/* * Copyright (C) 2010-2011 Neil Brown * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. * * This file is released under the GPL. */ #include #include #include "md.h" #include "raid1.h" #include "raid5.h" #include "raid10.h" #include "md-bitmap.h" #include #define DM_MSG_PREFIX "raid" #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ /* * Minimum sectors of free reshape space per raid device */ #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) /* * Minimum journal space 4 MiB in sectors. */ #define MIN_RAID456_JOURNAL_SPACE (4*2048) static bool devices_handle_discard_safely = false; /* * The following flags are used by dm-raid.c to set up the array state. * They must be cleared before md_run is called. */ #define FirstUse 10 /* rdev flag */ struct raid_dev { /* * Two DM devices, one to hold metadata and one to hold the * actual data/parity. The reason for this is to not confuse * ti->len and give more flexibility in altering size and * characteristics. * * While it is possible for this device to be associated * with a different physical device than the data_dev, it * is intended for it to be the same. * |--------- Physical Device ---------| * |- meta_dev -|------ data_dev ------| */ struct dm_dev *meta_dev; struct dm_dev *data_dev; struct md_rdev rdev; }; /* * Bits for establishing rs->ctr_flags * * 1 = no flag value * 2 = flag with value */ #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ /* New for v1.9.0 */ #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ /* New for v1.10.0 */ #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ /* New for v1.11.1 */ #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ /* * Flags for rs->ctr_flags field. */ #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) /* * Definitions of various constructor flags to * be used in checks of valid / invalid flags * per raid level. */ /* Define all any sync flags */ #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) /* Define flags for options without argument (e.g. 'nosync') */ #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ CTR_FLAG_RAID10_USE_NEAR_SETS) /* Define flags for options with one argument (e.g. 'delta_disks +2') */ #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ CTR_FLAG_WRITE_MOSTLY | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_MAX_WRITE_BEHIND | \ CTR_FLAG_STRIPE_CACHE | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_RAID10_COPIES | \ CTR_FLAG_RAID10_FORMAT | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET | \ CTR_FLAG_JOURNAL_DEV | \ CTR_FLAG_JOURNAL_MODE) /* Valid options definitions per raid level... */ /* "raid0" does only accept data offset */ #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ CTR_FLAG_REBUILD | \ CTR_FLAG_WRITE_MOSTLY | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_MAX_WRITE_BEHIND | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET) /* "raid10" does not accept any raid1 or stripe cache options */ #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ CTR_FLAG_REBUILD | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_RAID10_COPIES | \ CTR_FLAG_RAID10_FORMAT | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET | \ CTR_FLAG_RAID10_USE_NEAR_SETS) /* * "raid4/5/6" do not accept any raid1 or raid10 specific options * * "raid6" does not accept "nosync", because it is not guaranteed * that both parity and q-syndrome are being written properly with * any writes */ #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ CTR_FLAG_REBUILD | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_STRIPE_CACHE | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET | \ CTR_FLAG_JOURNAL_DEV | \ CTR_FLAG_JOURNAL_MODE) #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ CTR_FLAG_REBUILD | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_STRIPE_CACHE | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET | \ CTR_FLAG_JOURNAL_DEV | \ CTR_FLAG_JOURNAL_MODE) /* ...valid options definitions per raid level */ /* * Flags for rs->runtime_flags field * (RT_FLAG prefix meaning "runtime