define RV_REG_TCC RV_REG_T6
#define RV_REG_TCC_SAVED RV_REG_S7
static const s8 bpf2rv32[][2] = {
/* Return value from in-kernel function, and exit value from eBPF. */
[BPF_REG_0] = {RV_REG_S2, RV_REG_S1},
/* Arguments from eBPF program to in-kernel function. */
[BPF_REG_1] = {RV_REG_A1, RV_REG_A0},
[BPF_REG_2] = {RV_REG_A3, RV_REG_A2},
[BPF_REG_3] = {RV_REG_A5, RV_REG_A4},
[BPF_REG_4] = {RV_REG_A7, RV_REG_A6},
[BPF_REG_5] = {RV_REG_S4, RV_REG_S3},
/*
* Callee-saved registers that in-kernel function will preserve.
* Stored on the stack.
*/
[BPF_REG_6] = {STACK_OFFSET(BPF_R6_HI), STACK_OFFSET(BPF_R6_LO)},
[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
/* Read-only frame pointer to access BPF stack. */
[BPF_REG_FP] = {RV_REG_S6, RV_REG_S5},
/* Temporary register for blinding constants. Stored on the stack. */
[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
/*
* Temporary registers used by the JIT to operate on registers stored
* on the stack. Save t0 and t1 to be used as temporaries in generated
* code.
*/
[TMP_REG_1] = {RV_REG_T3, RV_REG_T2},
[TMP_REG_2] = {RV_REG_T5, RV_REG_T4},
};
static s8 hi(const s8 *r)
{
return r[0];
}
static s8 lo(const s8 *r)
{
return r[1];
}
static void emit_imm(const s8 rd, s32 imm, struct rv_jit_context *ctx)
{
u32 upper = (imm + (1 << 11)) >> 12;
u32 lower = imm & 0xfff;
if (upper) {
emit(rv_lui(rd, upper), ctx);
emit(rv_addi(rd, rd, lower), ctx);
} else {
emit(rv_addi(rd, RV_REG_ZERO, lower), ctx);
}
}
static void emit_imm32(const s8 *rd, s32 imm, struct rv_jit_context *ctx)
{
/* Emit immediate into lower bits. */
emit_imm(lo(rd), imm, ctx);
/* Sign-extend into upper bits. */
if (imm >= 0)
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
else
emit(rv_addi(hi(rd), RV_REG_ZERO, -1), ctx);
}
static void emit_imm64(const s8 *rd, s32 imm_hi, s32 imm_lo,
struct rv_jit_context *ctx)
{
emit_imm(lo(rd), imm_lo, ctx);
emit_imm(hi(rd), imm_hi, ctx);
}
static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
{
int stack_adjust = ctx->stack_size;
const s8 *r0 = bpf2rv32[BPF_REG_0];
/* Set return value if not tail call. */
if (!is_tail_call) {
emit(rv_addi(RV_REG_A0, lo(r0), 0), ctx);
emit(rv_addi(RV_REG_A1, hi(r0), 0), ctx);
}
/* Restore callee-saved registers. */
emit(rv_lw(RV_REG_RA, stack_adjust - 4, RV_REG_SP), ctx);
emit(rv_lw(RV_REG_FP, stack_adjust - 8, RV_REG_SP), ctx);
emit(rv_lw(RV_REG_S1, stack_adjust - 12, RV_REG_SP), ctx);
emit(rv_lw(RV_REG_S2, stack_adjust - 16, RV_REG_SP), ctx);
emit(rv_lw(RV_REG_S3, stack_adjust - 20, RV_REG_SP), ctx);
emit(rv_lw(RV_REG_S4, stack_adjust - 24, RV_REG_SP), ctx);
emit(rv_lw(RV_REG_S5, stack_adjust - 28, RV_REG_SP), ctx);
emit(rv_lw(RV_REG_S6, stack_adjust - 32, RV_REG_SP), ctx);
emit(rv_lw(RV_REG_S7, stack_adjust - 36, RV_REG_SP), ctx);
emit(rv_addi(RV_REG_SP, RV_REG_SP, stack_adjust), ctx);
if (is_tail_call) {
/*
* goto *(t0 + 4);
* Skips first instruction of prologue which initializes tail
* call counter. Assumes t0 contains address of target program,
* see emit_bpf_tail_call.
