linux/linux-5.18.11/arch/ia64/pci/pci.c

577 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* pci.c - Low-Level PCI Access in IA-64
*
* Derived from bios32.c of i386 tree.
*
* (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Bjorn Helgaas <bjorn.helgaas@hp.com>
* Copyright (C) 2004 Silicon Graphics, Inc.
*
* Note: Above list of copyright holders is incomplete...
*/
#include <linux/acpi.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/pci-acpi.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/memblock.h>
#include <linux/export.h>
#include <asm/page.h>
#include <asm/io.h>
#include <asm/sal.h>
#include <asm/smp.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
/*
* Low-level SAL-based PCI configuration access functions. Note that SAL
* calls are already serialized (via sal_lock), so we don't need another
* synchronization mechanism here.
*/
#define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
/* SAL 3.2 adds support for extended config space. */
#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 *value)
{
u64 addr, data = 0;
int mode, result;
if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
} else {
return -EINVAL;
}
result = ia64_sal_pci_config_read(addr, mode, len, &data);
if (result != 0)
return -EINVAL;
*value = (u32) data;
return 0;
}
int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 value)
{
u64 addr;
int mode, result;
if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
} else {
return -EINVAL;
}
result = ia64_sal_pci_config_write(addr, mode, len, value);
if (result != 0)
return -EINVAL;
return 0;
}
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *value)
{
return raw_pci_read(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 value)
{
return raw_pci_write(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
struct pci_ops pci_root_ops = {
.read = pci_read,
.write = pci_write,
};
struct pci_root_info {
struct acpi_pci_root_info common;
struct pci_controller controller;
struct list_head io_resources;
};
static unsigned int new_space(u64 phys_base, int sparse)
{
u64 mmio_base;
int i;
if (phys_base == 0)
return 0; /* legacy I/O port space */
mmio_base = (u64) ioremap(phys_base, 0);
for (i = 0; i < num_io_spaces; i++)
if (io_space[i].mmio_base == mmio_base &&
io_space[i].sparse == sparse)
return i;
if (num_io_spaces == MAX_IO_SPACES) {
pr_err("PCI: Too many IO port spaces "
"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
return ~0;
}
i = num_io_spaces++;
io_space[i].mmio_base = mmio_base;
io_space[i].sparse = sparse;
return i;
}
static int add_io_space(struct device *dev, struct pci_root_info *info,
struct resource_entry *entry)
{
struct resource_entry *iospace;
struct resource *resource, *res = entry->res;
char *name;
unsigned long base, min, max, base_port;
unsigned int sparse = 0, space_nr, len;
len = strlen(info->common.name) + 32;
iospace = resource_list_create_entry(NULL, len);
if (!iospace) {
dev_err(dev, "PCI: No memory for %s I/O port space\n",
info->common.name);
return -ENOMEM;
}
if (res->flags & IORESOURCE_IO_SPARSE)
sparse = 1;
space_nr = new_space(entry->offset, sparse);
if (space_nr == ~0)
goto free_resource;
name = (char *)(iospace + 1);
min = res->start - entry->offset;
max = res->end - entry->offset;
base = __pa(io_space[space_nr].mmio_base);
base_port = IO_SPACE_BASE(space_nr);
snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->common.name,
base_port + min, base_port + max);
/*
* The SDM guarantees the legacy 0-64K space is sparse, but if the
* mapping is done by the processor (not the bridge), ACPI may not
* mark it as sparse.
*/
if (space_nr == 0)
sparse = 1;
resource = iospace->res;
resource->name = name;
resource->flags = IORESOURCE_MEM;
resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
if (insert_resource(&iomem_resource, resource)) {
dev_err(dev,
"can't allocate host bridge io space resource %pR\n",
resource);
goto free_resource;
}
entry->offset = base_port;
res->start = min + base_port;
res->end = max + base_port;
resource_list_add_tail(iospace, &info->io_resources);
return 0;
free_resource:
resource_list_free_entry(iospace);
return -ENOSPC;
}
/*
* An IO port or MMIO resource assigned to a PCI host bridge may be
* consumed by the host bridge itself or available to its child
* bus/devices. The ACPI specification defines a bit (Producer/Consumer)
* to tell whether the resource is consumed by the host bridge itself,
* but firmware hasn't used that bit consistently, so we can't rely on it.
