linux/linux-5.18.11/drivers/memory/tegra/tegra124-emc.c

1537 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
*
* Author:
* Mikko Perttunen <mperttunen@nvidia.com>
*/
#include <linux/clk-provider.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk/tegra.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/interconnect-provider.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/sort.h>
#include <linux/string.h>
#include <soc/tegra/fuse.h>
#include <soc/tegra/mc.h>
#include "mc.h"
#define EMC_FBIO_CFG5 0x104
#define EMC_FBIO_CFG5_DRAM_TYPE_MASK 0x3
#define EMC_FBIO_CFG5_DRAM_TYPE_SHIFT 0
#define EMC_FBIO_CFG5_DRAM_WIDTH_X64 BIT(4)
#define EMC_INTSTATUS 0x0
#define EMC_INTSTATUS_CLKCHANGE_COMPLETE BIT(4)
#define EMC_CFG 0xc
#define EMC_CFG_DRAM_CLKSTOP_PD BIT(31)
#define EMC_CFG_DRAM_CLKSTOP_SR BIT(30)
#define EMC_CFG_DRAM_ACPD BIT(29)
#define EMC_CFG_DYN_SREF BIT(28)
#define EMC_CFG_PWR_MASK ((0xF << 28) | BIT(18))
#define EMC_CFG_DSR_VTTGEN_DRV_EN BIT(18)
#define EMC_REFCTRL 0x20
#define EMC_REFCTRL_DEV_SEL_SHIFT 0
#define EMC_REFCTRL_ENABLE BIT(31)
#define EMC_TIMING_CONTROL 0x28
#define EMC_RC 0x2c
#define EMC_RFC 0x30
#define EMC_RAS 0x34
#define EMC_RP 0x38
#define EMC_R2W 0x3c
#define EMC_W2R 0x40
#define EMC_R2P 0x44
#define EMC_W2P 0x48
#define EMC_RD_RCD 0x4c
#define EMC_WR_RCD 0x50
#define EMC_RRD 0x54
#define EMC_REXT 0x58
#define EMC_WDV 0x5c
#define EMC_QUSE 0x60
#define EMC_QRST 0x64
#define EMC_QSAFE 0x68
#define EMC_RDV 0x6c
#define EMC_REFRESH 0x70
#define EMC_BURST_REFRESH_NUM 0x74
#define EMC_PDEX2WR 0x78
#define EMC_PDEX2RD 0x7c
#define EMC_PCHG2PDEN 0x80
#define EMC_ACT2PDEN 0x84
#define EMC_AR2PDEN 0x88
#define EMC_RW2PDEN 0x8c
#define EMC_TXSR 0x90
#define EMC_TCKE 0x94
#define EMC_TFAW 0x98
#define EMC_TRPAB 0x9c
#define EMC_TCLKSTABLE 0xa0
#define EMC_TCLKSTOP 0xa4
#define EMC_TREFBW 0xa8
#define EMC_ODT_WRITE 0xb0
#define EMC_ODT_READ 0xb4
#define EMC_WEXT 0xb8
#define EMC_CTT 0xbc
#define EMC_RFC_SLR 0xc0
#define EMC_MRS_WAIT_CNT2 0xc4
#define EMC_MRS_WAIT_CNT 0xc8
#define EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT 0
#define EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK \
(0x3FF << EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)
#define EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT 16
#define EMC_MRS_WAIT_CNT_LONG_WAIT_MASK \
(0x3FF << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT)
#define EMC_MRS 0xcc
#define EMC_MODE_SET_DLL_RESET BIT(8)
#define EMC_MODE_SET_LONG_CNT BIT(26)
#define EMC_EMRS 0xd0
#define EMC_REF 0xd4
#define EMC_PRE 0xd8
#define EMC_SELF_REF 0xe0
#define EMC_SELF_REF_CMD_ENABLED BIT(0)
#define EMC_SELF_REF_DEV_SEL_SHIFT 30
#define EMC_MRW 0xe8
#define EMC_MRR 0xec
#define EMC_MRR_MA_SHIFT 16
#define LPDDR2_MR4_TEMP_SHIFT 0
#define EMC_XM2DQSPADCTRL3 0xf8
#define EMC_FBIO_SPARE 0x100
#define EMC_FBIO_CFG6 0x114
#define EMC_EMRS2 0x12c
#define EMC_MRW2 0x134
#define EMC_MRW4 0x13c
#define EMC_EINPUT 0x14c
#define EMC_EINPUT_DURATION 0x150
#define EMC_PUTERM_EXTRA 0x154
#define EMC_TCKESR 0x158
#define EMC_TPD 0x15c
#define EMC_AUTO_CAL_CONFIG 0x2a4
#define EMC_AUTO_CAL_CONFIG_AUTO_CAL_START BIT(31)
#define EMC_AUTO_CAL_INTERVAL 0x2a8
#define EMC_AUTO_CAL_STATUS 0x2ac
#define EMC_AUTO_CAL_STATUS_ACTIVE BIT(31)
#define EMC_STATUS 0x2b4
#define EMC_STATUS_TIMING_UPDATE_STALLED BIT(23)
#define EMC_CFG_2 0x2b8
#define EMC_CFG_2_MODE_SHIFT 0
#define EMC_CFG_2_DIS_STP_OB_CLK_DURING_NON_WR BIT(6)
#define EMC_CFG_DIG_DLL 0x2bc
#define EMC_CFG_DIG_DLL_PERIOD 0x2c0
#define EMC_RDV_MASK 0x2cc
#define EMC_WDV_MASK 0x2d0
#define EMC_CTT_DURATION 0x2d8
#define EMC_CTT_TERM_CTRL 0x2dc
#define EMC_ZCAL_INTERVAL 0x2e0
#define EMC_ZCAL_WAIT_CNT 0x2e4
#define EMC_ZQ_CAL 0x2ec
#define EMC_ZQ_CAL_CMD BIT(0)
#define EMC_ZQ_CAL_LONG BIT(4)
#define EMC_ZQ_CAL_LONG_CMD_DEV0 \
(DRAM_DEV_SEL_0 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD)
#define EMC_ZQ_CAL_LONG_CMD_DEV1 \
(DRAM_DEV_SEL_1 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD)
#define EMC_XM2CMDPADCTRL 0x2f0
#define EMC_XM2DQSPADCTRL 0x2f8
#define EMC_XM2DQSPADCTRL2 0x2fc
#define EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE BIT(0)
#define EMC_XM2DQSPADCTRL2_VREF_ENABLE BIT(5)
#define EMC_XM2DQPADCTRL 0x300
#define EMC_XM2DQPADCTRL2 0x304
#define EMC_XM2CLKPADCTRL 0x308
#define EMC_XM2COMPPADCTRL 0x30c
#define EMC_XM2VTTGENPADCTRL 0x310
#define EMC_XM2VTTGENPADCTRL2 0x314
#define EMC_XM2VTTGENPADCTRL3 0x318
#define EMC_XM2DQSPADCTRL4 0x320
#define EMC_DLL_XFORM_DQS0 0x328
#define EMC_DLL_XFORM_DQS1 0x32c
#define EMC_DLL_XFORM_DQS2 0x330
#define EMC_DLL_XFORM_DQS3 0x334
