1653 lines
43 KiB
C
1653 lines
43 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* KVM/MIPS: Instruction/Exception emulation
|
|
*
|
|
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
|
|
* Authors: Sanjay Lal <sanjayl@kymasys.com>
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/random.h>
|
|
#include <asm/page.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cacheops.h>
|
|
#include <asm/cpu-info.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/inst.h>
|
|
|
|
#undef CONFIG_MIPS_MT
|
|
#include <asm/r4kcache.h>
|
|
#define CONFIG_MIPS_MT
|
|
|
|
#include "interrupt.h"
|
|
|
|
#include "trace.h"
|
|
|
|
/*
|
|
* Compute the return address and do emulate branch simulation, if required.
|
|
* This function should be called only in branch delay slot active.
|
|
*/
|
|
static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
|
|
unsigned long *out)
|
|
{
|
|
unsigned int dspcontrol;
|
|
union mips_instruction insn;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
long epc = instpc;
|
|
long nextpc;
|
|
int err;
|
|
|
|
if (epc & 3) {
|
|
kvm_err("%s: unaligned epc\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Read the instruction */
|
|
err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
|
|
if (err)
|
|
return err;
|
|
|
|
switch (insn.i_format.opcode) {
|
|
/* jr and jalr are in r_format format. */
|
|
case spec_op:
|
|
switch (insn.r_format.func) {
|
|
case jalr_op:
|
|
arch->gprs[insn.r_format.rd] = epc + 8;
|
|
fallthrough;
|
|
case jr_op:
|
|
nextpc = arch->gprs[insn.r_format.rs];
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* This group contains:
|
|
* bltz_op, bgez_op, bltzl_op, bgezl_op,
|
|
* bltzal_op, bgezal_op, bltzall_op, bgezall_op.
|
|
*/
|
|
case bcond_op:
|
|
switch (insn.i_format.rt) {
|
|
case bltz_op:
|
|
case bltzl_op:
|
|
if ((long)arch->gprs[insn.i_format.rs] < 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bgez_op:
|
|
case bgezl_op:
|
|
if ((long)arch->gprs[insn.i_format.rs] >= 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bltzal_op:
|
|
case bltzall_op:
|
|
arch->gprs[31] = epc + 8;
|
|
if ((long)arch->gprs[insn.i_format.rs] < 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bgezal_op:
|
|
case bgezall_op:
|
|
arch->gprs[31] = epc + 8;
|
|
if ((long)arch->gprs[insn.i_format.rs] >= 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
case bposge32_op:
|
|
if (!cpu_has_dsp) {
|
|
kvm_err("%s: DSP branch but not DSP ASE\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dspcontrol = rddsp(0x01);
|
|
|
|
if (dspcontrol >= 32)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
/* These are unconditional and in j_format. */
|
|
case jal_op:
|
|
arch->gprs[31] = instpc + 8;
|
|
fallthrough;
|
|
case j_op:
|
|
epc += 4;
|
|
epc >>= 28;
|
|
epc <<= 28;
|
|
epc |= (insn.j_format.target << 2);
|
|
nextpc = epc;
|
|
break;
|
|
|
|
/* These are conditional and in i_format. */
|
|
case beq_op:
|
|
case beql_op:
|
|
if (arch->gprs[insn.i_format.rs] ==
|
|
arch->gprs[insn.i_format.rt])
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bne_op:
|
|
case bnel_op:
|
|
if (arch->gprs[insn.i_format.rs] !=
|
|
arch->gprs[insn.i_format.rt])
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case blez_op: /* POP06 */
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
case blezl_op: /* removed in R6 */
|
|
#endif
|
|
if (insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
if ((long)arch->gprs[insn.i_format.rs] <= 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bgtz_op: /* POP07 */
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
case bgtzl_op: /* removed in R6 */
|
|
#endif
|
|
if (insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
if ((long)arch->gprs[insn.i_format.rs] > 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
/* And now the FPA/cp1 branch instructions. */
|
|
case cop1_op:
|
|
kvm_err("%s: unsupported cop1_op\n", __func__);
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_CPU_MIPSR6
|
|
/* R6 added the following compact branches with forbidden slots */
|
|
case blezl_op: /* POP26 */
|
|
case bgtzl_op: /* POP27 */
|
|
/* only rt == 0 isn't compact branch */
|
|
if (insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
return -EINVAL;
|
|
case pop10_op:
|
|
case pop30_op:
|
|
/* only rs == rt == 0 is reserved, rest are compact branches */
|
|
if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
return -EINVAL;
|
|
case pop66_op:
|
|
case pop76_op:
|
|
/* only rs == 0 isn't compact branch */
|
|
if (insn.i_format.rs != 0)
|
|
goto compact_branch;
|
|
return -EINVAL;
|
|
compact_branch:
|
|
/*
|
|
* If we've hit an exception on the forbidden slot, then
|
|
* the branch must not have been taken.
|
|
*/
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
#else
|
|
compact_branch:
|
|
/* Fall through - Compact branches not supported before R6 */
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
*out = nextpc;
|
|
return 0;
|
|
}
|
|
|
|
enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
|
|
{
|
|
int err;
|
|
|
|
if (cause & CAUSEF_BD) {
|
|
err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
|
|
&vcpu->arch.pc);
|
|
if (err)
|
|
return EMULATE_FAIL;
|
|
} else {
|
|
vcpu->arch.pc += 4;
|
|
}
|
|
|
|
kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/**
|
|
* kvm_get_badinstr() - Get bad instruction encoding.