*
* On x86 and IA64 platforms, all IO port and MMIO resources are assumed
* to be available to child bus/devices except one special case:
* IO port [0xCF8-0xCFF] is consumed by the host bridge itself
* to access PCI configuration space.
*
* So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF].
*/
static bool resource_is_pcicfg_ioport(struct resource *res)
{
return (res->flags & IORESOURCE_IO) &&
res->start == 0xCF8 && res->end == 0xCFF;
}
static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci)
{
struct device *dev = &ci->bridge->dev;
struct pci_root_info *info;
struct resource *res;
struct resource_entry *entry, *tmp;
int status;
status = acpi_pci_probe_root_resources(ci);
if (status > 0) {
info = container_of(ci, struct pci_root_info, common);
resource_list_for_each_entry_safe(entry, tmp, &ci->resources) {
res = entry->res;
if (res->flags & IORESOURCE_MEM) {
/*
* HP's firmware has a hack to work around a
* Windows bug. Ignore these tiny memory ranges.
*/
if (resource_size(res) <= 16) {
resource_list_del(entry);
insert_resource(&iomem_resource,
entry->res);
resource_list_add_tail(entry,
&info->io_resources);
}
} else if (res->flags & IORESOURCE_IO) {
if (resource_is_pcicfg_ioport(entry->res))
resource_list_destroy_entry(entry);
else if (add_io_space(dev, info, entry))
resource_list_destroy_entry(entry);
}
}
}
return status;
}
static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci)
{
struct pci_root_info *info;
struct resource_entry *entry, *tmp;
info = container_of(ci, struct pci_root_info, common);
resource_list_for_each_entry_safe(entry, tmp, &info->io_resources) {
release_resource(entry->res);
resource_list_destroy_entry(entry);
}
kfree(info);
}
static struct acpi_pci_root_ops pci_acpi_root_ops = {
.pci_ops = &pci_root_ops,
.release_info = pci_acpi_root_release_info,
.prepare_resources = pci_acpi_root_prepare_resources,
};
struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
{
struct acpi_device *device = root->device;
struct pci_root_info *info;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
dev_err(&device->dev,
"pci_bus %04x:%02x: ignored (out of memory)\n",
root->segment, (int)root->secondary.start);
return NULL;
}
info->controller.segment = root->segment;
info->controller.companion = device;
info->controller.node = acpi_get_node(device->handle);
INIT_LIST_HEAD(&info->io_resources);
return acpi_pci_root_create(root, &pci_acpi_root_ops,
&info->common, &info->controller);
}
int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
{
/*
* We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
* here, pci_create_root_bus() has been called by someone else and
* sysdata is likely to be different from what we expect. Let it go in
* that case.
*/
if (!bridge->dev.parent) {
struct pci_controller *controller = bridge->bus->sysdata;
ACPI_COMPANION_SET(&bridge->dev, controller->companion);
}
return 0;
}
void pcibios_fixup_device_resources(struct pci_dev *dev)
{
int idx;
if (!dev->bus)
return;
for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
struct resource *r = &dev->resource[idx];
if (!r->flags || r->parent || !r->start)
continue;
pci_claim_resource(dev, idx);
}
}
EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
{
int idx;
if (!dev->bus)
return;
for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
struct resource *r = &dev->resource[idx];
if (!r->flags || r->parent || !r->start)
continue;
pci_claim_bridge_resource(dev, idx);
}
}
/*
* Called after each bus is probed, but before its children are examined.