#define EMC_DLL_XFORM_DQS4 0x338
#define EMC_DLL_XFORM_DQS5 0x33c
#define EMC_DLL_XFORM_DQS6 0x340
#define EMC_DLL_XFORM_DQS7 0x344
#define EMC_DLL_XFORM_QUSE0 0x348
#define EMC_DLL_XFORM_QUSE1 0x34c
#define EMC_DLL_XFORM_QUSE2 0x350
#define EMC_DLL_XFORM_QUSE3 0x354
#define EMC_DLL_XFORM_QUSE4 0x358
#define EMC_DLL_XFORM_QUSE5 0x35c
#define EMC_DLL_XFORM_QUSE6 0x360
#define EMC_DLL_XFORM_QUSE7 0x364
#define EMC_DLL_XFORM_DQ0 0x368
#define EMC_DLL_XFORM_DQ1 0x36c
#define EMC_DLL_XFORM_DQ2 0x370
#define EMC_DLL_XFORM_DQ3 0x374
#define EMC_DLI_TRIM_TXDQS0 0x3a8
#define EMC_DLI_TRIM_TXDQS1 0x3ac
#define EMC_DLI_TRIM_TXDQS2 0x3b0
#define EMC_DLI_TRIM_TXDQS3 0x3b4
#define EMC_DLI_TRIM_TXDQS4 0x3b8
#define EMC_DLI_TRIM_TXDQS5 0x3bc
#define EMC_DLI_TRIM_TXDQS6 0x3c0
#define EMC_DLI_TRIM_TXDQS7 0x3c4
#define EMC_STALL_THEN_EXE_AFTER_CLKCHANGE 0x3cc
#define EMC_SEL_DPD_CTRL 0x3d8
#define EMC_SEL_DPD_CTRL_DATA_SEL_DPD BIT(8)
#define EMC_SEL_DPD_CTRL_ODT_SEL_DPD BIT(5)
#define EMC_SEL_DPD_CTRL_RESET_SEL_DPD BIT(4)
#define EMC_SEL_DPD_CTRL_CA_SEL_DPD BIT(3)
#define EMC_SEL_DPD_CTRL_CLK_SEL_DPD BIT(2)
#define EMC_SEL_DPD_CTRL_DDR3_MASK \
((0xf << 2) | BIT(8))
#define EMC_SEL_DPD_CTRL_MASK \
((0x3 << 2) | BIT(5) | BIT(8))
#define EMC_PRE_REFRESH_REQ_CNT 0x3dc
#define EMC_DYN_SELF_REF_CONTROL 0x3e0
#define EMC_TXSRDLL 0x3e4
#define EMC_CCFIFO_ADDR 0x3e8
#define EMC_CCFIFO_DATA 0x3ec
#define EMC_CCFIFO_STATUS 0x3f0
#define EMC_CDB_CNTL_1 0x3f4
#define EMC_CDB_CNTL_2 0x3f8
#define EMC_XM2CLKPADCTRL2 0x3fc
#define EMC_AUTO_CAL_CONFIG2 0x458
#define EMC_AUTO_CAL_CONFIG3 0x45c
#define EMC_IBDLY 0x468
#define EMC_DLL_XFORM_ADDR0 0x46c
#define EMC_DLL_XFORM_ADDR1 0x470
#define EMC_DLL_XFORM_ADDR2 0x474
#define EMC_DSR_VTTGEN_DRV 0x47c
#define EMC_TXDSRVTTGEN 0x480
#define EMC_XM2CMDPADCTRL4 0x484
#define EMC_XM2CMDPADCTRL5 0x488
#define EMC_DLL_XFORM_DQS8 0x4a0
#define EMC_DLL_XFORM_DQS9 0x4a4
#define EMC_DLL_XFORM_DQS10 0x4a8
#define EMC_DLL_XFORM_DQS11 0x4ac
#define EMC_DLL_XFORM_DQS12 0x4b0
#define EMC_DLL_XFORM_DQS13 0x4b4
#define EMC_DLL_XFORM_DQS14 0x4b8
#define EMC_DLL_XFORM_DQS15 0x4bc
#define EMC_DLL_XFORM_QUSE8 0x4c0
#define EMC_DLL_XFORM_QUSE9 0x4c4
#define EMC_DLL_XFORM_QUSE10 0x4c8
#define EMC_DLL_XFORM_QUSE11 0x4cc
#define EMC_DLL_XFORM_QUSE12 0x4d0
#define EMC_DLL_XFORM_QUSE13 0x4d4
#define EMC_DLL_XFORM_QUSE14 0x4d8
#define EMC_DLL_XFORM_QUSE15 0x4dc
#define EMC_DLL_XFORM_DQ4 0x4e0
#define EMC_DLL_XFORM_DQ5 0x4e4
#define EMC_DLL_XFORM_DQ6 0x4e8
#define EMC_DLL_XFORM_DQ7 0x4ec
#define EMC_DLI_TRIM_TXDQS8 0x520
#define EMC_DLI_TRIM_TXDQS9 0x524
#define EMC_DLI_TRIM_TXDQS10 0x528
#define EMC_DLI_TRIM_TXDQS11 0x52c
#define EMC_DLI_TRIM_TXDQS12 0x530
#define EMC_DLI_TRIM_TXDQS13 0x534
#define EMC_DLI_TRIM_TXDQS14 0x538
#define EMC_DLI_TRIM_TXDQS15 0x53c
#define EMC_CDB_CNTL_3 0x540
#define EMC_XM2DQSPADCTRL5 0x544
#define EMC_XM2DQSPADCTRL6 0x548
#define EMC_XM2DQPADCTRL3 0x54c
#define EMC_DLL_XFORM_ADDR3 0x550
#define EMC_DLL_XFORM_ADDR4 0x554
#define EMC_DLL_XFORM_ADDR5 0x558
#define EMC_CFG_PIPE 0x560
#define EMC_QPOP 0x564
#define EMC_QUSE_WIDTH 0x568
#define EMC_PUTERM_WIDTH 0x56c
#define EMC_BGBIAS_CTL0 0x570
#define EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX BIT(3)
#define EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_VTTGEN BIT(2)
#define EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD BIT(1)
#define EMC_PUTERM_ADJ 0x574
#define DRAM_DEV_SEL_ALL 0
#define DRAM_DEV_SEL_0 BIT(31)
#define DRAM_DEV_SEL_1 BIT(30)
#define EMC_CFG_POWER_FEATURES_MASK \
(EMC_CFG_DYN_SREF | EMC_CFG_DRAM_ACPD | EMC_CFG_DRAM_CLKSTOP_SR | \
EMC_CFG_DRAM_CLKSTOP_PD | EMC_CFG_DSR_VTTGEN_DRV_EN)
#define EMC_REFCTRL_DEV_SEL(n) (((n > 1) ? 0 : 2) << EMC_REFCTRL_DEV_SEL_SHIFT)
#define EMC_DRAM_DEV_SEL(n) ((n > 1) ? DRAM_DEV_SEL_ALL : DRAM_DEV_SEL_0)
/* Maximum amount of time in us. to wait for changes to become effective */
#define EMC_STATUS_UPDATE_TIMEOUT 1000
enum emc_dram_type {
DRAM_TYPE_DDR3 = 0,
DRAM_TYPE_DDR1 = 1,
DRAM_TYPE_LPDDR3 = 2,
DRAM_TYPE_DDR2 = 3
};
enum emc_dll_change {
DLL_CHANGE_NONE,
DLL_CHANGE_ON,
DLL_CHANGE_OFF
};
static const unsigned long emc_burst_regs[] = {
EMC_RC,
EMC_RFC,
EMC_RFC_SLR,
EMC_RAS,
EMC_RP,
EMC_R2W,
EMC_W2R,
EMC_R2P,
EMC_W2P,
EMC_RD_RCD,
EMC_WR_RCD,
EMC_RRD,
EMC_REXT,
EMC_WEXT,
EMC_WDV,
EMC_WDV_MASK,
EMC_QUSE,
EMC_QUSE_WIDTH,
EMC_IBDLY,
EMC_EINPUT,
EMC_EINPUT_DURATION,
EMC_PUTERM_EXTRA,
EMC_PUTERM_WIDTH,
EMC_PUTERM_ADJ,
EMC_CDB_CNTL_1,
EMC_CDB_CNTL_2,
EMC_CDB_CNTL_3,
EMC_QRST,
EMC_QSAFE,
EMC_RDV,
EMC_RDV_MASK,
EMC_REFRESH,
EMC_BURST_REFRESH_NUM,
EMC_PRE_REFRESH_REQ_CNT,
EMC_PDEX2WR,