|
|
* @opc: Guest pointer to faulting instruction.
|
|
* @vcpu: KVM VCPU information.
|
|
*
|
|
* Gets the instruction encoding of the faulting instruction, using the saved
|
|
* BadInstr register value if it exists, otherwise falling back to reading guest
|
|
* memory at @opc.
|
|
*
|
|
* Returns: The instruction encoding of the faulting instruction.
|
|
*/
|
|
int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
|
|
{
|
|
if (cpu_has_badinstr) {
|
|
*out = vcpu->arch.host_cp0_badinstr;
|
|
return 0;
|
|
} else {
|
|
WARN_ONCE(1, "CPU doesn't have BadInstr register\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_get_badinstrp() - Get bad prior instruction encoding.
|
|
* @opc: Guest pointer to prior faulting instruction.
|
|
* @vcpu: KVM VCPU information.
|
|
*
|
|
* Gets the instruction encoding of the prior faulting instruction (the branch
|
|
* containing the delay slot which faulted), using the saved BadInstrP register
|
|
* value if it exists, otherwise falling back to reading guest memory at @opc.
|
|
*
|
|
* Returns: The instruction encoding of the prior faulting instruction.
|
|
*/
|
|
int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
|
|
{
|
|
if (cpu_has_badinstrp) {
|
|
*out = vcpu->arch.host_cp0_badinstrp;
|
|
return 0;
|
|
} else {
|
|
WARN_ONCE(1, "CPU doesn't have BadInstrp register\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Returns: 1 if the CP0_Count timer is disabled by either the guest
|
|
* CP0_Cause.DC bit or the count_ctl.DC bit.
|
|
* 0 otherwise (in which case CP0_Count timer is running).
|
|
*/
|
|
int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
|
|
(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
|
|
*
|
|
* Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
|
|
*/
|
|
static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
|
|
{
|
|
s64 now_ns, periods;
|
|
u64 delta;
|
|
|
|
now_ns = ktime_to_ns(now);
|
|
delta = now_ns + vcpu->arch.count_dyn_bias;
|
|
|
|
if (delta >= vcpu->arch.count_period) {
|
|
/* If delta is out of safe range the bias needs adjusting */
|
|
periods = div64_s64(now_ns, vcpu->arch.count_period);
|
|
vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
|
|
/* Recalculate delta with new bias */
|
|
delta = now_ns + vcpu->arch.count_dyn_bias;
|
|
}
|
|
|
|
/*
|
|
* We've ensured that:
|
|
* delta < count_period
|
|
*
|
|
* Therefore the intermediate delta*count_hz will never overflow since
|
|
* at the boundary condition:
|
|
* delta = count_period
|
|
* delta = NSEC_PER_SEC * 2^32 / count_hz
|
|
* delta * count_hz = NSEC_PER_SEC * 2^32
|
|
*/
|
|
return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_time() - Get effective current time.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Get effective monotonic ktime. This is usually a straightforward ktime_get(),
|
|
* except when the master disable bit is set in count_ctl, in which case it is
|
|
* count_resume, i.e. the time that the count was disabled.
|
|
*
|
|
* Returns: Effective monotonic ktime for CP0_Count.
|
|
*/
|
|
static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
|
|
return vcpu->arch.count_resume;
|
|
|
|
return ktime_get();
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_read_count_running() - Read the current count value as if running.
|
|
* @vcpu: Virtual CPU.
|
|
* @now: Kernel time to read CP0_Count at.
|
|
*
|
|
* Returns the current guest CP0_Count register at time @now and handles if the
|
|
* timer interrupt is pending and hasn't been handled yet.
|
|
*
|
|
* Returns: The current value of the guest CP0_Count register.
|
|
*/
|
|
static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
ktime_t expires, threshold;
|
|
u32 count, compare;
|
|
int running;
|
|
|
|
/* Calculate the biased and scaled guest CP0_Count */
|
|
count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
|
|
compare = kvm_read_c0_guest_compare(cop0);
|
|
|
|
/*
|
|
* Find whether CP0_Count has reached the closest timer interrupt. If
|
|
* not, we shouldn't inject it.
|
|
*/
|
|
if ((s32)(count - compare) < 0)
|
|
return count;
|
|
|
|
/*
|
|
* The CP0_Count we're going to return has already reached the closest
|
|
* timer interrupt. Quickly check if it really is a new interrupt by
|
|
* looking at whether the interval until the hrtimer expiry time is
|
|
* less than 1/4 of the timer period.
|
|
*/
|
|
expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
|
|
threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
|
|
if (ktime_before(expires, threshold)) {
|
|
/*
|
|
* Cancel it while we handle it so there's no chance of
|
|
* interference with the timeout handler.
|
|
*/
|
|
running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
|
|
/* Nothing should be waiting on the timeout */
|
|
kvm_mips_callbacks->queue_timer_int(vcpu);
|
|
|
|
/*
|
|
* Restart the timer if it was running based on the expiry time
|
|
* we read, so that we don't push it back 2 periods.
|
|
*/
|
|
if (running) {
|
|
expires = ktime_add_ns(expires,
|
|
vcpu->arch.count_period);
|
|
hrtimer_start(&vcpu->arch.comparecount_timer, expires,
|
|
HRTIMER_MODE_ABS);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_read_count() - Read the current count value.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Read the current guest CP0_Count value, taking into account whether the timer
|
|
* is stopped.
|
|
*
|
|
* Returns: The current guest CP0_Count value.
|
|
*/
|
|
u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
/* If count disabled just read static copy of count */
|
|
if (kvm_mips_count_disabled(vcpu))
|
|
return kvm_read_c0_guest_count(cop0);
|
|
|
|
return kvm_mips_read_count_running(vcpu, ktime_get());
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count: Output pointer for CP0_Count value at point of freeze.
|
|
*
|
|
* Freeze the hrtimer safely and return both the ktime and the CP0_Count value
|
|
* at the point it was frozen. It is guaranteed that any pending interrupts at
|
|
* the point it was frozen are handled, and none after that point.
|
|
*
|
|
* This is useful where the time/CP0_Count is needed in the calculation of the
|
|
* new parameters.
