linux/linux-5.18.11/arch/mips/sgi-ip30/ip30-irq.c

331 lines
8.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* ip30-irq.c: Highlevel interrupt handling for IP30 architecture.
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/percpu.h>
#include <linux/spinlock.h>
#include <linux/tick.h>
#include <linux/types.h>
#include <asm/irq_cpu.h>
#include <asm/sgi/heart.h>
#include "ip30-common.h"
struct heart_irq_data {
u64 *irq_mask;
int cpu;
};
static DECLARE_BITMAP(heart_irq_map, HEART_NUM_IRQS);
static DEFINE_PER_CPU(unsigned long, irq_enable_mask);
static inline int heart_alloc_int(void)
{
int bit;
again:
bit = find_first_zero_bit(heart_irq_map, HEART_NUM_IRQS);
if (bit >= HEART_NUM_IRQS)
return -ENOSPC;
if (test_and_set_bit(bit, heart_irq_map))
goto again;
return bit;
}
static void ip30_error_irq(struct irq_desc *desc)
{
u64 pending, mask, cause, error_irqs, err_reg;
int cpu = smp_processor_id();
int i;
pending = heart_read(&heart_regs->isr);
mask = heart_read(&heart_regs->imr[cpu]);
cause = heart_read(&heart_regs->cause);
error_irqs = (pending & HEART_L4_INT_MASK & mask);
/* Bail if there's nothing to process (how did we get here, then?) */
if (unlikely(!error_irqs))
return;
/* Prevent any of the error IRQs from firing again. */
heart_write(mask & ~(pending), &heart_regs->imr[cpu]);
/* Ack all error IRQs. */
heart_write(HEART_L4_INT_MASK, &heart_regs->clear_isr);
/*
* If we also have a cause value, then something happened, so loop
* through the error IRQs and report a "heart attack" for each one
* and print the value of the HEART cause register. This is really
* primitive right now, but it should hopefully work until a more
* robust error handling routine can be put together.
*
* Refer to heart.h for the HC_* macros to work out the cause
* that got us here.
*/
if (cause) {
pr_alert("IP30: CPU%d: HEART ATTACK! ISR = 0x%.16llx, IMR = 0x%.16llx, CAUSE = 0x%.16llx\n",
cpu, pending, mask, cause);
if (cause & HC_COR_MEM_ERR) {
err_reg = heart_read(&heart_regs->mem_err_addr);
pr_alert(" HEART_MEMERR_ADDR = 0x%.16llx\n", err_reg);
}
/* i = 63; i >= 51; i-- */
for (i = HEART_ERR_MASK_END; i >= HEART_ERR_MASK_START; i--)
if ((pending >> i) & 1)
pr_alert(" HEART Error IRQ #%d\n", i);
/* XXX: Seems possible to loop forever here, so panic(). */
panic("IP30: Fatal Error !\n");
}
/* Unmask the error IRQs. */
heart_write(mask, &heart_regs->imr[cpu]);
}
static void ip30_normal_irq(struct irq_desc *desc)
{
int cpu = smp_processor_id();
struct irq_domain *domain;
u64 pend, mask;
int ret;
pend = heart_read(&heart_regs->isr);
mask = (heart_read(&heart_regs->imr[cpu]) &
(HEART_L0_INT_MASK | HEART_L1_INT_MASK | HEART_L2_INT_MASK));
pend &= mask;
if (unlikely(!pend))
return;
#ifdef CONFIG_SMP
if (pend & BIT_ULL(HEART_L2_INT_RESCHED_CPU_0)) {
heart_write(BIT_ULL(HEART_L2_INT_RESCHED_CPU_0),
&heart_regs->clear_isr);
scheduler_ipi();
} else if (pend & BIT_ULL(HEART_L2_INT_RESCHED_CPU_1)) {
heart_write(BIT_ULL(HEART_L2_INT_RESCHED_CPU_1),
&heart_regs->clear_isr);
scheduler_ipi();
} else if (pend & BIT_ULL(HEART_L2_INT_CALL_CPU_0)) {
heart_write(BIT_ULL(HEART_L2_INT_CALL_CPU_0),
&heart_regs->clear_isr);
generic_smp_call_function_interrupt();
} else if (pend & BIT_ULL(HEART_L2_INT_CALL_CPU_1)) {
heart_write(BIT_ULL(HEART_L2_INT_CALL_CPU_1),
&heart_regs->clear_isr);
generic_smp_call_function_interrupt();
} else
#endif
{
domain = irq_desc_get_handler_data(desc);
ret = generic_handle_domain_irq(domain, __ffs(pend));
if (ret)
spurious_interrupt();
}
}
static void ip30_ack_heart_irq(struct irq_data *d)
{
heart_write(BIT_ULL(d->hwirq), &heart_regs->clear_isr);
}
static void ip30_mask_heart_irq(struct irq_data *d)
{
struct heart_irq_data *hd = irq_data_get_irq_chip_data(d);
unsigned long *mask = &per_cpu(irq_enable_mask, hd->cpu);
clear_bit(d->hwirq, mask);
heart_write(*mask, &heart_regs->imr[hd->cpu]);
}
static void ip30_mask_and_ack_heart_irq(struct irq_data *d)
{
struct heart_irq_data *hd = irq_data_get_irq_chip_data(d);
unsigned long *mask = &per_cpu(irq_enable_mask, hd->cpu);
clear_bit(d->hwirq, mask);
heart_write(*mask, &heart_regs->imr[hd->cpu]);
heart_write(BIT_ULL(d->hwirq), &heart_regs->clear_isr);
}
static void ip30_unmask_heart_irq(struct irq_data *d)
{