EMC_PDEX2RD,
EMC_PCHG2PDEN,
EMC_ACT2PDEN,
EMC_AR2PDEN,
EMC_RW2PDEN,
EMC_TXSR,
EMC_TXSRDLL,
EMC_TCKE,
EMC_TCKESR,
EMC_TPD,
EMC_TFAW,
EMC_TRPAB,
EMC_TCLKSTABLE,
EMC_TCLKSTOP,
EMC_TREFBW,
EMC_FBIO_CFG6,
EMC_ODT_WRITE,
EMC_ODT_READ,
EMC_FBIO_CFG5,
EMC_CFG_DIG_DLL,
EMC_CFG_DIG_DLL_PERIOD,
EMC_DLL_XFORM_DQS0,
EMC_DLL_XFORM_DQS1,
EMC_DLL_XFORM_DQS2,
EMC_DLL_XFORM_DQS3,
EMC_DLL_XFORM_DQS4,
EMC_DLL_XFORM_DQS5,
EMC_DLL_XFORM_DQS6,
EMC_DLL_XFORM_DQS7,
EMC_DLL_XFORM_DQS8,
EMC_DLL_XFORM_DQS9,
EMC_DLL_XFORM_DQS10,
EMC_DLL_XFORM_DQS11,
EMC_DLL_XFORM_DQS12,
EMC_DLL_XFORM_DQS13,
EMC_DLL_XFORM_DQS14,
EMC_DLL_XFORM_DQS15,
EMC_DLL_XFORM_QUSE0,
EMC_DLL_XFORM_QUSE1,
EMC_DLL_XFORM_QUSE2,
EMC_DLL_XFORM_QUSE3,
EMC_DLL_XFORM_QUSE4,
EMC_DLL_XFORM_QUSE5,
EMC_DLL_XFORM_QUSE6,
EMC_DLL_XFORM_QUSE7,
EMC_DLL_XFORM_ADDR0,
EMC_DLL_XFORM_ADDR1,
EMC_DLL_XFORM_ADDR2,
EMC_DLL_XFORM_ADDR3,
EMC_DLL_XFORM_ADDR4,
EMC_DLL_XFORM_ADDR5,
EMC_DLL_XFORM_QUSE8,
EMC_DLL_XFORM_QUSE9,
EMC_DLL_XFORM_QUSE10,
EMC_DLL_XFORM_QUSE11,
EMC_DLL_XFORM_QUSE12,
EMC_DLL_XFORM_QUSE13,
EMC_DLL_XFORM_QUSE14,
EMC_DLL_XFORM_QUSE15,
EMC_DLI_TRIM_TXDQS0,
EMC_DLI_TRIM_TXDQS1,
EMC_DLI_TRIM_TXDQS2,
EMC_DLI_TRIM_TXDQS3,
EMC_DLI_TRIM_TXDQS4,
EMC_DLI_TRIM_TXDQS5,
EMC_DLI_TRIM_TXDQS6,
EMC_DLI_TRIM_TXDQS7,
EMC_DLI_TRIM_TXDQS8,
EMC_DLI_TRIM_TXDQS9,
EMC_DLI_TRIM_TXDQS10,
EMC_DLI_TRIM_TXDQS11,
EMC_DLI_TRIM_TXDQS12,
EMC_DLI_TRIM_TXDQS13,
EMC_DLI_TRIM_TXDQS14,
EMC_DLI_TRIM_TXDQS15,
EMC_DLL_XFORM_DQ0,
EMC_DLL_XFORM_DQ1,
EMC_DLL_XFORM_DQ2,
EMC_DLL_XFORM_DQ3,
EMC_DLL_XFORM_DQ4,
EMC_DLL_XFORM_DQ5,
EMC_DLL_XFORM_DQ6,
EMC_DLL_XFORM_DQ7,
EMC_XM2CMDPADCTRL,
EMC_XM2CMDPADCTRL4,
EMC_XM2CMDPADCTRL5,
EMC_XM2DQPADCTRL2,
EMC_XM2DQPADCTRL3,
EMC_XM2CLKPADCTRL,
EMC_XM2CLKPADCTRL2,
EMC_XM2COMPPADCTRL,
EMC_XM2VTTGENPADCTRL,
EMC_XM2VTTGENPADCTRL2,
EMC_XM2VTTGENPADCTRL3,
EMC_XM2DQSPADCTRL3,
EMC_XM2DQSPADCTRL4,
EMC_XM2DQSPADCTRL5,
EMC_XM2DQSPADCTRL6,
EMC_DSR_VTTGEN_DRV,
EMC_TXDSRVTTGEN,
EMC_FBIO_SPARE,
EMC_ZCAL_WAIT_CNT,
EMC_MRS_WAIT_CNT2,
EMC_CTT,
EMC_CTT_DURATION,
EMC_CFG_PIPE,
EMC_DYN_SELF_REF_CONTROL,
EMC_QPOP
};
struct emc_timing {
unsigned long rate;
u32 emc_burst_data[ARRAY_SIZE(emc_burst_regs)];
u32 emc_auto_cal_config;
u32 emc_auto_cal_config2;
u32 emc_auto_cal_config3;
u32 emc_auto_cal_interval;
u32 emc_bgbias_ctl0;
u32 emc_cfg;
u32 emc_cfg_2;
u32 emc_ctt_term_ctrl;
u32 emc_mode_1;
u32 emc_mode_2;
u32 emc_mode_4;
u32 emc_mode_reset;
u32 emc_mrs_wait_cnt;
u32 emc_sel_dpd_ctrl;
u32 emc_xm2dqspadctrl2;
u32 emc_zcal_cnt_long;
u32 emc_zcal_interval;
};
enum emc_rate_request_type {
EMC_RATE_DEBUG,
EMC_RATE_ICC,
EMC_RATE_TYPE_MAX,
};
struct emc_rate_request {
unsigned long min_rate;
unsigned long max_rate;
};
struct tegra_emc {
struct device *dev;
struct tegra_mc *mc;
void __iomem *regs;
struct clk *clk;
enum emc_dram_type dram_type;
unsigned int dram_bus_width;
unsigned int dram_num;
struct emc_timing last_timing;
struct emc_timing *timings;
unsigned int num_timings;
struct {
struct dentry *root;
unsigned long min_rate;
unsigned long max_rate;
} debugfs;
struct icc_provider provider;
/*
* There are multiple sources in the EMC driver which could request
* a min/max clock rate, these rates are contained in this array.
*/
struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
/* protect shared rate-change code path */
struct mutex rate_lock;
};
/* Timing change sequence functions */
static void emc_ccfifo_writel(struct tegra_emc *emc, u32 value,
unsigned long offset)
{
writel(value, emc->regs + EMC_CCFIFO_DATA);
writel(offset, emc->regs + EMC_CCFIFO_ADDR);
}
static void emc_seq_update_timing(struct tegra_emc *emc)
{
unsigned int i;
u32 value;
writel(1, emc->regs + EMC_TIMING_CONTROL);
for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; ++i) {
value = readl(emc->regs + EMC_STATUS);
if ((value & EMC_STATUS_TIMING_UPDATE_STALLED) == 0)
return;
udelay(1);
}
dev_err(emc->dev, "timing update timed out\n");
}
static void emc_seq_disable_auto_cal(struct tegra_emc *emc)
{
unsigned int i;
u32 value;
writel(0, emc->regs + EMC_AUTO_CAL_INTERVAL);
for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; ++i) {
value = readl(emc->regs + EMC_AUTO_CAL_STATUS);
if ((value & EMC_AUTO_CAL_STATUS_ACTIVE) == 0)
return;
udelay(1);
}
dev_err(emc->dev, "auto cal disable timed out\n");
}
static void emc_seq_wait_clkchange(struct tegra_emc *emc)
{
unsigned int i;
u32 value;
for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; ++i) {
value = readl(emc->regs + EMC_INTSTATUS);
if (value & EMC_INTSTATUS_CLKCHANGE_COMPLETE)
return;
udelay(1);
}
dev_err(emc->dev, "clock change timed out\n");
}
static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc,