*/
void pcibios_fixup_bus(struct pci_bus *b)
{
struct pci_dev *dev;
if (b->self) {
pci_read_bridge_bases(b);
pcibios_fixup_bridge_resources(b->self);
}
list_for_each_entry(dev, &b->devices, bus_list)
pcibios_fixup_device_resources(dev);
}
void pcibios_add_bus(struct pci_bus *bus)
{
acpi_pci_add_bus(bus);
}
void pcibios_remove_bus(struct pci_bus *bus)
{
acpi_pci_remove_bus(bus);
}
void pcibios_set_master (struct pci_dev *dev)
{
/* No special bus mastering setup handling */
}
int
pcibios_enable_device (struct pci_dev *dev, int mask)
{
int ret;
ret = pci_enable_resources(dev, mask);
if (ret < 0)
return ret;
if (!pci_dev_msi_enabled(dev))
return acpi_pci_irq_enable(dev);
return 0;
}
void
pcibios_disable_device (struct pci_dev *dev)
{
BUG_ON(atomic_read(&dev->enable_cnt));
if (!pci_dev_msi_enabled(dev))
acpi_pci_irq_disable(dev);
}
/**
* pci_get_legacy_mem - generic legacy mem routine
* @bus: bus to get legacy memory base address for
*
* Find the base of legacy memory for @bus. This is typically the first
* megabyte of bus address space for @bus or is simply 0 on platforms whose
* chipsets support legacy I/O and memory routing. Returns the base address
* or an error pointer if an error occurred.
*
* This is the ia64 generic version of this routine. Other platforms
* are free to override it with a machine vector.
*/
char *pci_get_legacy_mem(struct pci_bus *bus)
{
return (char *)__IA64_UNCACHED_OFFSET;
}
/**
* pci_mmap_legacy_page_range - map legacy memory space to userland
* @bus: bus whose legacy space we're mapping
* @vma: vma passed in by mmap
*
* Map legacy memory space for this device back to userspace using a machine
* vector to get the base address.
*/
int
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
unsigned long size = vma->vm_end - vma->vm_start;
pgprot_t prot;
char *addr;
/* We only support mmap'ing of legacy memory space */
if (mmap_state != pci_mmap_mem)
return -ENOSYS;
/*
* Avoid attribute aliasing. See Documentation/ia64/aliasing.rst
* for more details.
*/
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
return -EINVAL;
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
vma->vm_page_prot);
addr = pci_get_legacy_mem(bus);
if (IS_ERR(addr))
return PTR_ERR(addr);
vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
vma->vm_page_prot = prot;
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
size, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
/**
* pci_legacy_read - read from legacy I/O space
* @bus: bus to read
* @port: legacy port value
* @val: caller allocated storage for returned value
* @size: number of bytes to read
*
* Simply reads @size bytes from @port and puts the result in @val.
*
* Again, this (and the write routine) are generic versions that can be
* overridden by the platform. This is necessary on platforms that don't
* support legacy I/O routing or that hard fail on legacy I/O timeouts.
*/
int pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
{
int ret = size;
switch (size) {
case 1:
*val = inb(port);
break;
case 2:
*val = inw(port);
break;
case 4:
*val = inl(port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* pci_legacy_write - perform a legacy I/O write
* @bus: bus pointer
* @port: port to write
* @val: value to write
* @size: number of bytes to write from @val
*
* Simply writes @size bytes of @val to @port.
*/
int pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
{
int ret = size;
switch (size) {
case 1:
outb(val, port);
break;
case 2:
outw(val, port);
break;
case 4:
outl(val, port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* set_pci_cacheline_size - determine cacheline size for PCI devices
*
* We want to use the line-size of the outer-most cache. We assume
* that this line-size is the same for all CPUs.
*
* Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
*/
static void __init set_pci_dfl_cacheline_size(void)
{
unsigned long levels, unique_caches;
long status;
pal_cache_config_info_t cci;
status = ia64_pal_cache_summary(&levels, &unique_caches);
if (status != 0) {
pr_err("%s: ia64_pal_cache_summary() failed "
"(status=%ld)\n", __func__, status);
return;
}
status = ia64_pal_cache_config_info(levels - 1,
/* cache_type (data_or_unified)= */ 2, &cci);
if (status != 0) {
pr_err("%s: ia64_pal_cache_config_info() failed "
"(status=%ld)\n", __func__, status);
return;
}
pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
}
static int __init pcibios_init(void)
{
set_pci_dfl_cacheline_size();
return 0;
}
subsys_initcall(pcibios_init);