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
|
|
*
|
|
* Returns: The ktime at the point of freeze.
|
|
*/
|
|
ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
|
|
{
|
|
ktime_t now;
|
|
|
|
/* stop hrtimer before finding time */
|
|
hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
now = ktime_get();
|
|
|
|
/* find count at this point and handle pending hrtimer */
|
|
*count = kvm_mips_read_count_running(vcpu, now);
|
|
|
|
return now;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
|
|
* @vcpu: Virtual CPU.
|
|
* @now: ktime at point of resume.
|
|
* @count: CP0_Count at point of resume.
|
|
*
|
|
* Resumes the timer and updates the timer expiry based on @now and @count.
|
|
* This can be used in conjunction with kvm_mips_freeze_timer() when timer
|
|
* parameters need to be changed.
|
|
*
|
|
* It is guaranteed that a timer interrupt immediately after resume will be
|
|
* handled, but not if CP_Compare is exactly at @count. That case is already
|
|
* handled by kvm_mips_freeze_timer().
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
|
|
*/
|
|
static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
|
|
ktime_t now, u32 count)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
u32 compare;
|
|
u64 delta;
|
|
ktime_t expire;
|
|
|
|
/* Calculate timeout (wrap 0 to 2^32) */
|
|
compare = kvm_read_c0_guest_compare(cop0);
|
|
delta = (u64)(u32)(compare - count - 1) + 1;
|
|
delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
|
|
expire = ktime_add_ns(now, delta);
|
|
|
|
/* Update hrtimer to use new timeout */
|
|
hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
|
|
* @vcpu: Virtual CPU.
|
|
* @before: Time before Count was saved, lower bound of drift calculation.
|
|
* @count: CP0_Count at point of restore.
|
|
* @min_drift: Minimum amount of drift permitted before correction.
|
|
* Must be <= 0.
|
|
*
|
|
* Restores the timer from a particular @count, accounting for drift. This can
|
|
* be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
|
|
* to be used for a period of time, but the exact ktime corresponding to the
|
|
* final Count that must be restored is not known.
|
|
*
|
|
* It is gauranteed that a timer interrupt immediately after restore will be
|
|
* handled, but not if CP0_Compare is exactly at @count. That case should
|
|
* already be handled when the hardware timer state is saved.
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
|
|
* stopped).
|
|
*
|
|
* Returns: Amount of correction to count_bias due to drift.
|
|
*/
|
|
int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
|
|
u32 count, int min_drift)
|
|
{
|
|
ktime_t now, count_time;
|
|
u32 now_count, before_count;
|
|
u64 delta;
|
|
int drift, ret = 0;
|
|
|
|
/* Calculate expected count at before */
|
|
before_count = vcpu->arch.count_bias +
|
|
kvm_mips_ktime_to_count(vcpu, before);
|
|
|
|
/*
|
|
* Detect significantly negative drift, where count is lower than
|
|
* expected. Some negative drift is expected when hardware counter is
|
|
* set after kvm_mips_freeze_timer(), and it is harmless to allow the
|
|
* time to jump forwards a little, within reason. If the drift is too
|
|
* significant, adjust the bias to avoid a big Guest.CP0_Count jump.
|
|
*/
|
|
drift = count - before_count;
|
|
if (drift < min_drift) {
|
|
count_time = before;
|
|
vcpu->arch.count_bias += drift;
|
|
ret = drift;
|
|
goto resume;
|
|
}
|
|
|
|
/* Calculate expected count right now */
|
|
now = ktime_get();
|
|
now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
|
|
|
|
/*
|
|
* Detect positive drift, where count is higher than expected, and
|
|
* adjust the bias to avoid guest time going backwards.
|
|
*/
|
|
drift = count - now_count;
|
|
if (drift > 0) {
|
|
count_time = now;
|
|
vcpu->arch.count_bias += drift;
|
|
ret = drift;
|
|
goto resume;
|
|
}
|
|
|
|
/* Subtract nanosecond delta to find ktime when count was read */
|
|
delta = (u64)(u32)(now_count - count);
|
|
delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
|
|
count_time = ktime_sub_ns(now, delta);
|
|
|
|
resume:
|
|
/* Resume using the calculated ktime */
|
|
kvm_mips_resume_hrtimer(vcpu, count_time, count);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_write_count() - Modify the count and update timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count: Guest CP0_Count value to set.
|
|
*
|
|
* Sets the CP0_Count value and updates the timer accordingly.
|
|
*/
|
|
void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
ktime_t now;
|
|
|
|
/* Calculate bias */
|
|
now = kvm_mips_count_time(vcpu);
|
|
vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
|
|
|
|
if (kvm_mips_count_disabled(vcpu))
|
|
/* The timer's disabled, adjust the static count */
|
|
kvm_write_c0_guest_count(cop0, count);
|
|
else
|
|
/* Update timeout */
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_init_count() - Initialise timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_hz: Frequency of timer.