unsigned long rate)
{
struct emc_timing *timing = NULL;
unsigned int i;
for (i = 0; i < emc->num_timings; i++) {
if (emc->timings[i].rate == rate) {
timing = &emc->timings[i];
break;
}
}
if (!timing) {
dev_err(emc->dev, "no timing for rate %lu\n", rate);
return NULL;
}
return timing;
}
static int tegra_emc_prepare_timing_change(struct tegra_emc *emc,
unsigned long rate)
{
struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
struct emc_timing *last = &emc->last_timing;
enum emc_dll_change dll_change;
unsigned int pre_wait = 0;
u32 val, val2, mask;
bool update = false;
unsigned int i;
if (!timing)
return -ENOENT;
if ((last->emc_mode_1 & 0x1) == (timing->emc_mode_1 & 0x1))
dll_change = DLL_CHANGE_NONE;
else if (timing->emc_mode_1 & 0x1)
dll_change = DLL_CHANGE_ON;
else
dll_change = DLL_CHANGE_OFF;
/* Clear CLKCHANGE_COMPLETE interrupts */
writel(EMC_INTSTATUS_CLKCHANGE_COMPLETE, emc->regs + EMC_INTSTATUS);
/* Disable dynamic self-refresh */
val = readl(emc->regs + EMC_CFG);
if (val & EMC_CFG_PWR_MASK) {
val &= ~EMC_CFG_POWER_FEATURES_MASK;
writel(val, emc->regs + EMC_CFG);
pre_wait = 5;
}
/* Disable SEL_DPD_CTRL for clock change */
if (emc->dram_type == DRAM_TYPE_DDR3)
mask = EMC_SEL_DPD_CTRL_DDR3_MASK;
else
mask = EMC_SEL_DPD_CTRL_MASK;
val = readl(emc->regs + EMC_SEL_DPD_CTRL);
if (val & mask) {
val &= ~mask;
writel(val, emc->regs + EMC_SEL_DPD_CTRL);
}
/* Prepare DQ/DQS for clock change */
val = readl(emc->regs + EMC_BGBIAS_CTL0);
val2 = last->emc_bgbias_ctl0;
if (!(timing->emc_bgbias_ctl0 &
EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX) &&
(val & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX)) {
val2 &= ~EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX;
update = true;
}
if ((val & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD) ||
(val & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_VTTGEN)) {
update = true;
}
if (update) {
writel(val2, emc->regs + EMC_BGBIAS_CTL0);
if (pre_wait < 5)
pre_wait = 5;
}
update = false;
val = readl(emc->regs + EMC_XM2DQSPADCTRL2);
if (timing->emc_xm2dqspadctrl2 & EMC_XM2DQSPADCTRL2_VREF_ENABLE &&
!(val & EMC_XM2DQSPADCTRL2_VREF_ENABLE)) {
val |= EMC_XM2DQSPADCTRL2_VREF_ENABLE;
update = true;
}
if (timing->emc_xm2dqspadctrl2 & EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE &&
!(val & EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE)) {
val |= EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE;
update = true;
}
if (update) {
writel(val, emc->regs + EMC_XM2DQSPADCTRL2);
if (pre_wait < 30)
pre_wait = 30;
}
/* Wait to settle */
if (pre_wait) {
emc_seq_update_timing(emc);
udelay(pre_wait);
}
/* Program CTT_TERM control */
if (last->emc_ctt_term_ctrl != timing->emc_ctt_term_ctrl) {
emc_seq_disable_auto_cal(emc);
writel(timing->emc_ctt_term_ctrl,
emc->regs + EMC_CTT_TERM_CTRL);
emc_seq_update_timing(emc);
}
/* Program burst shadow registers */
for (i = 0; i < ARRAY_SIZE(timing->emc_burst_data); ++i)
writel(timing->emc_burst_data[i],
emc->regs + emc_burst_regs[i]);
writel(timing->emc_xm2dqspadctrl2, emc->regs + EMC_XM2DQSPADCTRL2);
writel(timing->emc_zcal_interval, emc->regs + EMC_ZCAL_INTERVAL);
tegra_mc_write_emem_configuration(emc->mc, timing->rate);
val = timing->emc_cfg & ~EMC_CFG_POWER_FEATURES_MASK;
emc_ccfifo_writel(emc, val, EMC_CFG);
/* Program AUTO_CAL_CONFIG */
if (timing->emc_auto_cal_config2 != last->emc_auto_cal_config2)
emc_ccfifo_writel(emc, timing->emc_auto_cal_config2,
EMC_AUTO_CAL_CONFIG2);
if (timing->emc_auto_cal_config3 != last->emc_auto_cal_config3)
emc_ccfifo_writel(emc, timing->emc_auto_cal_config3,
EMC_AUTO_CAL_CONFIG3);
if (timing->emc_auto_cal_config != last->emc_auto_cal_config) {
val = timing->emc_auto_cal_config;
val &= EMC_AUTO_CAL_CONFIG_AUTO_CAL_START;
emc_ccfifo_writel(emc, val, EMC_AUTO_CAL_CONFIG);
}
/* DDR3: predict MRS long wait count */
if (emc->dram_type == DRAM_TYPE_DDR3 &&
dll_change == DLL_CHANGE_ON) {
u32 cnt = 512;
if (timing->emc_zcal_interval != 0 &&
last->emc_zcal_interval == 0)
cnt -= emc->dram_num * 256;
val = (timing->emc_mrs_wait_cnt
& EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK)
>> EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT;
if (cnt < val)
cnt = val;
val = timing->emc_mrs_wait_cnt
& ~EMC_MRS_WAIT_CNT_LONG_WAIT_MASK;
val |= (cnt << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT)
& EMC_MRS_WAIT_CNT_LONG_WAIT_MASK;
writel(val, emc->regs + EMC_MRS_WAIT_CNT);
}
val = timing->emc_cfg_2;
val &= ~EMC_CFG_2_DIS_STP_OB_CLK_DURING_NON_WR;
emc_ccfifo_writel(emc, val, EMC_CFG_2);
/* DDR3: Turn off DLL and enter self-refresh */