struct heart_irq_data *hd = irq_data_get_irq_chip_data(d);
unsigned long *mask = &per_cpu(irq_enable_mask, hd->cpu);
set_bit(d->hwirq, mask);
heart_write(*mask, &heart_regs->imr[hd->cpu]);
}
static int ip30_set_heart_irq_affinity(struct irq_data *d,
const struct cpumask *mask, bool force)
{
struct heart_irq_data *hd = irq_data_get_irq_chip_data(d);
if (!hd)
return -EINVAL;
if (irqd_is_started(d))
ip30_mask_and_ack_heart_irq(d);
hd->cpu = cpumask_first_and(mask, cpu_online_mask);
if (irqd_is_started(d))
ip30_unmask_heart_irq(d);
irq_data_update_effective_affinity(d, cpumask_of(hd->cpu));
return 0;
}
static struct irq_chip heart_irq_chip = {
.name = "HEART",
.irq_ack = ip30_ack_heart_irq,
.irq_mask = ip30_mask_heart_irq,
.irq_mask_ack = ip30_mask_and_ack_heart_irq,
.irq_unmask = ip30_unmask_heart_irq,
.irq_set_affinity = ip30_set_heart_irq_affinity,
};
static int heart_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct irq_alloc_info *info = arg;
struct heart_irq_data *hd;
int hwirq;
if (nr_irqs > 1 || !info)
return -EINVAL;
hd = kzalloc(sizeof(*hd), GFP_KERNEL);
if (!hd)
return -ENOMEM;
hwirq = heart_alloc_int();
if (hwirq < 0) {
kfree(hd);
return -EAGAIN;
}
irq_domain_set_info(domain, virq, hwirq, &heart_irq_chip, hd,
handle_level_irq, NULL, NULL);
return 0;
}
static void heart_domain_free(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
struct irq_data *irqd;
if (nr_irqs > 1)
return;
irqd = irq_domain_get_irq_data(domain, virq);
if (irqd) {
clear_bit(irqd->hwirq, heart_irq_map);
kfree(irqd->chip_data);
}
}
static const struct irq_domain_ops heart_domain_ops = {
.alloc = heart_domain_alloc,
.free = heart_domain_free,
};
void __init ip30_install_ipi(void)
{
int cpu = smp_processor_id();
unsigned long *mask = &per_cpu(irq_enable_mask, cpu);
set_bit(HEART_L2_INT_RESCHED_CPU_0 + cpu, mask);
heart_write(BIT_ULL(HEART_L2_INT_RESCHED_CPU_0 + cpu),
&heart_regs->clear_isr);
set_bit(HEART_L2_INT_CALL_CPU_0 + cpu, mask);
heart_write(BIT_ULL(HEART_L2_INT_CALL_CPU_0 + cpu),
&heart_regs->clear_isr);
heart_write(*mask, &heart_regs->imr[cpu]);
}
void __init arch_init_irq(void)
{
struct irq_domain *domain;
struct fwnode_handle *fn;
unsigned long *mask;
int i;
mips_cpu_irq_init();
/* Mask all IRQs. */
heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[0]);
heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[1]);
heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[2]);
heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[3]);
/* Ack everything. */
heart_write(HEART_ACK_ALL_MASK, &heart_regs->clear_isr);
/* Enable specific HEART error IRQs for each CPU. */
mask = &per_cpu(irq_enable_mask, 0);
*mask |= HEART_CPU0_ERR_MASK;
heart_write(*mask, &heart_regs->imr[0]);
mask = &per_cpu(irq_enable_mask, 1);
*mask |= HEART_CPU1_ERR_MASK;
heart_write(*mask, &heart_regs->imr[1]);
/*
* Some HEART bits are reserved by hardware or by software convention.
* Mark these as reserved right away so they won't be accidentally
* used later.
*/
set_bit(HEART_L0_INT_GENERIC, heart_irq_map);
set_bit(HEART_L0_INT_FLOW_CTRL_HWTR_0, heart_irq_map);
set_bit(HEART_L0_INT_FLOW_CTRL_HWTR_1, heart_irq_map);
set_bit(HEART_L2_INT_RESCHED_CPU_0, heart_irq_map);
set_bit(HEART_L2_INT_RESCHED_CPU_1, heart_irq_map);
set_bit(HEART_L2_INT_CALL_CPU_0, heart_irq_map);
set_bit(HEART_L2_INT_CALL_CPU_1, heart_irq_map);
set_bit(HEART_L3_INT_TIMER, heart_irq_map);
/* Reserve the error interrupts (#51 to #63). */
for (i = HEART_L4_INT_XWID_ERR_9; i <= HEART_L4_INT_HEART_EXCP; i++)
set_bit(i, heart_irq_map);
fn = irq_domain_alloc_named_fwnode("HEART");
WARN_ON(fn == NULL);
if (!fn)
return;
domain = irq_domain_create_linear(fn, HEART_NUM_IRQS,
&heart_domain_ops, NULL);
WARN_ON(domain == NULL);
if (!domain)
return;
irq_set_default_host(domain);
irq_set_percpu_devid(IP30_HEART_L0_IRQ);
irq_set_chained_handler_and_data(IP30_HEART_L0_IRQ, ip30_normal_irq,
domain);
irq_set_percpu_devid(IP30_HEART_L1_IRQ);
irq_set_chained_handler_and_data(IP30_HEART_L1_IRQ, ip30_normal_irq,
domain);
irq_set_percpu_devid(IP30_HEART_L2_IRQ);
irq_set_chained_handler_and_data(IP30_HEART_L2_IRQ, ip30_normal_irq,
domain);
irq_set_percpu_devid(IP30_HEART_ERR_IRQ);
irq_set_chained_handler_and_data(IP30_HEART_ERR_IRQ, ip30_error_irq,
domain);
}