*/
emit(rv_jalr(RV_REG_ZERO, RV_REG_T0, 4), ctx);
} else {
emit(rv_jalr(RV_REG_ZERO, RV_REG_RA, 0), ctx);
}
}
static bool is_stacked(s8 reg)
{
return reg < 0;
}
static const s8 *bpf_get_reg64(const s8 *reg, const s8 *tmp,
struct rv_jit_context *ctx)
{
if (is_stacked(hi(reg))) {
emit(rv_lw(hi(tmp), hi(reg), RV_REG_FP), ctx);
emit(rv_lw(lo(tmp), lo(reg), RV_REG_FP), ctx);
reg = tmp;
}
return reg;
}
static void bpf_put_reg64(const s8 *reg, const s8 *src,
struct rv_jit_context *ctx)
{
if (is_stacked(hi(reg))) {
emit(rv_sw(RV_REG_FP, hi(reg), hi(src)), ctx);
emit(rv_sw(RV_REG_FP, lo(reg), lo(src)), ctx);
}
}
static const s8 *bpf_get_reg32(const s8 *reg, const s8 *tmp,
struct rv_jit_context *ctx)
{
if (is_stacked(lo(reg))) {
emit(rv_lw(lo(tmp), lo(reg), RV_REG_FP), ctx);
reg = tmp;
}
return reg;
}
static void bpf_put_reg32(const s8 *reg, const s8 *src,
struct rv_jit_context *ctx)
{
if (is_stacked(lo(reg))) {
emit(rv_sw(RV_REG_FP, lo(reg), lo(src)), ctx);
if (!ctx->prog->aux->verifier_zext)
emit(rv_sw(RV_REG_FP, hi(reg), RV_REG_ZERO), ctx);
} else if (!ctx->prog->aux->verifier_zext) {
emit(rv_addi(hi(reg), RV_REG_ZERO, 0), ctx);
}
}
static void emit_jump_and_link(u8 rd, s32 rvoff, bool force_jalr,
struct rv_jit_context *ctx)
{
s32 upper, lower;
if (rvoff && is_21b_int(rvoff) && !force_jalr) {
emit(rv_jal(rd, rvoff >> 1), ctx);
return;
}
upper = (rvoff + (1 << 11)) >> 12;
lower = rvoff & 0xfff;
emit(rv_auipc(RV_REG_T1, upper), ctx);
emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
}
static void emit_alu_i64(const s8 *dst, s32 imm,
struct rv_jit_context *ctx, const u8 op)
{
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
switch (op) {
case BPF_MOV:
emit_imm32(rd, imm, ctx);
break;
case BPF_AND:
if (is_12b_int(imm)) {
emit(rv_andi(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_and(lo(rd), lo(rd), RV_REG_T0), ctx);
}
if (imm >= 0)
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
break;
case BPF_OR:
if (is_12b_int(imm)) {
emit(rv_ori(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_or(lo(rd), lo(rd), RV_REG_T0), ctx);
}
if (imm < 0)
emit(rv_ori(hi(rd), RV_REG_ZERO, -1), ctx);
break;
case BPF_XOR:
if (is_12b_int(imm)) {
emit(rv_xori(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_xor(lo(rd), lo(rd), RV_REG_T0), ctx);
}
if (imm < 0)
emit(rv_xori(hi(rd), hi(rd), -1), ctx);
break;
case BPF_LSH:
if (imm >= 32) {
emit(rv_slli(hi(rd), lo(rd), imm - 32), ctx);
emit(rv_addi(lo(rd), RV_REG_ZERO, 0), ctx);
} else if (imm == 0) {
/* Do nothing. */
} else {
emit(rv_srli(RV_REG_T0, lo(rd), 32 - imm), ctx);
emit(rv_slli(hi(rd), hi(rd), imm), ctx);
emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx);
emit(rv_slli(lo(rd), lo(rd), imm), ctx);
}
break;
case BPF_RSH:
if (imm >= 32) {
emit(rv_srli(lo(rd), hi(rd), imm - 32), ctx);
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
} else if (imm == 0) {
/* Do nothing. */
} else {
emit(rv_slli(RV_REG_T0, hi(rd), 32 - imm), ctx);
emit(rv_srli(lo(rd), lo(rd), imm), ctx);
emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx);
emit(rv_srli(hi(rd), hi(rd), imm), ctx);
}
break;
case BPF_ARSH:
if (imm >= 32) {
emit(rv_srai(lo(rd), hi(rd), imm - 32), ctx);
emit(rv_srai(hi(rd), hi(rd), 31), ctx);
} else if (imm == 0) {
/* Do nothing. */
} else {
emit(rv_slli(RV_REG_T0, hi(rd), 32 - imm), ctx);
emit(rv_srli(lo(rd), lo(rd), imm), ctx);
emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx);
emit(rv_srai(hi(rd), hi(rd), imm), ctx);
}
break;
}
bpf_put_reg64(dst, rd, ctx);
}
static void emit_alu_i32(const s8 *dst, s32 imm,
struct rv_jit_context *ctx, const u8 op)
{
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *rd = bpf_get_reg32(dst, tmp1, ctx);
switch (op) {
case BPF_MOV:
emit_imm(lo(rd), imm, ctx);
break;
case BPF_ADD:
if (is_12b_int(imm)) {
emit(rv_addi(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_add(lo(rd), lo(rd), RV_REG_T0), ctx);
}
break;
case BPF_SUB:
if (is_12b_int(-imm)) {
emit(rv_addi(lo(rd), lo(rd), -imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_sub(lo(rd), lo(rd), RV_REG_T0), ctx);
}
break;
case BPF_AND:
if (is_12b_int(imm)) {
emit(rv_andi(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_and(lo(rd), lo(rd), RV_REG_T0), ctx);
}
break;
case BPF_OR:
if (is_12b_int(imm)) {
emit(rv_ori(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_or(lo(rd), lo(rd), RV_REG_T0), ctx);
}
break;
case BPF_XOR:
if (is_12b_int(imm)) {
