/* * Open file cache. * * (c) 2015 - Jeff Layton */ #include #include #include #include #include #include #include #include #include #include "vfs.h" #include "nfsd.h" #include "nfsfh.h" #include "netns.h" #include "filecache.h" #include "trace.h" #define NFSDDBG_FACILITY NFSDDBG_FH /* FIXME: dynamically size this for the machine somehow? */ #define NFSD_FILE_HASH_BITS 12 #define NFSD_FILE_HASH_SIZE (1 << NFSD_FILE_HASH_BITS) #define NFSD_LAUNDRETTE_DELAY (2 * HZ) #define NFSD_FILE_SHUTDOWN (1) #define NFSD_FILE_LRU_THRESHOLD (4096UL) #define NFSD_FILE_LRU_LIMIT (NFSD_FILE_LRU_THRESHOLD << 2) /* We only care about NFSD_MAY_READ/WRITE for this cache */ #define NFSD_FILE_MAY_MASK (NFSD_MAY_READ|NFSD_MAY_WRITE) struct nfsd_fcache_bucket { struct hlist_head nfb_head; spinlock_t nfb_lock; unsigned int nfb_count; unsigned int nfb_maxcount; }; static DEFINE_PER_CPU(unsigned long, nfsd_file_cache_hits); struct nfsd_fcache_disposal { struct work_struct work; spinlock_t lock; struct list_head freeme; }; static struct workqueue_struct *nfsd_filecache_wq __read_mostly; static struct kmem_cache *nfsd_file_slab; static struct kmem_cache *nfsd_file_mark_slab; static struct nfsd_fcache_bucket *nfsd_file_hashtbl; static struct list_lru nfsd_file_lru; static long nfsd_file_lru_flags; static struct fsnotify_group *nfsd_file_fsnotify_group; static atomic_long_t nfsd_filecache_count; static struct delayed_work nfsd_filecache_laundrette; static void nfsd_file_gc(void); static void nfsd_file_schedule_laundrette(void) { long count = atomic_long_read(&nfsd_filecache_count); if (count == 0 || test_bit(NFSD_FILE_SHUTDOWN, &nfsd_file_lru_flags)) return; queue_delayed_work(system_wq, &nfsd_filecache_laundrette, NFSD_LAUNDRETTE_DELAY); } static void nfsd_file_slab_free(struct rcu_head *rcu) { struct nfsd_file *nf = container_of(rcu, struct nfsd_file, nf_rcu); put_cred(nf->nf_cred); kmem_cache_free(nfsd_file_slab, nf); } static void nfsd_file_mark_free(struct fsnotify_mark *mark) { struct nfsd_file_mark *nfm = container_of(mark, struct nfsd_file_mark, nfm_mark); kmem_cache_free(nfsd_file_mark_slab, nfm); } static struct nfsd_file_mark * nfsd_file_mark_get(struct nfsd_file_mark *nfm) { if (!refcount_inc_not_zero(&nfm->nfm_ref)) return NULL; return nfm; } static void nfsd_file_mark_put(struct nfsd_file_mark *nfm) { if (refcount_dec_and_test(&nfm->nfm_ref)) { fsnotify_destroy_mark(&nfm->nfm_mark, nfsd_file_fsnotify_group); fsnotify_put_mark(&nfm->nfm_mark); } } static struct nfsd_file_mark * nfsd_file_mark_find_or_create(struct nfsd_file *nf) { int err; struct fsnotify_mark *mark; struct nfsd_file_mark *nfm = NULL, *new; struct inode *inode = nf->nf_inode; do { mutex_lock(&nfsd_file_fsnotify_group->mark_mutex); mark = fsnotify_find_mark(&inode->i_fsnotify_marks, nfsd_file_fsnotify_group); if (mark) { nfm = nfsd_file_mark_get(container_of(mark, struct nfsd_file_mark, nfm_mark)); mutex_unlock(&nfsd_file_fsnotify_group->mark_mutex); if (nfm) { fsnotify_put_mark(mark); break; } /* Avoid soft lockup race with nfsd_file_mark_put() */ fsnotify_destroy_mark(mark, nfsd_file_fsnotify_group); fsnotify_put_mark(mark); } else mutex_unlock(&nfsd_file_fsnotify_group->mark_mutex); /* allocate