linux/linux-5.18.11/arch/powerpc/mm/book3s64/hash_pgtable.c

562 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2005, Paul Mackerras, IBM Corporation.
* Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
*/
#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/mm.h>
#include <linux/stop_machine.h>
#include <asm/sections.h>
#include <asm/mmu.h>
#include <asm/tlb.h>
#include <mm/mmu_decl.h>
#include <trace/events/thp.h>
#if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
#warning Limited user VSID range means pagetable space is wasted
#endif
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* vmemmap is the starting address of the virtual address space where
* struct pages are allocated for all possible PFNs present on the system
* including holes and bad memory (hence sparse). These virtual struct
* pages are stored in sequence in this virtual address space irrespective
* of the fact whether the corresponding PFN is valid or not. This achieves
* constant relationship between address of struct page and its PFN.
*
* During boot or memory hotplug operation when a new memory section is
* added, physical memory allocation (including hash table bolting) will
* be performed for the set of struct pages which are part of the memory
* section. This saves memory by not allocating struct pages for PFNs
* which are not valid.
*
* ----------------------------------------------
* | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
* ----------------------------------------------
*
* f000000000000000 c000000000000000
* vmemmap +--------------+ +--------------+
* + | page struct | +--------------> | page struct |
* | +--------------+ +--------------+
* | | page struct | +--------------> | page struct |
* | +--------------+ | +--------------+
* | | page struct | + +------> | page struct |
* | +--------------+ | +--------------+
* | | page struct | | +--> | page struct |
* | +--------------+ | | +--------------+
* | | page struct | | |
* | +--------------+ | |
* | | page struct | | |
* | +--------------+ | |
* | | page struct | | |
* | +--------------+ | |
* | | page struct | | |
* | +--------------+ | |
* | | page struct | +-------+ |
* | +--------------+ |
* | | page struct | +-----------+
* | +--------------+
* | | page struct | No mapping
* | +--------------+
* | | page struct | No mapping
* v +--------------+
*
* -----------------------------------------
* | RELATION BETWEEN STRUCT PAGES AND PFNS|
* -----------------------------------------
*
* vmemmap +--------------+ +---------------+
* + | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | |
* | +--------------+
* | | |
* | +--------------+
* | | |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | |
* | +--------------+
* | | |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* v +--------------+ +---------------+
*/
/*
* On hash-based CPUs, the vmemmap is bolted in the hash table.
*
*/
int __meminit hash__vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys)
{
int rc;
if ((start + page_size) >= H_VMEMMAP_END) {
pr_warn("Outside the supported range\n");
return -1;
}
rc = htab_bolt_mapping(start, start + page_size, phys,
pgprot_val(PAGE_KERNEL),
mmu_vmemmap_psize, mmu_kernel_ssize);
if (rc < 0) {
int rc2 = htab_remove_mapping(start, start + page_size,
mmu_vmemmap_psize,
mmu_kernel_ssize);
BUG_ON(rc2 && (rc2 != -ENOENT));
}
return rc;
}
#ifdef CONFIG_MEMORY_HOTPLUG
void hash__vmemmap_remove_mapping(unsigned long start,
unsigned long page_size)
{
int rc = htab_remove_mapping(start, start + page_size,
mmu_vmemmap_psize,
mmu_kernel_ssize);
BUG_ON((rc < 0) && (rc != -ENOENT));
WARN_ON(rc == -ENOENT);
}
#endif
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
/*
* map_kernel_page currently only called by __ioremap
* map_kernel_page adds an entry to the ioremap page table
* and adds an entry to the HPT, possibly bolting it
*/
int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
{
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
if (slab_is_available()) {
pgdp = pgd_offset_k(ea);
p4dp = p4d_offset(pgdp, ea);
pudp = pud_alloc(&init_mm, p4dp, ea);
if (!pudp)
return -ENOMEM;
pmdp = pmd_alloc(&init_mm, pudp, ea);
if (!pmdp)
return -ENOMEM;
ptep = pte_alloc_kernel(pmdp, ea);
if (!ptep)
return -ENOMEM;
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
} else {
/*
* If the mm subsystem is not fully up, we cannot create a
* linux page table entry for this mapping. Simply bolt an
* entry in the hardware page table.