emit(rv_xori(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_xor(lo(rd), lo(rd), RV_REG_T0), ctx);
}
break;
case BPF_LSH:
if (is_12b_int(imm)) {
emit(rv_slli(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_sll(lo(rd), lo(rd), RV_REG_T0), ctx);
}
break;
case BPF_RSH:
if (is_12b_int(imm)) {
emit(rv_srli(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_srl(lo(rd), lo(rd), RV_REG_T0), ctx);
}
break;
case BPF_ARSH:
if (is_12b_int(imm)) {
emit(rv_srai(lo(rd), lo(rd), imm), ctx);
} else {
emit_imm(RV_REG_T0, imm, ctx);
emit(rv_sra(lo(rd), lo(rd), RV_REG_T0), ctx);
}
break;
}
bpf_put_reg32(dst, rd, ctx);
}
static void emit_alu_r64(const s8 *dst, const s8 *src,
struct rv_jit_context *ctx, const u8 op)
{
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *tmp2 = bpf2rv32[TMP_REG_2];
const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
const s8 *rs = bpf_get_reg64(src, tmp2, ctx);
switch (op) {
case BPF_MOV:
emit(rv_addi(lo(rd), lo(rs), 0), ctx);
emit(rv_addi(hi(rd), hi(rs), 0), ctx);
break;
case BPF_ADD:
if (rd == rs) {
emit(rv_srli(RV_REG_T0, lo(rd), 31), ctx);
emit(rv_slli(hi(rd), hi(rd), 1), ctx);
emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx);
emit(rv_slli(lo(rd), lo(rd), 1), ctx);
} else {
emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx);
emit(rv_sltu(RV_REG_T0, lo(rd), lo(rs)), ctx);
emit(rv_add(hi(rd), hi(rd), hi(rs)), ctx);
emit(rv_add(hi(rd), hi(rd), RV_REG_T0), ctx);
}
break;
case BPF_SUB:
emit(rv_sub(RV_REG_T1, hi(rd), hi(rs)), ctx);
emit(rv_sltu(RV_REG_T0, lo(rd), lo(rs)), ctx);
emit(rv_sub(hi(rd), RV_REG_T1, RV_REG_T0), ctx);
emit(rv_sub(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_AND:
emit(rv_and(lo(rd), lo(rd), lo(rs)), ctx);
emit(rv_and(hi(rd), hi(rd), hi(rs)), ctx);
break;
case BPF_OR:
emit(rv_or(lo(rd), lo(rd), lo(rs)), ctx);
emit(rv_or(hi(rd), hi(rd), hi(rs)), ctx);
break;
case BPF_XOR:
emit(rv_xor(lo(rd), lo(rd), lo(rs)), ctx);
emit(rv_xor(hi(rd), hi(rd), hi(rs)), ctx);
break;
case BPF_MUL:
emit(rv_mul(RV_REG_T0, hi(rs), lo(rd)), ctx);
emit(rv_mul(hi(rd), hi(rd), lo(rs)), ctx);
emit(rv_mulhu(RV_REG_T1, lo(rd), lo(rs)), ctx);
emit(rv_add(hi(rd), hi(rd), RV_REG_T0), ctx);
emit(rv_mul(lo(rd), lo(rd), lo(rs)), ctx);
emit(rv_add(hi(rd), hi(rd), RV_REG_T1), ctx);
break;
case BPF_LSH:
emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx);
emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx);
emit(rv_sll(hi(rd), lo(rd), RV_REG_T0), ctx);
emit(rv_addi(lo(rd), RV_REG_ZERO, 0), ctx);
emit(rv_jal(RV_REG_ZERO, 16), ctx);
emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx);
emit(rv_srli(RV_REG_T0, lo(rd), 1), ctx);
emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx);
emit(rv_srl(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx);
emit(rv_sll(hi(rd), hi(rd), lo(rs)), ctx);
emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx);
emit(rv_sll(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_RSH:
emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx);
emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx);
emit(rv_srl(lo(rd), hi(rd), RV_REG_T0), ctx);
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
emit(rv_jal(RV_REG_ZERO, 16), ctx);
emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx);
emit(rv_slli(RV_REG_T0, hi(rd), 1), ctx);
emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx);
emit(rv_sll(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx);
emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx);
emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx);
emit(rv_srl(hi(rd), hi(rd), lo(rs)), ctx);
break;
case BPF_ARSH:
emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx);
emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx);
emit(rv_sra(lo(rd), hi(rd), RV_REG_T0), ctx);
emit(rv_srai(hi(rd), hi(rd), 31), ctx);
emit(rv_jal(RV_REG_ZERO, 16), ctx);
emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx);
emit(rv_slli(RV_REG_T0, hi(rd), 1), ctx);
emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx);
emit(rv_sll(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx);
emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx);
emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx);
emit(rv_sra(hi(rd), hi(rd), lo(rs)), ctx);
break;
case BPF_NEG:
emit(rv_sub(lo(rd), RV_REG_ZERO, lo(rd)), ctx);
emit(rv_sltu(RV_REG_T0, RV_REG_ZERO, lo(rd)), ctx);
emit(rv_sub(hi(rd), RV_REG_ZERO, hi(rd)), ctx);