a new nfm */ new = kmem_cache_alloc(nfsd_file_mark_slab, GFP_KERNEL); if (!new) return NULL; fsnotify_init_mark(&new->nfm_mark, nfsd_file_fsnotify_group); new->nfm_mark.mask = FS_ATTRIB|FS_DELETE_SELF; refcount_set(&new->nfm_ref, 1); err = fsnotify_add_inode_mark(&new->nfm_mark, inode, 0); /* * If the add was successful, then return the object. * Otherwise, we need to put the reference we hold on the * nfm_mark. The fsnotify code will take a reference and put * it on failure, so we can't just free it directly. It's also * not safe to call fsnotify_destroy_mark on it as the * mark->group will be NULL. Thus, we can't let the nfm_ref * counter drive the destruction at this point. */ if (likely(!err)) nfm = new; else fsnotify_put_mark(&new->nfm_mark); } while (unlikely(err == -EEXIST)); return nfm; } static struct nfsd_file * nfsd_file_alloc(struct inode *inode, unsigned int may, unsigned int hashval, struct net *net) { struct nfsd_file *nf; nf = kmem_cache_alloc(nfsd_file_slab, GFP_KERNEL); if (nf) { INIT_HLIST_NODE(&nf->nf_node); INIT_LIST_HEAD(&nf->nf_lru); nf->nf_file = NULL; nf->nf_cred = get_current_cred(); nf->nf_net = net; nf->nf_flags = 0; nf->nf_inode = inode; nf->nf_hashval = hashval; refcount_set(&nf->nf_ref, 1); nf->nf_may = may & NFSD_FILE_MAY_MASK; if (may & NFSD_MAY_NOT_BREAK_LEASE) { if (may & NFSD_MAY_WRITE) __set_bit(NFSD_FILE_BREAK_WRITE, &nf->nf_flags); if (may & NFSD_MAY_READ) __set_bit(NFSD_FILE_BREAK_READ, &nf->nf_flags); } nf->nf_mark = NULL; trace_nfsd_file_alloc(nf); } return nf; } static bool nfsd_file_free(struct nfsd_file *nf) { bool flush = false; trace_nfsd_file_put_final(nf); if (nf->nf_mark) nfsd_file_mark_put(nf->nf_mark); if (nf->nf_file) { get_file(nf->nf_file); filp_close(nf->nf_file, NULL); fput(nf->nf_file); flush = true; } call_rcu(&nf->nf_rcu, nfsd_file_slab_free); return flush; } static bool nfsd_file_check_writeback(struct nfsd_file *nf) { struct file *file = nf->nf_file; struct address_space *mapping; if (!file || !(file->f_mode & FMODE_WRITE)) return false; mapping = file->f_mapping; return mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) || mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); } static int nfsd_file_check_write_error(struct nfsd_file *nf) { struct file *file = nf->nf_file; if (!file || !(file->f_mode & FMODE_WRITE)) return 0; return filemap_check_wb_err(file->f_mapping, READ_ONCE(file->f_wb_err)); } static void nfsd_file_flush(struct nfsd_file *nf) { if (nf->nf_file && vfs_fsync(nf->nf_file, 1) != 0) nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id)); } static void nfsd_file_do_unhash(struct nfsd_file *nf) { lockdep_assert_held(&nfsd_file_hashtbl[nf->nf_hashval].nfb_lock); trace_nfsd_file_unhash(nf); if (nfsd_file_check_write_error(nf)) nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id)); --nfsd_file_hashtbl[nf->nf_hashval].nfb_count; hlist_del_rcu(&nf->nf_node); atomic_long_dec(&nfsd_filecache_count); } static bool nfsd_file_unhash(struct nfsd_file *nf) { if (test_and_clear_bit(NFSD_FILE_HASHED, &nf->nf_flags)) { nfsd_file_do_unhash(nf); if (!list_empty(&nf->nf_lru)) list_lru_del(&nfsd_file_lru, &nf->nf_lru); return