|
|
*
|
|
* Initialise the timer to the specified frequency, zero it, and set it going if
|
|
* it's enabled.
|
|
*/
|
|
void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
|
|
{
|
|
vcpu->arch.count_hz = count_hz;
|
|
vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
|
|
vcpu->arch.count_dyn_bias = 0;
|
|
|
|
/* Starting at 0 */
|
|
kvm_mips_write_count(vcpu, 0);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_set_count_hz() - Update the frequency of the timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_hz: Frequency of CP0_Count timer in Hz.
|
|
*
|
|
* Change the frequency of the CP0_Count timer. This is done atomically so that
|
|
* CP0_Count is continuous and no timer interrupt is lost.
|
|
*
|
|
* Returns: -EINVAL if @count_hz is out of range.
|
|
* 0 on success.
|
|
*/
|
|
int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
int dc;
|
|
ktime_t now;
|
|
u32 count;
|
|
|
|
/* ensure the frequency is in a sensible range... */
|
|
if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
/* ... and has actually changed */
|
|
if (vcpu->arch.count_hz == count_hz)
|
|
return 0;
|
|
|
|
/* Safely freeze timer so we can keep it continuous */
|
|
dc = kvm_mips_count_disabled(vcpu);
|
|
if (dc) {
|
|
now = kvm_mips_count_time(vcpu);
|
|
count = kvm_read_c0_guest_count(cop0);
|
|
} else {
|
|
now = kvm_mips_freeze_hrtimer(vcpu, &count);
|
|
}
|
|
|
|
/* Update the frequency */
|
|
vcpu->arch.count_hz = count_hz;
|
|
vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
|
|
vcpu->arch.count_dyn_bias = 0;
|
|
|
|
/* Calculate adjusted bias so dynamic count is unchanged */
|
|
vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
|
|
|
|
/* Update and resume hrtimer */
|
|
if (!dc)
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_write_compare() - Modify compare and update timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @compare: New CP0_Compare value.
|
|
* @ack: Whether to acknowledge timer interrupt.
|
|
*
|
|
* Update CP0_Compare to a new value and update the timeout.
|
|
* If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
|
|
* any pending timer interrupt is preserved.
|
|
*/
|
|
void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
int dc;
|
|
u32 old_compare = kvm_read_c0_guest_compare(cop0);
|
|
s32 delta = compare - old_compare;
|
|
u32 cause;
|
|
ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
|
|
u32 count;
|
|
|
|
/* if unchanged, must just be an ack */
|
|
if (old_compare == compare) {
|
|
if (!ack)
|
|
return;
|
|
kvm_mips_callbacks->dequeue_timer_int(vcpu);
|
|
kvm_write_c0_guest_compare(cop0, compare);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
|
|
* too to prevent guest CP0_Count hitting guest CP0_Compare.
|
|
*
|
|
* The new GTOffset corresponds to the new value of CP0_Compare, and is
|
|
* set prior to it being written into the guest context. We disable
|
|
* preemption until the new value is written to prevent restore of a
|
|
* GTOffset corresponding to the old CP0_Compare value.
|
|
*/
|
|
if (delta > 0) {
|
|
preempt_disable();
|
|
write_c0_gtoffset(compare - read_c0_count());
|
|
back_to_back_c0_hazard();
|
|
}
|
|
|
|
/* freeze_hrtimer() takes care of timer interrupts <= count */
|
|
dc = kvm_mips_count_disabled(vcpu);
|
|
if (!dc)
|
|
now = kvm_mips_freeze_hrtimer(vcpu, &count);
|
|
|
|
if (ack)
|
|
kvm_mips_callbacks->dequeue_timer_int(vcpu);
|
|
else
|
|
/*
|
|
* With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
|
|
* preserve guest CP0_Cause.TI if we don't want to ack it.
|
|
*/
|
|
cause = kvm_read_c0_guest_cause(cop0);
|
|
|
|
kvm_write_c0_guest_compare(cop0, compare);
|
|
|
|
if (delta > 0)
|
|
preempt_enable();
|
|
|
|
back_to_back_c0_hazard();
|
|
|
|
if (!ack && cause & CAUSEF_TI)
|
|
kvm_write_c0_guest_cause(cop0, cause);
|
|
|
|
/* resume_hrtimer() takes care of timer interrupts > count */
|
|
if (!dc)
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
|
|
/*
|
|
* If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
|
|
* until after the new CP0_Compare is written, otherwise new guest
|
|
* CP0_Count could hit new guest CP0_Compare.
|
|
*/
|
|
if (delta <= 0)
|
|
write_c0_gtoffset(compare - read_c0_count());
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_disable() - Disable count.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Disable the CP0_Count timer. A timer interrupt on or before the final stop
|
|
* time will be handled but not after.
|
|
*
|
|
* Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
|
|
* count_ctl.DC has been set (count disabled).
|
|
*
|
|
* Returns: The time that the timer was stopped.
|
|
*/
|
|
static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
u32 count;
|
|
ktime_t now;
|
|
|
|
/* Stop hrtimer */
|
|
hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
|
|
/* Set the static count from the dynamic count, handling pending TI */
|
|
now = ktime_get();
|
|
count = kvm_mips_read_count_running(vcpu, now);
|
|
kvm_write_c0_guest_count(cop0, count);
|
|
|
|
return now;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
|
|
* before the final stop time will be handled if the timer isn't disabled by
|
|
* count_ctl.DC, but not after.