emit(rv_sub(hi(rd), hi(rd), RV_REG_T0), ctx);
break;
}
bpf_put_reg64(dst, rd, ctx);
}
static void emit_alu_r32(const s8 *dst, const s8 *src,
struct rv_jit_context *ctx, const u8 op)
{
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *tmp2 = bpf2rv32[TMP_REG_2];
const s8 *rd = bpf_get_reg32(dst, tmp1, ctx);
const s8 *rs = bpf_get_reg32(src, tmp2, ctx);
switch (op) {
case BPF_MOV:
emit(rv_addi(lo(rd), lo(rs), 0), ctx);
break;
case BPF_ADD:
emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_SUB:
emit(rv_sub(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_AND:
emit(rv_and(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_OR:
emit(rv_or(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_XOR:
emit(rv_xor(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_MUL:
emit(rv_mul(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_DIV:
emit(rv_divu(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_MOD:
emit(rv_remu(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_LSH:
emit(rv_sll(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_RSH:
emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_ARSH:
emit(rv_sra(lo(rd), lo(rd), lo(rs)), ctx);
break;
case BPF_NEG:
emit(rv_sub(lo(rd), RV_REG_ZERO, lo(rd)), ctx);
break;
}
bpf_put_reg32(dst, rd, ctx);
}
static int emit_branch_r64(const s8 *src1, const s8 *src2, s32 rvoff,
struct rv_jit_context *ctx, const u8 op)
{
int e, s = ctx->ninsns;
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *tmp2 = bpf2rv32[TMP_REG_2];
const s8 *rs1 = bpf_get_reg64(src1, tmp1, ctx);
const s8 *rs2 = bpf_get_reg64(src2, tmp2, ctx);
/*
* NO_JUMP skips over the rest of the instructions and the
* emit_jump_and_link, meaning the BPF branch is not taken.
* JUMP skips directly to the emit_jump_and_link, meaning
* the BPF branch is taken.
*
* The fallthrough case results in the BPF branch being taken.
*/
#define NO_JUMP(idx) (6 + (2 * (idx)))
#define JUMP(idx) (2 + (2 * (idx)))
switch (op) {
case BPF_JEQ:
emit(rv_bne(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
emit(rv_bne(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JGT:
emit(rv_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx);
emit(rv_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
emit(rv_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JLT:
emit(rv_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx);
emit(rv_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
emit(rv_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JGE:
emit(rv_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx);
emit(rv_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
emit(rv_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JLE:
emit(rv_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx);
emit(rv_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
emit(rv_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JNE:
emit(rv_bne(hi(rs1), hi(rs2), JUMP(1)), ctx);
emit(rv_beq(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JSGT:
emit(rv_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx);
emit(rv_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
emit(rv_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JSLT:
emit(rv_blt(hi(rs1), hi(rs2), JUMP(2)), ctx);
emit(rv_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
emit(rv_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JSGE:
emit(rv_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx);
emit(rv_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
emit(rv_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JSLE:
emit(rv_blt(hi(rs1), hi(rs2), JUMP(2)), ctx);
emit(rv_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
emit(rv_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
break;
case BPF_JSET:
emit(rv_and(RV_REG_T0, hi(rs1), hi(rs2)), ctx);
emit(rv_bne(RV_REG_T0, RV_REG_ZERO, JUMP(2)), ctx);
emit(rv_and(RV_REG_T0, lo(rs1), lo(rs2)), ctx);
emit(rv_beq(RV_REG_T0, RV_REG_ZERO, NO_JUMP(0)), ctx);
break;
}
#undef NO_JUMP
#undef JUMP
e = ctx->ninsns;
/* Adjust for extra insns. */
rvoff -= ninsns_rvoff(e - s);
emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
return 0;
}
static int emit_bcc(u8 op, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx)
{
int e, s = ctx->ninsns;
bool far = false;
int off;
if (op == BPF_JSET) {
/*
* BPF_JSET is a special case: it has no inverse so we always
* treat it as a far branch.