true; } return false; } /* * Return true if the file was unhashed. */ static bool nfsd_file_unhash_and_release_locked(struct nfsd_file *nf, struct list_head *dispose) { lockdep_assert_held(&nfsd_file_hashtbl[nf->nf_hashval].nfb_lock); trace_nfsd_file_unhash_and_release_locked(nf); if (!nfsd_file_unhash(nf)) return false; /* keep final reference for nfsd_file_lru_dispose */ if (refcount_dec_not_one(&nf->nf_ref)) return true; list_add(&nf->nf_lru, dispose); return true; } static void nfsd_file_put_noref(struct nfsd_file *nf) { trace_nfsd_file_put(nf); if (refcount_dec_and_test(&nf->nf_ref)) { WARN_ON(test_bit(NFSD_FILE_HASHED, &nf->nf_flags)); nfsd_file_free(nf); } } void nfsd_file_put(struct nfsd_file *nf) { set_bit(NFSD_FILE_REFERENCED, &nf->nf_flags); if (test_bit(NFSD_FILE_HASHED, &nf->nf_flags) == 0) { nfsd_file_flush(nf); nfsd_file_put_noref(nf); } else if (nf->nf_file) { nfsd_file_put_noref(nf); nfsd_file_schedule_laundrette(); } else nfsd_file_put_noref(nf); if (atomic_long_read(&nfsd_filecache_count) >= NFSD_FILE_LRU_LIMIT) nfsd_file_gc(); } struct nfsd_file * nfsd_file_get(struct nfsd_file *nf) { if (likely(refcount_inc_not_zero(&nf->nf_ref))) return nf; return NULL; } static void nfsd_file_dispose_list(struct list_head *dispose) { struct nfsd_file *nf; while(!list_empty(dispose)) { nf = list_first_entry(dispose, struct nfsd_file, nf_lru); list_del(&nf->nf_lru); nfsd_file_flush(nf); nfsd_file_put_noref(nf); } } static void nfsd_file_dispose_list_sync(struct list_head *dispose) { bool flush = false; struct nfsd_file *nf; while(!list_empty(dispose)) { nf = list_first_entry(dispose, struct nfsd_file, nf_lru); list_del(&nf->nf_lru); nfsd_file_flush(nf); if (!refcount_dec_and_test(&nf->nf_ref)) continue; if (nfsd_file_free(nf)) flush = true; } if (flush) flush_delayed_fput(); } static void nfsd_file_list_remove_disposal(struct list_head *dst, struct nfsd_fcache_disposal *l) { spin_lock(&l->lock); list_splice_init(&l->freeme, dst); spin_unlock(&l->lock); } static void nfsd_file_list_add_disposal(struct list_head *files, struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); struct nfsd_fcache_disposal *l = nn->fcache_disposal; spin_lock(&l->lock); list_splice_tail_init(files, &l->freeme); spin_unlock(&l->lock); queue_work(nfsd_filecache_wq, &l->work); } static void nfsd_file_list_add_pernet(struct list_head *dst, struct list_head *src, struct net *net) { struct nfsd_file *nf, *tmp; list_for_each_entry_safe(nf, tmp, src, nf_lru) { if (nf->nf_net == net) list_move_tail(&nf->nf_lru, dst); } } static void nfsd_file_dispose_list_delayed(struct list_head *dispose) { LIST_HEAD(list); struct nfsd_file *nf; while(!list_empty(dispose)) { nf = list_first_entry(dispose, struct nfsd_file, nf_lru); nfsd_file_list_add_pernet(&list, dispose, nf->nf_net); nfsd_file_list_add_disposal(&list, nf->nf_net); } } /* * Note this can deadlock with nfsd_file_cache_purge. */ static enum lru_status nfsd_file_lru_cb(struct list_head *item, struct list_lru_one *lru, spinlock_t *lock, void *arg) __releases(lock) __acquires(lock) { struct list_head *head = arg; struct nfsd_file *nf = list_entry(item, struct nfsd_file, nf_lru); /* * Do a lockless