*
*/
if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
mmu_io_psize, mmu_kernel_ssize)) {
printk(KERN_ERR "Failed to do bolted mapping IO "
"memory at %016lx !\n", pa);
return -ENOMEM;
}
}
smp_wmb();
return 0;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long clr,
unsigned long set)
{
__be64 old_be, tmp;
unsigned long old;
#ifdef CONFIG_DEBUG_VM
WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
assert_spin_locked(pmd_lockptr(mm, pmdp));
#endif
__asm__ __volatile__(
"1: ldarx %0,0,%3\n\
and. %1,%0,%6\n\
bne- 1b \n\
andc %1,%0,%4 \n\
or %1,%1,%7\n\
stdcx. %1,0,%3 \n\
bne- 1b"
: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
"r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
: "cc" );
old = be64_to_cpu(old_be);
trace_hugepage_update(addr, old, clr, set);
if (old & H_PAGE_HASHPTE)
hpte_do_hugepage_flush(mm, addr, pmdp, old);
return old;
}
pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
VM_BUG_ON(pmd_trans_huge(*pmdp));
VM_BUG_ON(pmd_devmap(*pmdp));
pmd = *pmdp;
pmd_clear(pmdp);
/*
* Wait for all pending hash_page to finish. This is needed
* in case of subpage collapse. When we collapse normal pages
* to hugepage, we first clear the pmd, then invalidate all
* the PTE entries. The assumption here is that any low level
* page fault will see a none pmd and take the slow path that
* will wait on mmap_lock. But we could very well be in a
* hash_page with local ptep pointer value. Such a hash page
* can result in adding new HPTE entries for normal subpages.
* That means we could be modifying the page content as we
* copy them to a huge page. So wait for parallel hash_page
* to finish before invalidating HPTE entries. We can do this
* by sending an IPI to all the cpus and executing a dummy
* function there.
*/
serialize_against_pte_lookup(vma->vm_mm);
/*
* Now invalidate the hpte entries in the range
* covered by pmd. This make sure we take a
* fault and will find the pmd as none, which will
* result in a major fault which takes mmap_lock and
* hence wait for collapse to complete. Without this
* the __collapse_huge_page_copy can result in copying
* the old content.
*/
flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
return pmd;
}
/*
* We want to put the pgtable in pmd and use pgtable for tracking
* the base page size hptes
*/
void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable)
{
pgtable_t *pgtable_slot;
assert_spin_locked(pmd_lockptr(mm, pmdp));
/*
* we store the pgtable in the second half of PMD
*/
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
*pgtable_slot = pgtable;
/*
* expose the deposited pgtable to other cpus.
* before we set the hugepage PTE at pmd level
* hash fault code looks at the deposted pgtable
* to store hash index values.
*/
smp_wmb();
}
pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
pgtable_t pgtable;
pgtable_t *pgtable_slot;
assert_spin_locked(pmd_lockptr(mm, pmdp));
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
pgtable = *pgtable_slot;
/*
* Once we withdraw, mark the entry NULL.
*/
*pgtable_slot = NULL;
/*
* We store HPTE information in the deposited PTE fragment.
* zero out the content on withdraw.
*/
memset(pgtable, 0, PTE_FRAG_SIZE);
return pgtable;
}
/*
* A linux hugepage PMD was changed and the corresponding hash table entries
* neesd to be flushed.
*/
void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long old_pmd)
{
int ssize;
unsigned int psize;
unsigned long vsid;
unsigned long flags = 0;
/* get the base page size,vsid and segment size */
#ifdef CONFIG_DEBUG_VM
psize = get_slice_psize(mm, addr);
BUG_ON(psize == MMU_PAGE_16M);
#endif
if (old_pmd & H_PAGE_COMBO)
psize = MMU_PAGE_4K;
else
psize = MMU_PAGE_64K;
if (!is_kernel_addr(addr)) {
ssize = user_segment_size(addr);
vsid = get_user_vsid(&mm->context, addr, ssize);
WARN_ON(vsid == 0);
} else {
vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
ssize = mmu_kernel_ssize;
}
if (mm_is_thread_local(mm))
flags |= HPTE_LOCAL_UPDATE;
return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
}
pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
pmd_t old_pmd;
pgtable_t pgtable;
unsigned long old;
pgtable_t *pgtable_slot;
old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
old_pmd = __pmd(old);
/*
* We have pmd == none and we are holding page_table_lock.
* So we can safely go and clear the pgtable hash
* index info.
*/
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
pgtable = *pgtable_slot;
/*
* Let's zero out old valid and hash index details
* hash fault look at them.