*/
far = true;
} else if (!is_13b_int(rvoff)) {
op = invert_bpf_cond(op);
far = true;
}
/*
* For a far branch, the condition is negated and we jump over the
* branch itself, and the two instructions from emit_jump_and_link.
* For a near branch, just use rvoff.
*/
off = far ? 6 : (rvoff >> 1);
switch (op) {
case BPF_JEQ:
emit(rv_beq(rd, rs, off), ctx);
break;
case BPF_JGT:
emit(rv_bgtu(rd, rs, off), ctx);
break;
case BPF_JLT:
emit(rv_bltu(rd, rs, off), ctx);
break;
case BPF_JGE:
emit(rv_bgeu(rd, rs, off), ctx);
break;
case BPF_JLE:
emit(rv_bleu(rd, rs, off), ctx);
break;
case BPF_JNE:
emit(rv_bne(rd, rs, off), ctx);
break;
case BPF_JSGT:
emit(rv_bgt(rd, rs, off), ctx);
break;
case BPF_JSLT:
emit(rv_blt(rd, rs, off), ctx);
break;
case BPF_JSGE:
emit(rv_bge(rd, rs, off), ctx);
break;
case BPF_JSLE:
emit(rv_ble(rd, rs, off), ctx);
break;
case BPF_JSET:
emit(rv_and(RV_REG_T0, rd, rs), ctx);
emit(rv_beq(RV_REG_T0, RV_REG_ZERO, off), ctx);
break;
}
if (far) {
e = ctx->ninsns;
/* Adjust for extra insns. */
rvoff -= ninsns_rvoff(e - s);
emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
}
return 0;
}
static int emit_branch_r32(const s8 *src1, const s8 *src2, s32 rvoff,
struct rv_jit_context *ctx, const u8 op)
{
int e, s = ctx->ninsns;
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *tmp2 = bpf2rv32[TMP_REG_2];
const s8 *rs1 = bpf_get_reg32(src1, tmp1, ctx);
const s8 *rs2 = bpf_get_reg32(src2, tmp2, ctx);
e = ctx->ninsns;
/* Adjust for extra insns. */
rvoff -= ninsns_rvoff(e - s);
if (emit_bcc(op, lo(rs1), lo(rs2), rvoff, ctx))
return -1;
return 0;
}
static void emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx)
{
const s8 *r0 = bpf2rv32[BPF_REG_0];
const s8 *r5 = bpf2rv32[BPF_REG_5];
u32 upper = ((u32)addr + (1 << 11)) >> 12;
u32 lower = addr & 0xfff;
/* R1-R4 already in correct registers---need to push R5 to stack. */
emit(rv_addi(RV_REG_SP, RV_REG_SP, -16), ctx);
emit(rv_sw(RV_REG_SP, 0, lo(r5)), ctx);
emit(rv_sw(RV_REG_SP, 4, hi(r5)), ctx);
/* Backup TCC. */
emit(rv_addi(RV_REG_TCC_SAVED, RV_REG_TCC, 0), ctx);
/*
* Use lui/jalr pair to jump to absolute address. Don't use emit_imm as
* the number of emitted instructions should not depend on the value of
* addr.
*/
emit(rv_lui(RV_REG_T1, upper), ctx);
emit(rv_jalr(RV_REG_RA, RV_REG_T1, lower), ctx);
/* Restore TCC. */
emit(rv_addi(RV_REG_TCC, RV_REG_TCC_SAVED, 0), ctx);
/* Set return value and restore stack. */
emit(rv_addi(lo(r0), RV_REG_A0, 0), ctx);
emit(rv_addi(hi(r0), RV_REG_A1, 0), ctx);
emit(rv_addi(RV_REG_SP, RV_REG_SP, 16), ctx);
}
static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
{
/*
* R1 -> &ctx
* R2 -> &array
* R3 -> index
*/
int tc_ninsn, off, start_insn = ctx->ninsns;
const s8 *arr_reg = bpf2rv32[BPF_REG_2];
const s8 *idx_reg = bpf2rv32[BPF_REG_3];
tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
ctx->offset[0];
/* max_entries = array->map.max_entries; */
off = offsetof(struct bpf_array, map.max_entries);
if (is_12b_check(off, insn))
return -1;
emit(rv_lw(RV_REG_T1, off, lo(arr_reg)), ctx);
/*
* if (index >= max_entries)
* goto out;
*/
off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
emit_bcc(BPF_JGE, lo(idx_reg), RV_REG_T1, off, ctx);
/*
* if (--tcc < 0)
* goto out;
*/
emit(rv_addi(RV_REG_TCC, RV_REG_TCC, -1), ctx);
off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
emit_bcc(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
/*
* prog = array->ptrs[index];
* if (!prog)
* goto out;
*/
emit(rv_slli(RV_REG_T0, lo(idx_reg), 2), ctx);
emit(rv_add(RV_REG_T0, RV_REG_T0, lo(arr_reg)), ctx);
off = offsetof(struct bpf_array, ptrs);
if (is_12b_check(off, insn))
return -1;
emit(rv_lw(RV_REG_T0, off, RV_REG_T0), ctx);