if (emc->dram_type == DRAM_TYPE_DDR3 && dll_change == DLL_CHANGE_OFF)
emc_ccfifo_writel(emc, timing->emc_mode_1, EMC_EMRS);
/* Disable refresh controller */
emc_ccfifo_writel(emc, EMC_REFCTRL_DEV_SEL(emc->dram_num),
EMC_REFCTRL);
if (emc->dram_type == DRAM_TYPE_DDR3)
emc_ccfifo_writel(emc, EMC_DRAM_DEV_SEL(emc->dram_num) |
EMC_SELF_REF_CMD_ENABLED,
EMC_SELF_REF);
/* Flow control marker */
emc_ccfifo_writel(emc, 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE);
/* DDR3: Exit self-refresh */
if (emc->dram_type == DRAM_TYPE_DDR3)
emc_ccfifo_writel(emc, EMC_DRAM_DEV_SEL(emc->dram_num),
EMC_SELF_REF);
emc_ccfifo_writel(emc, EMC_REFCTRL_DEV_SEL(emc->dram_num) |
EMC_REFCTRL_ENABLE,
EMC_REFCTRL);
/* Set DRAM mode registers */
if (emc->dram_type == DRAM_TYPE_DDR3) {
if (timing->emc_mode_1 != last->emc_mode_1)
emc_ccfifo_writel(emc, timing->emc_mode_1, EMC_EMRS);
if (timing->emc_mode_2 != last->emc_mode_2)
emc_ccfifo_writel(emc, timing->emc_mode_2, EMC_EMRS2);
if ((timing->emc_mode_reset != last->emc_mode_reset) ||
dll_change == DLL_CHANGE_ON) {
val = timing->emc_mode_reset;
if (dll_change == DLL_CHANGE_ON) {
val |= EMC_MODE_SET_DLL_RESET;
val |= EMC_MODE_SET_LONG_CNT;
} else {
val &= ~EMC_MODE_SET_DLL_RESET;
}
emc_ccfifo_writel(emc, val, EMC_MRS);
}
} else {
if (timing->emc_mode_2 != last->emc_mode_2)
emc_ccfifo_writel(emc, timing->emc_mode_2, EMC_MRW2);
if (timing->emc_mode_1 != last->emc_mode_1)
emc_ccfifo_writel(emc, timing->emc_mode_1, EMC_MRW);
if (timing->emc_mode_4 != last->emc_mode_4)
emc_ccfifo_writel(emc, timing->emc_mode_4, EMC_MRW4);
}
/* Issue ZCAL command if turning ZCAL on */
if (timing->emc_zcal_interval != 0 && last->emc_zcal_interval == 0) {
emc_ccfifo_writel(emc, EMC_ZQ_CAL_LONG_CMD_DEV0, EMC_ZQ_CAL);
if (emc->dram_num > 1)
emc_ccfifo_writel(emc, EMC_ZQ_CAL_LONG_CMD_DEV1,
EMC_ZQ_CAL);
}
/* Write to RO register to remove stall after change */
emc_ccfifo_writel(emc, 0, EMC_CCFIFO_STATUS);
if (timing->emc_cfg_2 & EMC_CFG_2_DIS_STP_OB_CLK_DURING_NON_WR)
emc_ccfifo_writel(emc, timing->emc_cfg_2, EMC_CFG_2);
/* Disable AUTO_CAL for clock change */
emc_seq_disable_auto_cal(emc);
/* Read register to wait until programming has settled */
readl(emc->regs + EMC_INTSTATUS);
return 0;
}
static void tegra_emc_complete_timing_change(struct tegra_emc *emc,
unsigned long rate)
{
struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
struct emc_timing *last = &emc->last_timing;
u32 val;
if (!timing)
return;
/* Wait until the state machine has settled */
emc_seq_wait_clkchange(emc);
/* Restore AUTO_CAL */
if (timing->emc_ctt_term_ctrl != last->emc_ctt_term_ctrl)
writel(timing->emc_auto_cal_interval,
emc->regs + EMC_AUTO_CAL_INTERVAL);
/* Restore dynamic self-refresh */
if (timing->emc_cfg & EMC_CFG_PWR_MASK)
writel(timing->emc_cfg, emc->regs + EMC_CFG);
/* Set ZCAL wait count */
writel(timing->emc_zcal_cnt_long, emc->regs + EMC_ZCAL_WAIT_CNT);
/* LPDDR3: Turn off BGBIAS if low frequency */
if (emc->dram_type == DRAM_TYPE_LPDDR3 &&
timing->emc_bgbias_ctl0 &
EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX) {
val = timing->emc_bgbias_ctl0;
val |= EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_VTTGEN;
val |= EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD;
writel(val, emc->regs + EMC_BGBIAS_CTL0);
} else {
if (emc->dram_type == DRAM_TYPE_DDR3 &&
readl(emc->regs + EMC_BGBIAS_CTL0) !=
timing->emc_bgbias_ctl0) {
writel(timing->emc_bgbias_ctl0,
emc->regs + EMC_BGBIAS_CTL0);
}
writel(timing->emc_auto_cal_interval,
emc->regs + EMC_AUTO_CAL_INTERVAL);
}
/* Wait for timing to settle */
udelay(2);
/* Reprogram SEL_DPD_CTRL */
writel(timing->emc_sel_dpd_ctrl, emc->regs + EMC_SEL_DPD_CTRL);
emc_seq_update_timing(emc);
emc->last_timing = *timing;
}
/* Initialization and deinitialization */
static void emc_read_current_timing(struct tegra_emc *emc,
struct emc_timing *timing)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(emc_burst_regs); ++i)
timing->emc_burst_data[i] =
readl(emc->regs + emc_burst_regs[i]);
timing->emc_cfg = readl(emc->regs + EMC_CFG);
timing->emc_auto_cal_interval = 0;
timing->emc_zcal_cnt_long = 0;
timing->emc_mode_1 = 0;
timing->emc_mode_2 = 0;
timing->emc_mode_4 = 0;
timing->emc_mode_reset = 0;
}
static int emc_init(struct tegra_emc *emc)
{
emc->dram_type = readl(emc->regs + EMC_FBIO_CFG5);
if (emc->dram_type & EMC_FBIO_CFG5_DRAM_WIDTH_X64)
emc->dram_bus_width = 64;
else
emc->dram_bus_width = 32;
dev_info_once(emc->dev, "%ubit DRAM bus\n", emc->dram_bus_width);
emc->dram_type &= EMC_FBIO_CFG5_DRAM_TYPE_MASK;
emc->dram_type >>= EMC_FBIO_CFG5_DRAM_TYPE_SHIFT;
emc->dram_num = tegra_mc_get_emem_device_count(emc->mc);