*/
memset(pgtable, 0, PTE_FRAG_SIZE);
return old_pmd;
}
int hash__has_transparent_hugepage(void)
{
if (!mmu_has_feature(MMU_FTR_16M_PAGE))
return 0;
/*
* We support THP only if PMD_SIZE is 16MB.
*/
if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
return 0;
/*
* We need to make sure that we support 16MB hugepage in a segement
* with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
* of 64K.
*/
/*
* If we have 64K HPTE, we will be using that by default
*/
if (mmu_psize_defs[MMU_PAGE_64K].shift &&
(mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
return 0;
/*
* Ok we only have 4K HPTE
*/
if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
return 0;
return 1;
}
EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#ifdef CONFIG_STRICT_KERNEL_RWX
struct change_memory_parms {
unsigned long start, end, newpp;
unsigned int step, nr_cpus, master_cpu;
atomic_t cpu_counter;
};
// We'd rather this was on the stack but it has to be in the RMO
static struct change_memory_parms chmem_parms;
// And therefore we need a lock to protect it from concurrent use
static DEFINE_MUTEX(chmem_lock);
static void change_memory_range(unsigned long start, unsigned long end,
unsigned int step, unsigned long newpp)
{
unsigned long idx;
pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
start, end, newpp, step);
for (idx = start; idx < end; idx += step)
/* Not sure if we can do much with the return value */
mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
mmu_kernel_ssize);
}
static int notrace chmem_secondary_loop(struct change_memory_parms *parms)
{
unsigned long msr, tmp, flags;
int *p;
p = &parms->cpu_counter.counter;
local_irq_save(flags);
hard_irq_disable();
asm volatile (
// Switch to real mode and leave interrupts off
"mfmsr %[msr] ;"
"li %[tmp], %[MSR_IR_DR] ;"
"andc %[tmp], %[msr], %[tmp] ;"
"mtmsrd %[tmp] ;"
// Tell the master we are in real mode
"1: "
"lwarx %[tmp], 0, %[p] ;"
"addic %[tmp], %[tmp], -1 ;"
"stwcx. %[tmp], 0, %[p] ;"
"bne- 1b ;"
// Spin until the counter goes to zero
"2: ;"
"lwz %[tmp], 0(%[p]) ;"
"cmpwi %[tmp], 0 ;"
"bne- 2b ;"
// Switch back to virtual mode
"mtmsrd %[msr] ;"
: // outputs
[msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p)
: // inputs
[p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR)
: // clobbers
"cc", "xer"
);
local_irq_restore(flags);
return 0;
}
static int change_memory_range_fn(void *data)
{
struct change_memory_parms *parms = data;
if (parms->master_cpu != smp_processor_id())
return chmem_secondary_loop(parms);
// Wait for all but one CPU (this one) to call-in
while (atomic_read(&parms->cpu_counter) > 1)
barrier();
change_memory_range(parms->start, parms->end, parms->step, parms->newpp);
mb();
// Signal the other CPUs that we're done
atomic_dec(&parms->cpu_counter);
return 0;
}
static bool hash__change_memory_range(unsigned long start, unsigned long end,
unsigned long newpp)
{
unsigned int step, shift;
shift = mmu_psize_defs[mmu_linear_psize].shift;
step = 1 << shift;
start = ALIGN_DOWN(start, step);
end = ALIGN(end, step); // aligns up
if (start >= end)
return false;
if (firmware_has_feature(FW_FEATURE_LPAR)) {
mutex_lock(&chmem_lock);
chmem_parms.start = start;
chmem_parms.end = end;
chmem_parms.step = step;
chmem_parms.newpp = newpp;
chmem_parms.master_cpu = smp_processor_id();
cpus_read_lock();
atomic_set(&chmem_parms.cpu_counter, num_online_cpus());
// Ensure state is consistent before we call the other CPUs
mb();
stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms,
cpu_online_mask);
cpus_read_unlock();
mutex_unlock(&chmem_lock);
} else
change_memory_range(start, end, step, newpp);
return true;
}
void hash__mark_rodata_ro(void)
{
unsigned long start, end, pp;
start = (unsigned long)_stext;
end = (unsigned long)__init_begin;
pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY);
WARN_ON(!hash__change_memory_range(start, end, pp));
}
void hash__mark_initmem_nx(void)
{
unsigned long start, end, pp;
start = (unsigned long)__init_begin;
end = (unsigned long)__init_end;
pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
WARN_ON(!hash__change_memory_range(start, end, pp));
}
#endif