off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
emit_bcc(BPF_JEQ, RV_REG_T0, RV_REG_ZERO, off, ctx);
/*
* tcc = temp_tcc;
* goto *(prog->bpf_func + 4);
*/
off = offsetof(struct bpf_prog, bpf_func);
if (is_12b_check(off, insn))
return -1;
emit(rv_lw(RV_REG_T0, off, RV_REG_T0), ctx);
/* Epilogue jumps to *(t0 + 4). */
__build_epilogue(true, ctx);
return 0;
}
static int emit_load_r64(const s8 *dst, const s8 *src, s16 off,
struct rv_jit_context *ctx, const u8 size)
{
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *tmp2 = bpf2rv32[TMP_REG_2];
const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
const s8 *rs = bpf_get_reg64(src, tmp2, ctx);
emit_imm(RV_REG_T0, off, ctx);
emit(rv_add(RV_REG_T0, RV_REG_T0, lo(rs)), ctx);
switch (size) {
case BPF_B:
emit(rv_lbu(lo(rd), 0, RV_REG_T0), ctx);
if (!ctx->prog->aux->verifier_zext)
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
break;
case BPF_H:
emit(rv_lhu(lo(rd), 0, RV_REG_T0), ctx);
if (!ctx->prog->aux->verifier_zext)
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
break;
case BPF_W:
emit(rv_lw(lo(rd), 0, RV_REG_T0), ctx);
if (!ctx->prog->aux->verifier_zext)
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
break;
case BPF_DW:
emit(rv_lw(lo(rd), 0, RV_REG_T0), ctx);
emit(rv_lw(hi(rd), 4, RV_REG_T0), ctx);
break;
}
bpf_put_reg64(dst, rd, ctx);
return 0;
}
static int emit_store_r64(const s8 *dst, const s8 *src, s16 off,
struct rv_jit_context *ctx, const u8 size,
const u8 mode)
{
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *tmp2 = bpf2rv32[TMP_REG_2];
const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
const s8 *rs = bpf_get_reg64(src, tmp2, ctx);
if (mode == BPF_ATOMIC && size != BPF_W)
return -1;
emit_imm(RV_REG_T0, off, ctx);
emit(rv_add(RV_REG_T0, RV_REG_T0, lo(rd)), ctx);
switch (size) {
case BPF_B:
emit(rv_sb(RV_REG_T0, 0, lo(rs)), ctx);
break;
case BPF_H:
emit(rv_sh(RV_REG_T0, 0, lo(rs)), ctx);
break;
case BPF_W:
switch (mode) {
case BPF_MEM:
emit(rv_sw(RV_REG_T0, 0, lo(rs)), ctx);
break;
case BPF_ATOMIC: /* Only BPF_ADD supported */
emit(rv_amoadd_w(RV_REG_ZERO, lo(rs), RV_REG_T0, 0, 0),
ctx);
break;
}
break;
case BPF_DW:
emit(rv_sw(RV_REG_T0, 0, lo(rs)), ctx);
emit(rv_sw(RV_REG_T0, 4, hi(rs)), ctx);
break;
}
return 0;
}
static void emit_rev16(const s8 rd, struct rv_jit_context *ctx)
{
emit(rv_slli(rd, rd, 16), ctx);
emit(rv_slli(RV_REG_T1, rd, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
emit(rv_add(RV_REG_T1, rd, RV_REG_T1), ctx);
emit(rv_srli(rd, RV_REG_T1, 16), ctx);
}
static void emit_rev32(const s8 rd, struct rv_jit_context *ctx)
{
emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 0), ctx);
emit(rv_andi(RV_REG_T0, rd, 255), ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx);
emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
emit(rv_andi(RV_REG_T0, rd, 255), ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx);
emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
emit(rv_andi(RV_REG_T0, rd, 255), ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx);
emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx);
emit(rv_srli(rd, rd, 8), ctx);
emit(rv_andi(RV_REG_T0, rd, 255), ctx);
emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx);
emit(rv_addi(rd, RV_REG_T1, 0), ctx);
}
static void emit_zext64(const s8 *dst, struct rv_jit_context *ctx)
{
const s8 *rd;
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
rd = bpf_get_reg64(dst, tmp1, ctx);
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
bpf_put_reg64(dst, rd, ctx);
}
int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
bool extra_pass)
{
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