emc_read_current_timing(emc, &emc->last_timing);
return 0;
}
static int load_one_timing_from_dt(struct tegra_emc *emc,
struct emc_timing *timing,
struct device_node *node)
{
u32 value;
int err;
err = of_property_read_u32(node, "clock-frequency", &value);
if (err) {
dev_err(emc->dev, "timing %pOFn: failed to read rate: %d\n",
node, err);
return err;
}
timing->rate = value;
err = of_property_read_u32_array(node, "nvidia,emc-configuration",
timing->emc_burst_data,
ARRAY_SIZE(timing->emc_burst_data));
if (err) {
dev_err(emc->dev,
"timing %pOFn: failed to read emc burst data: %d\n",
node, err);
return err;
}
#define EMC_READ_PROP(prop, dtprop) { \
err = of_property_read_u32(node, dtprop, &timing->prop); \
if (err) { \
dev_err(emc->dev, "timing %pOFn: failed to read " #prop ": %d\n", \
node, err); \
return err; \
} \
}
EMC_READ_PROP(emc_auto_cal_config, "nvidia,emc-auto-cal-config")
EMC_READ_PROP(emc_auto_cal_config2, "nvidia,emc-auto-cal-config2")
EMC_READ_PROP(emc_auto_cal_config3, "nvidia,emc-auto-cal-config3")
EMC_READ_PROP(emc_auto_cal_interval, "nvidia,emc-auto-cal-interval")
EMC_READ_PROP(emc_bgbias_ctl0, "nvidia,emc-bgbias-ctl0")
EMC_READ_PROP(emc_cfg, "nvidia,emc-cfg")
EMC_READ_PROP(emc_cfg_2, "nvidia,emc-cfg-2")
EMC_READ_PROP(emc_ctt_term_ctrl, "nvidia,emc-ctt-term-ctrl")
EMC_READ_PROP(emc_mode_1, "nvidia,emc-mode-1")
EMC_READ_PROP(emc_mode_2, "nvidia,emc-mode-2")
EMC_READ_PROP(emc_mode_4, "nvidia,emc-mode-4")
EMC_READ_PROP(emc_mode_reset, "nvidia,emc-mode-reset")
EMC_READ_PROP(emc_mrs_wait_cnt, "nvidia,emc-mrs-wait-cnt")
EMC_READ_PROP(emc_sel_dpd_ctrl, "nvidia,emc-sel-dpd-ctrl")
EMC_READ_PROP(emc_xm2dqspadctrl2, "nvidia,emc-xm2dqspadctrl2")
EMC_READ_PROP(emc_zcal_cnt_long, "nvidia,emc-zcal-cnt-long")
EMC_READ_PROP(emc_zcal_interval, "nvidia,emc-zcal-interval")
#undef EMC_READ_PROP
return 0;
}
static int cmp_timings(const void *_a, const void *_b)
{
const struct emc_timing *a = _a;
const struct emc_timing *b = _b;
if (a->rate < b->rate)
return -1;
else if (a->rate == b->rate)
return 0;
else
return 1;
}
static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc,
struct device_node *node)
{
int child_count = of_get_child_count(node);
struct device_node *child;
struct emc_timing *timing;
unsigned int i = 0;
int err;
emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
GFP_KERNEL);
if (!emc->timings)
return -ENOMEM;
emc->num_timings = child_count;
for_each_child_of_node(node, child) {
timing = &emc->timings[i++];
err = load_one_timing_from_dt(emc, timing, child);
if (err) {
of_node_put(child);
return err;
}
}
sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
NULL);
return 0;
}
static const struct of_device_id tegra_emc_of_match[] = {
{ .compatible = "nvidia,tegra124-emc" },
{ .compatible = "nvidia,tegra132-emc" },
{}
};
MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
static struct device_node *
tegra_emc_find_node_by_ram_code(struct device_node *node, u32 ram_code)
{
struct device_node *np;
int err;
for_each_child_of_node(node, np) {
u32 value;
err = of_property_read_u32(np, "nvidia,ram-code", &value);
if (err || (value != ram_code))
continue;
return np;
}
return NULL;
}
static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
{
unsigned int i;
for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
emc->requested_rate[i].min_rate = 0;
emc->requested_rate[i].max_rate = ULONG_MAX;
}
}
static int emc_request_rate(struct tegra_emc *emc,
unsigned long new_min_rate,
unsigned long new_max_rate,
enum emc_rate_request_type type)
{
struct emc_rate_request *req = emc->requested_rate;
unsigned long min_rate = 0, max_rate = ULONG_MAX;
unsigned int i;
int err;
/* select minimum and maximum rates among the requested rates */
for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
if (i == type) {
min_rate = max(new_min_rate, min_rate);
max_rate = min(new_max_rate, max_rate);
} else {
min_rate = max(req->min_rate, min_rate);
max_rate = min(req->max_rate, max_rate);
}
}
if (min_rate > max_rate) {
dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
__func__, type, min_rate, max_rate);
return -ERANGE;
}
/*
* EMC rate-changes should go via OPP API because it manages voltage
* changes.
*/
err = dev_pm_opp_set_rate(emc->dev, min_rate);
if (err)
return err;
emc->requested_rate[type].min_rate = new_min_rate;
emc->requested_rate[type].max_rate = new_max_rate;
return 0;
}
static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
enum emc_rate_request_type type)
{
struct emc_rate_request *req = &emc->requested_rate[type];
int ret;
mutex_lock(&emc->rate_lock);
ret = emc_request_rate(emc, rate, req->max_rate, type);