|
|
*
|
|
* Assumes CP0_Cause.DC is clear (count enabled).
|
|
*/
|
|
void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
|
|
if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
|
|
kvm_mips_count_disable(vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
|
|
* the start time will be handled if the timer isn't disabled by count_ctl.DC,
|
|
* potentially before even returning, so the caller should be careful with
|
|
* ordering of CP0_Cause modifications so as not to lose it.
|
|
*
|
|
* Assumes CP0_Cause.DC is set (count disabled).
|
|
*/
|
|
void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
u32 count;
|
|
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
|
|
|
|
/*
|
|
* Set the dynamic count to match the static count.
|
|
* This starts the hrtimer if count_ctl.DC allows it.
|
|
* Otherwise it conveniently updates the biases.
|
|
*/
|
|
count = kvm_read_c0_guest_count(cop0);
|
|
kvm_mips_write_count(vcpu, count);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_set_count_ctl() - Update the count control KVM register.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_ctl: Count control register new value.
|
|
*
|
|
* Set the count control KVM register. The timer is updated accordingly.
|
|
*
|
|
* Returns: -EINVAL if reserved bits are set.
|
|
* 0 on success.
|
|
*/
|
|
int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
s64 changed = count_ctl ^ vcpu->arch.count_ctl;
|
|
s64 delta;
|
|
ktime_t expire, now;
|
|
u32 count, compare;
|
|
|
|
/* Only allow defined bits to be changed */
|
|
if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
|
|
return -EINVAL;
|
|
|
|
/* Apply new value */
|
|
vcpu->arch.count_ctl = count_ctl;
|
|
|
|
/* Master CP0_Count disable */
|
|
if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
|
|
/* Is CP0_Cause.DC already disabling CP0_Count? */
|
|
if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
|
|
if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
|
|
/* Just record the current time */
|
|
vcpu->arch.count_resume = ktime_get();
|
|
} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
|
|
/* disable timer and record current time */
|
|
vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
|
|
} else {
|
|
/*
|
|
* Calculate timeout relative to static count at resume
|
|
* time (wrap 0 to 2^32).
|
|
*/
|
|
count = kvm_read_c0_guest_count(cop0);
|
|
compare = kvm_read_c0_guest_compare(cop0);
|
|
delta = (u64)(u32)(compare - count - 1) + 1;
|
|
delta = div_u64(delta * NSEC_PER_SEC,
|
|
vcpu->arch.count_hz);
|
|
expire = ktime_add_ns(vcpu->arch.count_resume, delta);
|
|
|
|
/* Handle pending interrupt */
|
|
now = ktime_get();
|
|
if (ktime_compare(now, expire) >= 0)
|
|
/* Nothing should be waiting on the timeout */
|
|
kvm_mips_callbacks->queue_timer_int(vcpu);
|
|
|
|
/* Resume hrtimer without changing bias */
|
|
count = kvm_mips_read_count_running(vcpu, now);
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_set_count_resume() - Update the count resume KVM register.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_resume: Count resume register new value.
|
|
*
|
|
* Set the count resume KVM register.
|
|
*
|
|
* Returns: -EINVAL if out of valid range (0..now).
|
|
* 0 on success.
|
|
*/
|
|
int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
|
|
{
|
|
/*
|
|
* It doesn't make sense for the resume time to be in the future, as it
|
|
* would be possible for the next interrupt to be more than a full
|
|
* period in the future.
|
|
*/
|
|
if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
|
|
return -EINVAL;
|
|
|
|
vcpu->arch.count_resume = ns_to_ktime(count_resume);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_timeout() - Push timer forward on timeout.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Handle an hrtimer event by push the hrtimer forward a period.
|
|
*
|
|
* Returns: The hrtimer_restart value to return to the hrtimer subsystem.
|
|
*/
|
|
enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Add the Count period to the current expiry time */
|
|
hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
|
|
vcpu->arch.count_period);
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
|
|
vcpu->arch.pending_exceptions);
|
|
|
|
++vcpu->stat.wait_exits;
|
|
trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
|
|
if (!vcpu->arch.pending_exceptions) {
|
|
kvm_vz_lose_htimer(vcpu);
|
|
vcpu->arch.wait = 1;
|
|
kvm_vcpu_halt(vcpu);
|
|
|
|
/*
|
|
* We we are runnable, then definitely go off to user space to
|
|
* check if any I/O interrupts are pending.