BPF_CLASS(insn->code) == BPF_JMP;
int s, e, rvoff, i = insn - ctx->prog->insnsi;
u8 code = insn->code;
s16 off = insn->off;
s32 imm = insn->imm;
const s8 *dst = bpf2rv32[insn->dst_reg];
const s8 *src = bpf2rv32[insn->src_reg];
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *tmp2 = bpf2rv32[TMP_REG_2];
switch (code) {
case BPF_ALU64 | BPF_MOV | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_K:
case BPF_ALU64 | BPF_LSH | BPF_X:
case BPF_ALU64 | BPF_RSH | BPF_X:
case BPF_ALU64 | BPF_ARSH | BPF_X:
if (BPF_SRC(code) == BPF_K) {
emit_imm32(tmp2, imm, ctx);
src = tmp2;
}
emit_alu_r64(dst, src, ctx, BPF_OP(code));
break;
case BPF_ALU64 | BPF_NEG:
emit_alu_r64(dst, tmp2, ctx, BPF_OP(code));
break;
case BPF_ALU64 | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_K:
goto notsupported;
case BPF_ALU64 | BPF_MOV | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_LSH | BPF_K:
case BPF_ALU64 | BPF_RSH | BPF_K:
case BPF_ALU64 | BPF_ARSH | BPF_K:
emit_alu_i64(dst, imm, ctx, BPF_OP(code));
break;
case BPF_ALU | BPF_MOV | BPF_X:
if (imm == 1) {
/* Special mov32 for zext. */
emit_zext64(dst, ctx);
break;
}
fallthrough;
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU | BPF_MOD | BPF_X:
case BPF_ALU | BPF_MOD | BPF_K:
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU | BPF_ARSH | BPF_X:
if (BPF_SRC(code) == BPF_K) {
emit_imm32(tmp2, imm, ctx);
src = tmp2;
}
emit_alu_r32(dst, src, ctx, BPF_OP(code));
break;
case BPF_ALU | BPF_MOV | BPF_K:
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU | BPF_ARSH | BPF_K:
/*
* mul,div,mod are handled in the BPF_X case since there are
* no RISC-V I-type equivalents.
*/
emit_alu_i32(dst, imm, ctx, BPF_OP(code));
break;
case BPF_ALU | BPF_NEG:
/*
* src is ignored---choose tmp2 as a dummy register since it
* is not on the stack.
*/
emit_alu_r32(dst, tmp2, ctx, BPF_OP(code));
break;
case BPF_ALU | BPF_END | BPF_FROM_LE:
{
const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
switch (imm) {
case 16:
emit(rv_slli(lo(rd), lo(rd), 16), ctx);
emit(rv_srli(lo(rd), lo(rd), 16), ctx);
fallthrough;
case 32:
if (!ctx->prog->aux->verifier_zext)
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
break;
case 64:
/* Do nothing. */
break;
default:
pr_err("bpf-jit: BPF_END imm %d invalid\n", imm);
return -1;
}
bpf_put_reg64(dst, rd, ctx);
break;
}
case BPF_ALU | BPF_END | BPF_FROM_BE:
{
const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
switch (imm) {
case 16:
emit_rev16(lo(rd), ctx);
if (!ctx->prog->aux->verifier_zext)
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
break;
case 32:
emit_rev32(lo(rd), ctx);
if (!ctx->prog->aux->verifier_zext)
emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
break;
case 64:
/* Swap upper and lower halves. */
emit(rv_addi(RV_REG_T0, lo(rd), 0), ctx);
emit(rv_addi(lo(rd), hi(rd), 0), ctx);
emit(rv_addi(hi(rd), RV_REG_T0, 0), ctx);
/* Swap each half. */
emit_rev32(lo(rd), ctx);
emit_rev32(hi(rd), ctx);
break;
default:
pr_err("bpf-jit: BPF_END imm %d invalid\n", imm);
return -1;
}
bpf_put_reg64(dst, rd, ctx);
break;
}
case BPF_JMP | BPF_JA:
rvoff = rv_offset(i, off, ctx);
emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
break;
case BPF_JMP | BPF_CALL:
{
bool fixed;
int ret;
u64 addr;
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr,
&fixed);
if (ret < 0)
return ret;
emit_call(fixed, addr, ctx);
break;
}
case BPF_JMP | BPF_TAIL_CALL:
if (emit_bpf_tail_call(i, ctx))
return -1;
break;
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_K:
rvoff = rv_offset(i, off, ctx);
if (BPF_SRC(code) == BPF_K) {
s = ctx->ninsns;
emit_imm32(tmp2, imm, ctx);
src = tmp2;
e = ctx->ninsns;