mutex_unlock(&emc->rate_lock);
return ret;
}
static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
enum emc_rate_request_type type)
{
struct emc_rate_request *req = &emc->requested_rate[type];
int ret;
mutex_lock(&emc->rate_lock);
ret = emc_request_rate(emc, req->min_rate, rate, type);
mutex_unlock(&emc->rate_lock);
return ret;
}
/*
* debugfs interface
*
* The memory controller driver exposes some files in debugfs that can be used
* to control the EMC frequency. The top-level directory can be found here:
*
* /sys/kernel/debug/emc
*
* It contains the following files:
*
* - available_rates: This file contains a list of valid, space-separated
* EMC frequencies.
*
* - min_rate: Writing a value to this file sets the given frequency as the
* floor of the permitted range. If this is higher than the currently
* configured EMC frequency, this will cause the frequency to be
* increased so that it stays within the valid range.
*
* - max_rate: Similarily to the min_rate file, writing a value to this file
* sets the given frequency as the ceiling of the permitted range. If
* the value is lower than the currently configured EMC frequency, this
* will cause the frequency to be decreased so that it stays within the
* valid range.
*/
static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
{
unsigned int i;
for (i = 0; i < emc->num_timings; i++)
if (rate == emc->timings[i].rate)
return true;
return false;
}
static int tegra_emc_debug_available_rates_show(struct seq_file *s,
void *data)
{
struct tegra_emc *emc = s->private;
const char *prefix = "";
unsigned int i;
for (i = 0; i < emc->num_timings; i++) {
seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
prefix = " ";
}
seq_puts(s, "\n");
return 0;
}
DEFINE_SHOW_ATTRIBUTE(tegra_emc_debug_available_rates);
static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
{
struct tegra_emc *emc = data;
*rate = emc->debugfs.min_rate;
return 0;
}
static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
{
struct tegra_emc *emc = data;
int err;
if (!tegra_emc_validate_rate(emc, rate))
return -EINVAL;
err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
if (err < 0)
return err;
emc->debugfs.min_rate = rate;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
tegra_emc_debug_min_rate_get,
tegra_emc_debug_min_rate_set, "%llu\n");
static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
{
struct tegra_emc *emc = data;
*rate = emc->debugfs.max_rate;
return 0;
}
static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
{
struct tegra_emc *emc = data;
int err;
if (!tegra_emc_validate_rate(emc, rate))
return -EINVAL;
err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
if (err < 0)
return err;
emc->debugfs.max_rate = rate;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
tegra_emc_debug_max_rate_get,
tegra_emc_debug_max_rate_set, "%llu\n");
static void emc_debugfs_init(struct device *dev, struct tegra_emc *emc)
{
unsigned int i;
int err;
emc->debugfs.min_rate = ULONG_MAX;
emc->debugfs.max_rate = 0;
for (i = 0; i < emc->num_timings; i++) {
if (emc->timings[i].rate < emc->debugfs.min_rate)
emc->debugfs.min_rate = emc->timings[i].rate;
if (emc->timings[i].rate > emc->debugfs.max_rate)
emc->debugfs.max_rate = emc->timings[i].rate;
}
if (!emc->num_timings) {
emc->debugfs.min_rate = clk_get_rate(emc->clk);
emc->debugfs.max_rate = emc->debugfs.min_rate;
}
err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
emc->debugfs.max_rate);
if (err < 0) {
dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
emc->debugfs.min_rate, emc->debugfs.max_rate,
emc->clk);
return;
}
emc->debugfs.root = debugfs_create_dir("emc", NULL);
debugfs_create_file("available_rates", 0444, emc->debugfs.root, emc,
&tegra_emc_debug_available_rates_fops);
debugfs_create_file("min_rate", 0644, emc->debugfs.root,
emc, &tegra_emc_debug_min_rate_fops);
debugfs_create_file("max_rate", 0644, emc->debugfs.root,
emc, &tegra_emc_debug_max_rate_fops);
}
static inline struct tegra_emc *
to_tegra_emc_provider(struct icc_provider *provider)
{
return container_of(provider, struct tegra_emc, provider);
}
static struct icc_node_data *
emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data)
{
struct icc_provider *provider = data;
struct icc_node_data *ndata;
struct icc_node *node;
/* External Memory is the only possible ICC route */
list_for_each_entry(node, &provider->nodes, node_list) {
if (node->id != TEGRA_ICC_EMEM)
continue;
ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
if (!ndata)
return ERR_PTR(-ENOMEM);
/*
* SRC and DST nodes should have matching TAG in order to have
* it set by default for a requested path.