|
|
*/
|
|
if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
|
|
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
|
|
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
|
|
}
|
|
}
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
|
|
u32 cause,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
enum emulation_result er;
|
|
u32 rt;
|
|
struct kvm_run *run = vcpu->run;
|
|
void *data = run->mmio.data;
|
|
unsigned int imme;
|
|
unsigned long curr_pc;
|
|
|
|
/*
|
|
* Update PC and hold onto current PC in case there is
|
|
* an error and we want to rollback the PC
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
|
|
rt = inst.i_format.rt;
|
|
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR)
|
|
goto out_fail;
|
|
|
|
switch (inst.i_format.opcode) {
|
|
#if defined(CONFIG_64BIT)
|
|
case sd_op:
|
|
run->mmio.len = 8;
|
|
*(u64 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u64 *)data);
|
|
break;
|
|
#endif
|
|
|
|
case sw_op:
|
|
run->mmio.len = 4;
|
|
*(u32 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u32 *)data);
|
|
break;
|
|
|
|
case sh_op:
|
|
run->mmio.len = 2;
|
|
*(u16 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u16 *)data);
|
|
break;
|
|
|
|
case sb_op:
|
|
run->mmio.len = 1;
|
|
*(u8 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u8 *)data);
|
|
break;
|
|
|
|
case swl_op:
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr) & (~0x3);
|
|
run->mmio.len = 4;
|
|
imme = vcpu->arch.host_cp0_badvaddr & 0x3;
|
|
switch (imme) {
|
|
case 0:
|
|
*(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
|
|
(vcpu->arch.gprs[rt] >> 24);
|
|
break;
|
|
case 1:
|
|
*(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
|
|
(vcpu->arch.gprs[rt] >> 16);
|
|
break;
|
|
case 2:
|
|
*(u32 *)data = ((*(u32 *)data) & 0xff000000) |
|
|
(vcpu->arch.gprs[rt] >> 8);
|
|
break;
|
|
case 3:
|
|
*(u32 *)data = vcpu->arch.gprs[rt];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u32 *)data);
|
|
break;
|
|
|
|
case swr_op:
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr) & (~0x3);
|
|
run->mmio.len = 4;
|
|
imme = vcpu->arch.host_cp0_badvaddr & 0x3;
|
|
switch (imme) {
|
|
case 0:
|
|
*(u32 *)data = vcpu->arch.gprs[rt];
|
|
break;
|
|
case 1:
|
|
*(u32 *)data = ((*(u32 *)data) & 0xff) |
|
|
(vcpu->arch.gprs[rt] << 8);
|
|
break;
|
|
case 2:
|
|
*(u32 *)data = ((*(u32 *)data) & 0xffff) |
|
|
(vcpu->arch.gprs[rt] << 16);
|
|
break;
|
|
case 3:
|
|
*(u32 *)data = ((*(u32 *)data) & 0xffffff) |
|
|
(vcpu->arch.gprs[rt] << 24);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u32 *)data);
|
|
break;
|
|
|
|
#if defined(CONFIG_64BIT)
|
|
case sdl_op:
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr) & (~0x7);
|
|
|
|
run->mmio.len = 8;
|
|
imme = vcpu->arch.host_cp0_badvaddr & 0x7;
|
|
switch (imme) {
|
|
case 0:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
|
|
((vcpu->arch.gprs[rt] >> 56) & 0xff);
|
|
break;
|
|
case 1:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
|
|
((vcpu->arch.gprs[rt] >> 48) & 0xffff);
|
|
break;
|
|
case 2:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
|
|
((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
|
|
break;
|
|
case 3:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
|
|
((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
|
|
break;
|
|
case 4:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
|
|
((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
|
|
break;
|
|
case 5:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
|
|
((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
|
|
break;
|
|
case 6:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
|
|
((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
|
|
break;
|
|
case 7:
|
|
*(u64 *)data = vcpu->arch.gprs[rt];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u64 *)data);
|
|
break;
|
|
|
|
case sdr_op:
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr) & (~0x7);
|
|
|
|
run->mmio.len = 8;
|
|
imme = vcpu->arch.host_cp0_badvaddr & 0x7;
|
|
switch (imme) {
|
|
case 0:
|
|
*(u64 *)data = vcpu->arch.gprs[rt];
|
|
break;
|
|
case 1:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xff) |
|
|
(vcpu->arch.gprs[rt] << 8);
|
|
break;
|
|
case 2:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffff) |
|
|
(vcpu->arch.gprs[rt] << 16);
|
|
break;
|
|
case 3:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffff) |
|
|
(vcpu->arch.gprs[rt] << 24);
|
|
break;
|
|
case 4:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
|
|
(vcpu->arch.gprs[rt] << 32);
|
|
break;
|
|
case 5:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
|
|
(vcpu->arch.gprs[rt] << 40);
|
|
break;
|
|
case 6:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
|
|
(vcpu->arch.gprs[rt] << 48);
|
|
break;
|
|
case 7:
|
|
*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
|
|
(vcpu->arch.gprs[rt] << 56);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u64 *)data);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_LOONGSON64
|
|
case sdc2_op:
|
|
rt = inst.loongson3_lsdc2_format.rt;
|
|
switch (inst.loongson3_lsdc2_format.opcode1) {
|
|
/*
|
|
* Loongson-3 overridden sdc2 instructions.