rvoff -= ninsns_rvoff(e - s);
}
if (is64)
emit_branch_r64(dst, src, rvoff, ctx, BPF_OP(code));
else
emit_branch_r32(dst, src, rvoff, ctx, BPF_OP(code));
break;
case BPF_JMP | BPF_EXIT:
if (i == ctx->prog->len - 1)
break;
rvoff = epilogue_offset(ctx);
emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
break;
case BPF_LD | BPF_IMM | BPF_DW:
{
struct bpf_insn insn1 = insn[1];
s32 imm_lo = imm;
s32 imm_hi = insn1.imm;
const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
emit_imm64(rd, imm_hi, imm_lo, ctx);
bpf_put_reg64(dst, rd, ctx);
return 1;
}
case BPF_LDX | BPF_MEM | BPF_B:
case BPF_LDX | BPF_MEM | BPF_H:
case BPF_LDX | BPF_MEM | BPF_W:
case BPF_LDX | BPF_MEM | BPF_DW:
if (emit_load_r64(dst, src, off, ctx, BPF_SIZE(code)))
return -1;
break;
/* speculation barrier */
case BPF_ST | BPF_NOSPEC:
break;
case BPF_ST | BPF_MEM | BPF_B:
case BPF_ST | BPF_MEM | BPF_H:
case BPF_ST | BPF_MEM | BPF_W:
case BPF_ST | BPF_MEM | BPF_DW:
case BPF_STX | BPF_MEM | BPF_B:
case BPF_STX | BPF_MEM | BPF_H:
case BPF_STX | BPF_MEM | BPF_W:
case BPF_STX | BPF_MEM | BPF_DW:
if (BPF_CLASS(code) == BPF_ST) {
emit_imm32(tmp2, imm, ctx);
src = tmp2;
}
if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code),
BPF_MODE(code)))
return -1;
break;
case BPF_STX | BPF_ATOMIC | BPF_W:
if (insn->imm != BPF_ADD) {
pr_info_once(
"bpf-jit: not supported: atomic operation %02x ***\n",
insn->imm);
return -EFAULT;
}
if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code),
BPF_MODE(code)))
return -1;
break;
/* No hardware support for 8-byte atomics in RV32. */
case BPF_STX | BPF_ATOMIC | BPF_DW:
/* Fallthrough. */
notsupported:
pr_info_once("bpf-jit: not supported: opcode %02x ***\n", code);
return -EFAULT;
default:
pr_err("bpf-jit: unknown opcode %02x\n", code);
return -EINVAL;
}
return 0;
}
void bpf_jit_build_prologue(struct rv_jit_context *ctx)
{
const s8 *fp = bpf2rv32[BPF_REG_FP];
const s8 *r1 = bpf2rv32[BPF_REG_1];
int stack_adjust = 0;
int bpf_stack_adjust =
round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
/* Make space for callee-saved registers. */
stack_adjust += NR_SAVED_REGISTERS * sizeof(u32);
/* Make space for BPF registers on stack. */
stack_adjust += BPF_JIT_SCRATCH_REGS * sizeof(u32);
/* Make space for BPF stack. */
stack_adjust += bpf_stack_adjust;
/* Round up for stack alignment. */
stack_adjust = round_up(stack_adjust, STACK_ALIGN);
/*
* The first instruction sets the tail-call-counter (TCC) register.
* This instruction is skipped by tail calls.
*/
emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
emit(rv_addi(RV_REG_SP, RV_REG_SP, -stack_adjust), ctx);
/* Save callee-save registers. */
emit(rv_sw(RV_REG_SP, stack_adjust - 4, RV_REG_RA), ctx);
emit(rv_sw(RV_REG_SP, stack_adjust - 8, RV_REG_FP), ctx);
emit(rv_sw(RV_REG_SP, stack_adjust - 12, RV_REG_S1), ctx);
emit(rv_sw(RV_REG_SP, stack_adjust - 16, RV_REG_S2), ctx);
emit(rv_sw(RV_REG_SP, stack_adjust - 20, RV_REG_S3), ctx);
emit(rv_sw(RV_REG_SP, stack_adjust - 24, RV_REG_S4), ctx);
emit(rv_sw(RV_REG_SP, stack_adjust - 28, RV_REG_S5), ctx);
emit(rv_sw(RV_REG_SP, stack_adjust - 32, RV_REG_S6), ctx);
emit(rv_sw(RV_REG_SP, stack_adjust - 36, RV_REG_S7), ctx);
/* Set fp: used as the base address for stacked BPF registers. */
emit(rv_addi(RV_REG_FP, RV_REG_SP, stack_adjust), ctx);
/* Set up BPF frame pointer. */
emit(rv_addi(lo(fp), RV_REG_SP, bpf_stack_adjust), ctx);
emit(rv_addi(hi(fp), RV_REG_ZERO, 0), ctx);
/* Set up BPF context pointer. */
emit(rv_addi(lo(r1), RV_REG_A0, 0), ctx);
emit(rv_addi(hi(r1), RV_REG_ZERO, 0), ctx);
ctx->stack_size = stack_adjust;
}
void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
{
__build_epilogue(false, ctx);
}