refcount check. The hashtable holds one reference, so * we look to see if anything else has a reference, or if any have * been put since the shrinker last ran. Those don't get unhashed and * released. * * Note that in the put path, we set the flag and then decrement the * counter. Here we check the counter and then test and clear the flag. * That order is deliberate to ensure that we can do this locklessly. */ if (refcount_read(&nf->nf_ref) > 1) goto out_skip; /* * Don't throw out files that are still undergoing I/O or * that have uncleared errors pending. */ if (nfsd_file_check_writeback(nf)) goto out_skip; if (test_and_clear_bit(NFSD_FILE_REFERENCED, &nf->nf_flags)) goto out_skip; if (!test_and_clear_bit(NFSD_FILE_HASHED, &nf->nf_flags)) goto out_skip; list_lru_isolate_move(lru, &nf->nf_lru, head); return LRU_REMOVED; out_skip: return LRU_SKIP; } static unsigned long nfsd_file_lru_walk_list(struct shrink_control *sc) { LIST_HEAD(head); struct nfsd_file *nf; unsigned long ret; if (sc) ret = list_lru_shrink_walk(&nfsd_file_lru, sc, nfsd_file_lru_cb, &head); else ret = list_lru_walk(&nfsd_file_lru, nfsd_file_lru_cb, &head, LONG_MAX); list_for_each_entry(nf, &head, nf_lru) { spin_lock(&nfsd_file_hashtbl[nf->nf_hashval].nfb_lock); nfsd_file_do_unhash(nf); spin_unlock(&nfsd_file_hashtbl[nf->nf_hashval].nfb_lock); } nfsd_file_dispose_list_delayed(&head); return ret; } static void nfsd_file_gc(void) { nfsd_file_lru_walk_list(NULL); } static void nfsd_file_gc_worker(struct work_struct *work) { nfsd_file_gc(); nfsd_file_schedule_laundrette(); } static unsigned long nfsd_file_lru_count(struct shrinker *s, struct shrink_control *sc) { return list_lru_count(&nfsd_file_lru); } static unsigned long nfsd_file_lru_scan(struct shrinker *s, struct shrink_control *sc) { return nfsd_file_lru_walk_list(sc); } static struct shrinker nfsd_file_shrinker = { .scan_objects = nfsd_file_lru_scan, .count_objects = nfsd_file_lru_count, .seeks = 1, }; static void __nfsd_file_close_inode(struct inode *inode, unsigned int hashval, struct list_head *dispose) { struct nfsd_file *nf; struct hlist_node *tmp; spin_lock(&nfsd_file_hashtbl[hashval].nfb_lock); hlist_for_each_entry_safe(nf, tmp, &nfsd_file_hashtbl[hashval].nfb_head, nf_node) { if (inode == nf->nf_inode) nfsd_file_unhash_and_release_locked(nf, dispose); } spin_unlock(&nfsd_file_hashtbl[hashval].nfb_lock); } /** * nfsd_file_close_inode_sync - attempt to forcibly close a nfsd_file * @inode: inode of the file to attempt to remove * * Walk the whole hash bucket, looking for any files that correspond to "inode". * If any do, then unhash them and put the hashtable reference to them and * destroy any that had their last reference put. Also ensure that any of the * fputs also have their final __fput done as well. */ void nfsd_file_close_inode_sync(struct inode *inode) { unsigned int hashval = (unsigned int)hash_long(inode->i_ino, NFSD_FILE_HASH_BITS); LIST_HEAD(dispose); __nfsd_file_close_inode(inode, hashval, &dispose); trace_nfsd_file_close_inode_sync(inode, hashval, !list_empty(&dispose)); nfsd_file_dispose_list_sync(&dispose); } /** * nfsd_file_close_inode - attempt a delayed close of a nfsd_file * @inode: inode of the file to attempt to remove * * Walk the whole hash bucket, looking for any files that correspond to "inode". * If any do, then unhash them and put the hashtable reference to them and * destroy any that had their last reference put. */ static void nfsd_file_close_inode(struct inode *inode) { unsigned int hashval = (unsigned int)hash_long(inode->i_ino, NFSD_FILE_HASH_BITS); LIST_HEAD(dispose); __nfsd_file_close_inode(inode, hashval, &dispose); trace_nfsd_file_close_inode(inode, hashval, !list_empty(&dispose)); nfsd_file_dispose_list_delayed(&dispose); } /** * nfsd_file_delayed_close - close unused nfsd_files * @work: dummy * * Walk the LRU list and close any entries that have not been used since * the last scan. * * Note this can deadlock with nfsd_file_cache_purge. */ static void nfsd_file_delayed_close(struct work_struct *work) { LIST_HEAD(head); struct nfsd_fcache_disposal *l = container_of(work, struct nfsd_fcache_disposal, work); nfsd_file_list_remove_disposal(&head, l); nfsd_file_dispose_list(&head); } static int nfsd_file_lease_notifier_call(struct notifier_block *nb, unsigned long arg, void *data) { struct file_lock *fl = data; /* Only close files for F_SETLEASE leases */ if (fl->fl_flags & FL_LEASE) nfsd_file_close_inode_sync(file_inode(fl->fl_file)); return 0; } static struct notifier_block nfsd_file_lease_notifier = { .notifier_call = nfsd_file_lease_notifier_call, }; static int nfsd_file_fsnotify_handle_event(struct fsnotify_mark *mark, u32 mask, struct inode *inode, struct inode *dir, const struct qstr *name, u32 cookie) { if (WARN_ON_ONCE(!inode)) return 0; trace_nfsd_file_fsnotify_handle_event(inode, mask); /* Should be no marks on non-regular files */ if (!S_ISREG(inode->i_mode)) { WARN_ON_ONCE(1); return 0; } /* don't close files if this was not the last link */ if (mask & FS_ATTRIB) { if (inode->i_nlink) return 0; } nfsd_file_close_inode(inode); return 0; } static const struct fsnotify_ops nfsd_file_fsnotify_ops = { .handle_inode_event = nfsd_file_fsnotify_handle_event, .free_mark = nfsd_file_mark_free, }; int nfsd_file_cache_init(void) { int ret = -ENOMEM; unsigned int i; clear_bit(NFSD_FILE_SHUTDOWN, &nfsd_file_lru_flags); if (nfsd_file_hashtbl) return 0; nfsd_filecache_wq = alloc_workqueue("nfsd_filecache", 0, 0); if (!nfsd_filecache_wq) goto out; nfsd_file_hashtbl = kvcalloc(NFSD_FILE_HASH_SIZE, sizeof(*nfsd_file_hashtbl), GFP_KERNEL); if (!nfsd_file_hashtbl) { pr_err("nfsd: unable to allocate nfsd_file_hashtbl\n"); goto out_err; } nfsd_file_slab = kmem_cache_create("nfsd_file", sizeof(struct nfsd_file), 0, 0, NULL); if (!nfsd_file_slab) { pr_err("nfsd: unable to create nfsd_file_slab\n"); goto out_err; } nfsd_file_mark_slab = kmem_cache_create("nfsd_file_mark", sizeof(struct nfsd_file_mark), 0, 0, NULL); if (!nfsd_file_mark_slab) { pr_err("nfsd: unable to create nfsd_file_mark_slab\n"); goto out_err; } ret = list_lru_init(&nfsd_file_lru); if (ret) { pr_err("nfsd: failed to init nfsd_file_lru: %d\n", ret); goto out_err; } ret = register_shrinker(&nfsd_file_shrinker); if (ret) { pr_err("nfsd: failed to register nfsd_file_shrinker: %d\n", ret); goto out_lru; } ret = lease_register_notifier(&nfsd_file_lease_notifier); if (ret) { pr_err("nfsd: unable to register lease notifier: %d\n", ret); goto out_shrinker; } nfsd_file_fsnotify_group = fsnotify_alloc_group(&nfsd_file_fsnotify_ops); if (IS_ERR(nfsd_file_fsnotify_group)) { pr_err("nfsd: unable to create fsnotify group: %ld\n", PTR_ERR(nfsd_file_fsnotify_group)); ret = PTR_ERR(nfsd_file_fsnotify_group); nfsd_file_fsnotify_group = NULL; goto out_notifier; } for (i = 0; i < NFSD_FILE_HASH_SIZE; i++) { INIT_HLIST_HEAD(&nfsd_file_hashtbl[i].nfb_head); spin_lock_init(&nfsd_file_hashtbl[i].nfb_lock); } INIT_DELAYED_WORK(&nfsd_filecache_laundrette, nfsd_file_gc_worker); out: return ret; out_notifier: lease_unregister_notifier(&nfsd_file_lease_notifier); out_shrinker: unregister_shrinker(&nfsd_file_shrinker); out_lru: list_lru_destroy(&nfsd_file_lru); out_err: kmem_cache_destroy(nfsd_file_slab); nfsd_file_slab = NULL; kmem_cache_destroy(nfsd_file_mark_slab); nfsd_file_mark_slab = NULL; kvfree(nfsd_file_hashtbl); nfsd_file_hashtbl = NULL; destroy_workqueue(nfsd_filecache_wq); nfsd_filecache_wq = NULL; goto out; } /* * Note this can deadlock with nfsd_file_lru_cb. */ void nfsd_file_cache_purge(struct net *net) { unsigned int i; struct nfsd_file *nf; struct hlist_node *next; LIST_HEAD(dispose); bool del; if (!nfsd_file_hashtbl) return; for (i = 0; i < NFSD_FILE_HASH_SIZE; i++) { struct nfsd_fcache_bucket *nfb = &nfsd_file_hashtbl[i]; spin_lock(&nfb->nfb_lock); hlist_for_each_entry_safe(nf, next, &nfb->nfb_head, nf_node) { if (net && nf->nf_net != net) continue; del = nfsd_file_unhash_and_release_locked(nf, &dispose); /* * Deadlock detected! Something marked this entry as * unhased, but hasn't removed it from the hash list. */ WARN_ON_ONCE(!del); } spin_unlock(&nfb->nfb_lock); nfsd_file_dispose_list(&dispose); } } static struct nfsd_fcache_disposal * nfsd_alloc_fcache_disposal(void) { struct nfsd_fcache_disposal *l; l = kmalloc(sizeof(*l), GFP_KERNEL); if (!l) return NULL; INIT_WORK(&l->work, nfsd_file_delayed_close); spin_lock_init(&l->lock); INIT_LIST_HEAD(&l->freeme); return l; } static void nfsd_free_fcache_disposal(struct nfsd_fcache_disposal *l) { cancel_work_sync(&l->work); nfsd_file_dispose_list(&l->freeme); kfree(l); } static void nfsd_free_fcache_disposal_net(struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); struct nfsd_fcache_disposal *l = nn->fcache_disposal; nfsd_free_fcache_disposal(l); } int nfsd_file_cache_start_net(struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); nn->fcache_disposal = nfsd_alloc_fcache_disposal(); return nn->fcache_disposal ? 0 : -ENOMEM; } void nfsd_file_cache_shutdown_net(struct net *net) { nfsd_file_cache_purge(net); nfsd_free_fcache_disposal_net(net); } void nfsd_file_cache_shutdown(void) { set_bit(NFSD_FILE_SHUTDOWN, &nfsd_file_lru_flags); lease_unregister_notifier(&nfsd_file_lease_notifier); unregister_shrinker(&nfsd_file_shrinker); /* * make sure all callers of nfsd_file_lru_cb are done before * calling nfsd_file_cache_purge */ cancel_delayed_work_sync(&nfsd_filecache_laundrette); nfsd_file_cache_purge(NULL); list_lru_destroy(&nfsd_file_lru); rcu_barrier(); fsnotify_put_group(nfsd_file_fsnotify_group); nfsd_file_fsnotify_group = NULL; kmem_cache_destroy(nfsd_file_slab); nfsd_file_slab = NULL; fsnotify_wait_marks_destroyed(); kmem_cache_destroy(nfsd_file_mark_slab); nfsd_file_mark_slab = NULL; kvfree(nfsd_file_hashtbl); nfsd_file_hashtbl = NULL; destroy_workqueue(nfsd_filecache_wq); nfsd_filecache_wq = NULL; } static bool nfsd_match_cred(const struct cred *c1, const struct cred *c2) { int i; if (!uid_eq(c1->fsuid, c2->fsuid)) return false; if (!gid_eq(c1->fsgid, c2->fsgid)) return false; if (c1->group_info == NULL || c2->group_info == NULL) return c1->group_info == c2->group_info; if (c1->group_info->ngroups != c2->group_info->ngroups) return false; for (i = 0; i < c1->group_info->ngroups; i++) { if (!gid_eq(c1->group_info->gid[i], c2->group_info->gid[i])) return false; } return true; } static struct nfsd_file * nfsd_file_find_locked(struct inode *inode, unsigned int may_flags, unsigned int hashval, struct net *net) { struct nfsd_file *nf; unsigned char need = may_flags & NFSD_FILE_MAY_MASK; hlist_for_each_entry_rcu(nf, &nfsd_file_hashtbl[hashval].nfb_head, nf_node, lockdep_is_held(&nfsd_file_hashtbl[hashval].nfb_lock)) { if (nf->nf_may != need) continue; if (nf->nf_inode != inode) continue; if (nf->nf_net != net) continue; if (!nfsd_match_cred(nf->nf_cred, current_cred())) continue; if (!test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) continue; if (nfsd_file_get(nf) != NULL) return nf; } return NULL; } /** * nfsd_file_is_cached - are there any cached open files for this fh? * @inode: inode of the file to check * * Scan the hashtable for open files that match this fh. Returns true if there * are any, and false if not. */ bool nfsd_file_is_cached(struct inode *inode) { bool ret = false; struct nfsd_file *nf; unsigned int hashval; hashval = (unsigned int)hash_long(inode->i_ino, NFSD_FILE_HASH_BITS); rcu_read_lock(); hlist_for_each_entry_rcu(nf, &nfsd_file_hashtbl[hashval].nfb_head, nf_node) { if (inode == nf->nf_inode) { ret = true; break; } } rcu_read_unlock(); trace_nfsd_file_is_cached(inode, hashval, (int)ret); return ret; } __be32 nfsd_file_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp, unsigned int may_flags, struct nfsd_file **pnf) { __be32 status; struct net *net = SVC_NET(rqstp); struct nfsd_file *nf, *new; struct inode *inode; unsigned int hashval; bool retry = true; /* FIXME: skip this if fh_dentry is already set? */ status = fh_verify(rqstp, fhp, S_IFREG, may_flags|NFSD_MAY_OWNER_OVERRIDE); if (status != nfs_ok) return status; inode = d_inode(fhp->fh_dentry); hashval = (unsigned int)hash_long(inode->i_ino, NFSD_FILE_HASH_BITS); retry: rcu_read_lock(); nf = nfsd_file_find_locked(inode, may_flags, hashval, net); rcu_read_unlock(); if (nf) goto wait_for_construction; new = nfsd_file_alloc(inode, may_flags, hashval, net); if (!new) { trace_nfsd_file_acquire(rqstp, hashval, inode, may_flags, NULL, nfserr_jukebox); return nfserr_jukebox; } spin_lock(&nfsd_file_hashtbl[hashval].nfb_lock); nf = nfsd_file_find_locked(inode, may_flags, hashval, net); if (nf == NULL) goto open_file; spin_unlock(&nfsd_file_hashtbl[hashval].nfb_lock); nfsd_file_slab_free(&new->nf_rcu); wait_for_construction: wait_on_bit(&nf->nf_flags, NFSD_FILE_PENDING, TASK_UNINTERRUPTIBLE); /* Did construction of this file fail? */ if (!test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) { if (!retry) { status = nfserr_jukebox; goto out; } retry = false; nfsd_file_put_noref(nf); goto retry; } this_cpu_inc(nfsd_file_cache_hits); if (!