|
|
* opcode1 instruction
|
|
* 0x0 gssbx: store 1 bytes from GPR
|
|
* 0x1 gsshx: store 2 bytes from GPR
|
|
* 0x2 gsswx: store 4 bytes from GPR
|
|
* 0x3 gssdx: store 8 bytes from GPR
|
|
*/
|
|
case 0x0:
|
|
run->mmio.len = 1;
|
|
*(u8 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u8 *)data);
|
|
break;
|
|
case 0x1:
|
|
run->mmio.len = 2;
|
|
*(u16 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u16 *)data);
|
|
break;
|
|
case 0x2:
|
|
run->mmio.len = 4;
|
|
*(u32 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u32 *)data);
|
|
break;
|
|
case 0x3:
|
|
run->mmio.len = 8;
|
|
*(u64 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u64 *)data);
|
|
break;
|
|
default:
|
|
kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
|
|
inst.word);
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
kvm_err("Store not yet supported (inst=0x%08x)\n",
|
|
inst.word);
|
|
goto out_fail;
|
|
}
|
|
|
|
vcpu->mmio_needed = 1;
|
|
run->mmio.is_write = 1;
|
|
vcpu->mmio_is_write = 1;
|
|
|
|
r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
|
|
run->mmio.phys_addr, run->mmio.len, data);
|
|
|
|
if (!r) {
|
|
vcpu->mmio_needed = 0;
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
return EMULATE_DO_MMIO;
|
|
|
|
out_fail:
|
|
/* Rollback PC if emulation was unsuccessful */
|
|
vcpu->arch.pc = curr_pc;
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
|
|
u32 cause, struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
int r;
|
|
enum emulation_result er;
|
|
unsigned long curr_pc;
|
|
u32 op, rt;
|
|
unsigned int imme;
|
|
|
|
rt = inst.i_format.rt;
|
|
op = inst.i_format.opcode;
|
|
|
|
/*
|
|
* Find the resume PC now while we have safe and easy access to the
|
|
* prior branch instruction, and save it for
|
|
* kvm_mips_complete_mmio_load() to restore later.
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
vcpu->arch.io_pc = vcpu->arch.pc;
|
|
vcpu->arch.pc = curr_pc;
|
|
|
|
vcpu->arch.io_gpr = rt;
|
|
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR)
|
|
return EMULATE_FAIL;
|
|
|
|
vcpu->mmio_needed = 2; /* signed */
|
|
switch (op) {
|
|
#if defined(CONFIG_64BIT)
|
|
case ld_op:
|
|
run->mmio.len = 8;
|
|
break;
|
|
|
|
case lwu_op:
|
|
vcpu->mmio_needed = 1; /* unsigned */
|
|
fallthrough;
|
|
#endif
|
|
case lw_op:
|
|
run->mmio.len = 4;
|
|
break;
|
|
|
|
case lhu_op:
|
|
vcpu->mmio_needed = 1; /* unsigned */
|
|
fallthrough;
|
|
case lh_op:
|
|
run->mmio.len = 2;
|
|
break;
|
|
|
|
case lbu_op:
|
|
vcpu->mmio_needed = 1; /* unsigned */
|
|
fallthrough;
|
|
case lb_op:
|
|
run->mmio.len = 1;
|
|
break;
|
|
|
|
case lwl_op:
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr) & (~0x3);
|
|
|
|
run->mmio.len = 4;
|
|
imme = vcpu->arch.host_cp0_badvaddr & 0x3;
|
|
switch (imme) {
|
|
case 0:
|
|
vcpu->mmio_needed = 3; /* 1 byte */
|
|
break;
|
|
case 1:
|
|
vcpu->mmio_needed = 4; /* 2 bytes */
|
|
break;
|
|
case 2:
|
|
vcpu->mmio_needed = 5; /* 3 bytes */
|
|
break;
|
|
case 3:
|
|
vcpu->mmio_needed = 6; /* 4 bytes */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case lwr_op:
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr) & (~0x3);
|
|
|
|
run->mmio.len = 4;
|
|
imme = vcpu->arch.host_cp0_badvaddr & 0x3;
|
|
switch (imme) {
|
|
case 0:
|
|
vcpu->mmio_needed = 7; /* 4 bytes */
|
|
break;
|
|
case 1:
|
|
vcpu->mmio_needed = 8; /* 3 bytes */
|
|
break;
|
|
case 2:
|
|
vcpu->mmio_needed = 9; /* 2 bytes */
|
|
break;
|
|
case 3:
|
|
vcpu->mmio_needed = 10; /* 1 byte */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
#if defined(CONFIG_64BIT)
|
|
case ldl_op:
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr) & (~0x7);
|
|
|
|
run->mmio.len = 8;
|
|
imme = vcpu->arch.host_cp0_badvaddr & 0x7;
|
|
switch (imme) {
|
|
case 0:
|
|
vcpu->mmio_needed = 11; /* 1 byte */
|
|
break;
|
|
case 1:
|
|
vcpu->mmio_needed = 12; /* 2 bytes */
|
|
break;
|
|
case 2:
|
|
vcpu->mmio_needed = 13; /* 3 bytes */
|
|
break;
|
|
case 3:
|
|
vcpu->mmio_needed = 14; /* 4 bytes */
|
|
break;
|
|
case 4:
|
|
vcpu->mmio_needed = 15; /* 5 bytes */
|
|
break;
|
|
case 5:
|
|
vcpu->mmio_needed = 16; /* 6 bytes */
|
|
break;
|
|
case 6:
|
|
vcpu->mmio_needed = 17; /* 7 bytes */
|
|
break;
|
|
case 7:
|
|
vcpu->mmio_needed = 18; /* 8 bytes */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case ldr_op:
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr) & (~0x7);
|
|
|
|
run->mmio.len = 8;
|
|
imme = vcpu->arch.host_cp0_badvaddr & 0x7;
|
|
switch (imme) {
|
|
case 0:
|
|
vcpu->mmio_needed = 19; /* 8 bytes */
|
|
break;
|
|
case 1:
|
|
vcpu->mmio_needed = 20; /* 7 bytes */
|
|
break;
|
|
case 2:
|
|
vcpu->mmio_needed = 21; /* 6 bytes */
|
|
break;
|
|
case 3:
|
|
vcpu->mmio_needed = 22; /* 5 bytes */
|
|
break;
|
|
case 4:
|
|
vcpu->mmio_needed = 23; /* 4 bytes */
|
|
break;
|
|
case 5:
|
|
vcpu->mmio_needed = 24; /* 3 bytes */
|
|
break;
|
|
case 6:
|
|
vcpu->mmio_needed = 25; /* 2 bytes */
|
|
break;
|
|
case 7:
|
|
vcpu->mmio_needed = 26; /* 1 byte */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_LOONGSON64
|
|
case ldc2_op:
|
|
rt = inst.loongson3_lsdc2_format.rt;
|
|
switch (inst.loongson3_lsdc2_format.opcode1) {
|
|
/*
|
|
* Loongson-3 overridden ldc2 instructions.