*/
ndata->tag = TEGRA_MC_ICC_TAG_ISO;
ndata->node = node;
return ndata;
}
return ERR_PTR(-EPROBE_DEFER);
}
static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
{
struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
unsigned long long rate = max(avg_bw, peak_bw);
unsigned int dram_data_bus_width_bytes;
const unsigned int ddr = 2;
int err;
/*
* Tegra124 EMC runs on a clock rate of SDRAM bus. This means that
* EMC clock rate is twice smaller than the peak data rate because
* data is sampled on both EMC clock edges.
*/
dram_data_bus_width_bytes = emc->dram_bus_width / 8;
do_div(rate, ddr * dram_data_bus_width_bytes);
rate = min_t(u64, rate, U32_MAX);
err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
if (err)
return err;
return 0;
}
static int tegra_emc_interconnect_init(struct tegra_emc *emc)
{
const struct tegra_mc_soc *soc = emc->mc->soc;
struct icc_node *node;
int err;
emc->provider.dev = emc->dev;
emc->provider.set = emc_icc_set;
emc->provider.data = &emc->provider;
emc->provider.aggregate = soc->icc_ops->aggregate;
emc->provider.xlate_extended = emc_of_icc_xlate_extended;
err = icc_provider_add(&emc->provider);
if (err)
goto err_msg;
/* create External Memory Controller node */
node = icc_node_create(TEGRA_ICC_EMC);
if (IS_ERR(node)) {
err = PTR_ERR(node);
goto del_provider;
}
node->name = "External Memory Controller";
icc_node_add(node, &emc->provider);
/* link External Memory Controller to External Memory (DRAM) */
err = icc_link_create(node, TEGRA_ICC_EMEM);
if (err)
goto remove_nodes;
/* create External Memory node */
node = icc_node_create(TEGRA_ICC_EMEM);
if (IS_ERR(node)) {
err = PTR_ERR(node);
goto remove_nodes;
}
node->name = "External Memory (DRAM)";
icc_node_add(node, &emc->provider);
return 0;
remove_nodes:
icc_nodes_remove(&emc->provider);
del_provider:
icc_provider_del(&emc->provider);
err_msg:
dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
return err;
}
static int tegra_emc_opp_table_init(struct tegra_emc *emc)
{
u32 hw_version = BIT(tegra_sku_info.soc_speedo_id);
struct opp_table *hw_opp_table;
int err;
hw_opp_table = dev_pm_opp_set_supported_hw(emc->dev, &hw_version, 1);
err = PTR_ERR_OR_ZERO(hw_opp_table);
if (err) {
dev_err(emc->dev, "failed to set OPP supported HW: %d\n", err);
return err;
}
err = dev_pm_opp_of_add_table(emc->dev);
if (err) {
if (err == -ENODEV)
dev_err(emc->dev, "OPP table not found, please update your device tree\n");
else
dev_err(emc->dev, "failed to add OPP table: %d\n", err);
goto put_hw_table;
}
dev_info_once(emc->dev, "OPP HW ver. 0x%x, current clock rate %lu MHz\n",
hw_version, clk_get_rate(emc->clk) / 1000000);
/* first dummy rate-set initializes voltage state */
err = dev_pm_opp_set_rate(emc->dev, clk_get_rate(emc->clk));
if (err) {
dev_err(emc->dev, "failed to initialize OPP clock: %d\n", err);
goto remove_table;
}
return 0;
remove_table:
dev_pm_opp_of_remove_table(emc->dev);
put_hw_table:
dev_pm_opp_put_supported_hw(hw_opp_table);
return err;
}
static void devm_tegra_emc_unset_callback(void *data)
{
tegra124_clk_set_emc_callbacks(NULL, NULL);
}
static int tegra_emc_probe(struct platform_device *pdev)
{
struct device_node *np;
struct tegra_emc *emc;
u32 ram_code;
int err;
emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
if (!emc)
return -ENOMEM;
mutex_init(&emc->rate_lock);
emc->dev = &pdev->dev;
emc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(emc->regs))
return PTR_ERR(emc->regs);
emc->mc = devm_tegra_memory_controller_get(&pdev->dev);
if (IS_ERR(emc->mc))
return PTR_ERR(emc->mc);
ram_code = tegra_read_ram_code();
np = tegra_emc_find_node_by_ram_code(pdev->dev.of_node, ram_code);
if (np) {
err = tegra_emc_load_timings_from_dt(emc, np);
of_node_put(np);
if (err)
return err;
} else {
dev_info_once(&pdev->dev,
"no memory timings for RAM code %u found in DT\n",
ram_code);
}
err = emc_init(emc);
if (err) {
dev_err(&pdev->dev, "EMC initialization failed: %d\n", err);
return err;
}
platform_set_drvdata(pdev, emc);
tegra124_clk_set_emc_callbacks(tegra_emc_prepare_timing_change,
tegra_emc_complete_timing_change);
err = devm_add_action_or_reset(&pdev->dev, devm_tegra_emc_unset_callback,
NULL);
if (err)
return err;
emc->clk = devm_clk_get(&pdev->dev, "emc");
if (IS_ERR(emc->clk)) {
err = PTR_ERR(emc->clk);
dev_err(&pdev->dev, "failed to get EMC clock: %d\n", err);
return err;
}
err = tegra_emc_opp_table_init(emc);
if (err)
return err;
tegra_emc_rate_requests_init(emc);
if (IS_ENABLED(CONFIG_DEBUG_FS))
emc_debugfs_init(&pdev->dev, emc);
tegra_emc_interconnect_init(emc);
/*
* Don't allow the kernel module to be unloaded. Unloading adds some
* extra complexity which doesn't really worth the effort in a case of
* this driver.
*/
try_module_get(THIS_MODULE);
return 0;
};
static struct platform_driver tegra_emc_driver = {
.probe = tegra_emc_probe,
.driver = {
.name = "tegra-emc",
.of_match_table = tegra_emc_of_match,
.suppress_bind_attrs = true,
.sync_state = icc_sync_state,
},
};
module_platform_driver(tegra_emc_driver);
MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra124 EMC driver");
MODULE_LICENSE("GPL v2");