(may_flags & NFSD_MAY_NOT_BREAK_LEASE)) { bool write = (may_flags & NFSD_MAY_WRITE); if (test_bit(NFSD_FILE_BREAK_READ, &nf->nf_flags) || (test_bit(NFSD_FILE_BREAK_WRITE, &nf->nf_flags) && write)) { status = nfserrno(nfsd_open_break_lease( file_inode(nf->nf_file), may_flags)); if (status == nfs_ok) { clear_bit(NFSD_FILE_BREAK_READ, &nf->nf_flags); if (write) clear_bit(NFSD_FILE_BREAK_WRITE, &nf->nf_flags); } } } out: if (status == nfs_ok) { *pnf = nf; } else { nfsd_file_put(nf); nf = NULL; } trace_nfsd_file_acquire(rqstp, hashval, inode, may_flags, nf, status); return status; open_file: nf = new; /* Take reference for the hashtable */ refcount_inc(&nf->nf_ref); __set_bit(NFSD_FILE_HASHED, &nf->nf_flags); __set_bit(NFSD_FILE_PENDING, &nf->nf_flags); list_lru_add(&nfsd_file_lru, &nf->nf_lru); hlist_add_head_rcu(&nf->nf_node, &nfsd_file_hashtbl[hashval].nfb_head); ++nfsd_file_hashtbl[hashval].nfb_count; nfsd_file_hashtbl[hashval].nfb_maxcount = max(nfsd_file_hashtbl[hashval].nfb_maxcount, nfsd_file_hashtbl[hashval].nfb_count); spin_unlock(&nfsd_file_hashtbl[hashval].nfb_lock); if (atomic_long_inc_return(&nfsd_filecache_count) >= NFSD_FILE_LRU_THRESHOLD) nfsd_file_gc(); nf->nf_mark = nfsd_file_mark_find_or_create(nf); if (nf->nf_mark) status = nfsd_open_verified(rqstp, fhp, S_IFREG, may_flags, &nf->nf_file); else status = nfserr_jukebox; /* * If construction failed, or we raced with a call to unlink() * then unhash. */ if (status != nfs_ok || inode->i_nlink == 0) { bool do_free; spin_lock(&nfsd_file_hashtbl[hashval].nfb_lock); do_free = nfsd_file_unhash(nf); spin_unlock(&nfsd_file_hashtbl[hashval].nfb_lock); if (do_free) nfsd_file_put_noref(nf); } clear_bit_unlock(NFSD_FILE_PENDING, &nf->nf_flags); smp_mb__after_atomic(); wake_up_bit(&nf->nf_flags, NFSD_FILE_PENDING); goto out; } /* * Note that fields may be added, removed or reordered in the future. Programs * scraping this file for info should test the labels to ensure they're * getting the correct field. */ static int nfsd_file_cache_stats_show(struct seq_file *m, void *v) { unsigned int i, count = 0, longest = 0; unsigned long hits = 0; /* * No need for spinlocks here since we're not terribly interested in * accuracy. We do take the nfsd_mutex simply to ensure that we * don't end up racing with server shutdown */ mutex_lock(&nfsd_mutex); if (nfsd_file_hashtbl) { for (i = 0; i < NFSD_FILE_HASH_SIZE; i++) { count += nfsd_file_hashtbl[i].nfb_count; longest = max(longest, nfsd_file_hashtbl[i].nfb_count); } } mutex_unlock(&nfsd_mutex); for_each_possible_cpu(i) hits += per_cpu(nfsd_file_cache_hits, i); seq_printf(m, "total entries: %u\n", count); seq_printf(m, "longest chain: %u\n", longest); seq_printf(m, "cache hits: %lu\n", hits); return 0; } int nfsd_file_cache_stats_open(struct inode *inode, struct file *file) { return single_open(file, nfsd_file_cache_stats_show, NULL); }