|
|
* opcode1 instruction
|
|
* 0x0 gslbx: store 1 bytes from GPR
|
|
* 0x1 gslhx: store 2 bytes from GPR
|
|
* 0x2 gslwx: store 4 bytes from GPR
|
|
* 0x3 gsldx: store 8 bytes from GPR
|
|
*/
|
|
case 0x0:
|
|
run->mmio.len = 1;
|
|
vcpu->mmio_needed = 27; /* signed */
|
|
break;
|
|
case 0x1:
|
|
run->mmio.len = 2;
|
|
vcpu->mmio_needed = 28; /* signed */
|
|
break;
|
|
case 0x2:
|
|
run->mmio.len = 4;
|
|
vcpu->mmio_needed = 29; /* signed */
|
|
break;
|
|
case 0x3:
|
|
run->mmio.len = 8;
|
|
vcpu->mmio_needed = 30; /* signed */
|
|
break;
|
|
default:
|
|
kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
|
|
inst.word);
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
kvm_err("Load not yet supported (inst=0x%08x)\n",
|
|
inst.word);
|
|
vcpu->mmio_needed = 0;
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
run->mmio.is_write = 0;
|
|
vcpu->mmio_is_write = 0;
|
|
|
|
r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
|
|
run->mmio.phys_addr, run->mmio.len, run->mmio.data);
|
|
|
|
if (!r) {
|
|
kvm_mips_complete_mmio_load(vcpu);
|
|
vcpu->mmio_needed = 0;
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
return EMULATE_DO_MMIO;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if (run->mmio.len > sizeof(*gpr)) {
|
|
kvm_err("Bad MMIO length: %d", run->mmio.len);
|
|
er = EMULATE_FAIL;
|
|
goto done;
|
|
}
|
|
|
|
/* Restore saved resume PC */
|
|
vcpu->arch.pc = vcpu->arch.io_pc;
|
|
|
|
switch (run->mmio.len) {
|
|
case 8:
|
|
switch (vcpu->mmio_needed) {
|
|
case 11:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
|
|
(((*(s64 *)run->mmio.data) & 0xff) << 56);
|
|
break;
|
|
case 12:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
|
|
(((*(s64 *)run->mmio.data) & 0xffff) << 48);
|
|
break;
|
|
case 13:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
|
|
(((*(s64 *)run->mmio.data) & 0xffffff) << 40);
|
|
break;
|
|
case 14:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
|
|
(((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
|
|
break;
|
|
case 15:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
|
|
(((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
|
|
break;
|
|
case 16:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
|
|
(((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
|
|
break;
|
|
case 17:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
|
|
(((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
|
|
break;
|
|
case 18:
|
|
case 19:
|
|
*gpr = *(s64 *)run->mmio.data;
|
|
break;
|
|
case 20:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
|
|
((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
|
|
break;
|
|
case 21:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
|
|
((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
|
|
break;
|
|
case 22:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
|
|
((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
|
|
break;
|
|
case 23:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
|
|
((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
|
|
break;
|
|
case 24:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
|
|
((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
|
|
break;
|
|
case 25:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
|
|
((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
|
|
break;
|
|
case 26:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
|
|
((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
|
|
break;
|
|
default:
|
|
*gpr = *(s64 *)run->mmio.data;
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
switch (vcpu->mmio_needed) {
|
|
case 1:
|
|
*gpr = *(u32 *)run->mmio.data;
|
|
break;
|
|
case 2:
|
|
*gpr = *(s32 *)run->mmio.data;
|
|
break;
|
|
case 3:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
|
|
(((*(s32 *)run->mmio.data) & 0xff) << 24);
|
|
break;
|
|
case 4:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
|
|
(((*(s32 *)run->mmio.data) & 0xffff) << 16);
|
|
break;
|
|
case 5:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
|
|
(((*(s32 *)run->mmio.data) & 0xffffff) << 8);
|
|
break;
|
|
case 6:
|
|
case 7:
|
|
*gpr = *(s32 *)run->mmio.data;
|
|
break;
|
|
case 8:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
|
|
((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
|
|
break;
|
|
case 9:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
|
|
((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
|
|
break;
|
|
case 10:
|
|
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
|
|
((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
|
|
break;
|
|
default:
|
|
*gpr = *(s32 *)run->mmio.data;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
if (vcpu->mmio_needed == 1)
|
|
*gpr = *(u16 *)run->mmio.data;
|
|
else
|
|
*gpr = *(s16 *)run->mmio.data;
|
|
|
|
break;
|
|
case 1:
|
|
if (vcpu->mmio_needed == 1)
|
|
*gpr = *(u8 *)run->mmio.data;
|
|
else
|
|
*gpr = *(s8 *)run->mmio.data;
|
|
break;
|
|
}
|
|
|
|
done:
|
|
return er;
|
|
}
|