flag") * * These are all internal and used to define runtime state, * e.g. to prevent another resume from preresume processing * the raid set all over again. */ #define RT_FLAG_RS_PRERESUMED 0 #define RT_FLAG_RS_RESUMED 1 #define RT_FLAG_RS_BITMAP_LOADED 2 #define RT_FLAG_UPDATE_SBS 3 #define RT_FLAG_RESHAPE_RS 4 #define RT_FLAG_RS_SUSPENDED 5 #define RT_FLAG_RS_IN_SYNC 6 #define RT_FLAG_RS_RESYNCING 7 #define RT_FLAG_RS_GROW 8 /* Array elements of 64 bit needed for rebuild/failed disk bits */ #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) /* * raid set level, layout and chunk sectors backup/restore */ struct rs_layout { int new_level; int new_layout; int new_chunk_sectors; }; struct raid_set { struct dm_target *ti; uint32_t stripe_cache_entries; unsigned long ctr_flags; unsigned long runtime_flags; uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; int raid_disks; int delta_disks; int data_offset; int raid10_copies; int requested_bitmap_chunk_sectors; struct mddev md; struct raid_type *raid_type; sector_t array_sectors; sector_t dev_sectors; /* Optional raid4/5/6 journal device */ struct journal_dev { struct dm_dev *dev; struct md_rdev rdev; int mode; } journal_dev; struct raid_dev dev[]; }; static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) { struct mddev *mddev = &rs->md; l->new_level = mddev->new_level; l->new_layout = mddev->new_layout; l->new_chunk_sectors = mddev->new_chunk_sectors; } static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) { struct mddev *mddev = &rs->md; mddev->new_level = l->new_level; mddev->new_layout = l->new_layout; mddev->new_chunk_sectors = l->new_chunk_sectors; } /* raid10 algorithms (i.e. formats) */ #define ALGORITHM_RAID10_DEFAULT 0 #define ALGORITHM_RAID10_NEAR 1 #define ALGORITHM_RAID10_OFFSET 2 #define ALGORITHM_RAID10_FAR 3 /* Supported raid types and properties. */ static struct raid_type { const char *name; /* RAID algorithm. */ const char *descr; /* Descriptor text for logging. */ const unsigned int parity_devs; /* # of parity devices. */ const unsigned int minimal_devs;/* minimal # of devices in set. */ const unsigned int level; /* RAID level. */ const unsigned int algorithm; /* RAID algorithm. */ } raid_types[] = { {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} }; /* True, if @v is in inclusive range [@min, @max] */ static bool __within_range(long v, long min, long max) { return v >= min && v <= max; } /* All table line arguments are defined here */ static struct arg_name_flag { const unsigned long flag; const char *name; } __arg_name_flags[] = { { CTR_FLAG_SYNC, "sync"}, { CTR_FLAG_NOSYNC, "nosync"}, { CTR_FLAG_REBUILD, "rebuild"}, { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, { CTR_FLAG_REGION_SIZE, "region_size"}, { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, { CTR_FLAG_DATA_OFFSET, "data_offset"}, { CTR_FLAG_DELTA_DISKS, "delta_disks"}, { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, }; /* Return argument name string for given @flag */ static const char *dm_raid_arg_name_by_flag(const uint32_t flag) { if (hweight32(flag) == 1) { struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); while (anf-- > __arg_name_flags) if (flag & anf->flag) return anf->name; } else DMERR("%s called with more than one flag!", __func__); return NULL; } /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ static struct { const int mode; const char *param; } _raid456_journal_mode[] = { { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" }, { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" } }; /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ static int dm_raid_journal_mode_to_md(const char *mode) { int m = ARRAY_SIZE(_raid456_journal_mode); while (m--) if (!strcasecmp(mode, _raid456_journal_mode[m].param)) return _raid456_journal_mode[m].mode; return -EINVAL; } /* Return dm-raid raid4/5/6 journal mode string for @mode */ static const char *md_journal_mode_to_dm_raid(const int mode) { int m = ARRAY_SIZE(_raid456_journal_mode); while (m--) if (mode == _raid456_journal_mode[m].mode) return _raid456_journal_mode[m].param; return "unknown"; } /* * Bool helpers to test for various raid levels of a raid set. * It's level as reported by the superblock rather than * the requested raid_type passed to the constructor. */ /* Return true, if raid set in @rs is raid0 */ static bool rs_is_raid0(struct raid_set *rs) { return !rs->md.level; } /* Return true, if raid set in @rs is raid1 */ static bool rs_is_raid1(struct raid_set *rs) { return rs->md.level == 1; } /* Return true, if raid set in @rs is raid10 */ static bool rs_is_raid10(struct raid_set *rs) { return rs->md.level == 10; } /* Return true, if raid set in @rs is level 6 */ static bool rs_is_raid6(struct raid_set *rs) { return rs->md.level == 6; } /* Return true, if raid set in @rs is level 4, 5 or 6 */ static bool rs_is_raid456(struct raid_set *rs) { return __within_range(rs->md.level, 4, 6); } /* Return true, if raid set in @rs is reshapable */ static bool __is_raid10_far(int layout); static bool rs_is_reshapable(struct raid_set *rs) { return rs_is_raid456(rs) || (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); } /* Return true, if raid set in @rs is recovering */ static bool rs_is_recovering(struct raid_set *rs) { return rs->md.recovery_cp < rs->md.dev_sectors; } /* Return true, if raid set in @rs is reshaping */ static bool rs_is_reshaping(struct raid_set *rs) { return rs->md.reshape_position != MaxSector; } /* * bool helpers to test for various raid levels of a raid type @rt */ /* Return true, if raid type in @rt is raid0 */ static bool rt_is_raid0(struct raid_type *rt) { return !rt->level; } /* Return true, if raid type in @rt is raid1 */ static bool rt_is_raid1(struct raid_type *rt) { return rt->level == 1; } /* Return true, if raid type in @rt is raid10 */ static bool rt_is_raid10(struct raid_type *rt) { return rt->level == 10; } /* Return true, if raid type in @rt is raid4/5 */ static bool rt_is_raid45(struct raid_type *rt) { return __within_range(rt->level, 4, 5); } /* Return true, if raid type in @rt is raid6 */ static bool rt_is_raid6(struct raid_type *rt) { return rt->level == 6; } /* Return true, if raid type in @rt is raid4/5/6 */ static bool rt_is_raid456(struct raid_type *rt) { return __within_range(rt->level, 4, 6); } /* END: raid level bools */ /* Return valid ctr flags for the raid level of @rs */ static unsigned long __valid_flags(struct raid_set *rs) { if (rt_is_raid0(rs->raid_type)) return RAID0_VALID_FLAGS; else if (rt_is_raid1(rs->raid_type)) return RAID1_VALID_FLAGS; else if (rt_is_raid10(rs->raid_type)) return RAID10_VALID_FLAGS; else if (rt_is_raid45(rs->raid_type)) return RAID45_VALID_FLAGS; else if (rt_is_raid6(rs->raid_type)) return RAID6_VALID_FLAGS; return 0; } /* * Check for valid flags set on @rs * * Has to be called after parsing of the ctr flags! */ static int rs_check_for_valid_flags(struct raid_set *rs) { if (rs->ctr_flags & ~__valid_flags(rs)) { rs->ti->error = "Invalid flags combination"; return -EINVAL; } return 0; } /* MD raid10 bit definitions and helpers */ #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ /* Return md raid10 near copies for @layout */ static unsigned int __raid10_near_copies(int layout) { return layout & 0xFF; } /* Return md raid10 far copies for @layout */ static unsigned int __raid10_far_copies(int layout) { return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); } /* Return true if md raid10 offset for @layout */ static bool __is_raid10_offset(int layout) { return !!(layout & RAID10_OFFSET); } /* Return true if md raid10 near for @layout */ static bool __is_raid10_near(int layout) { return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; } /* Return true if md raid10 far for @layout */ static bool __is_raid10_far(int layout) { return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; } /* Return md raid10 layout string for @layout */ static const char *raid10_md_layout_to_format(int layout) { /* * Bit 16 stands for "offset" * (i.e. adjacent stripes hold copies) * * Refer to MD's raid10.c for details */ if (__is_raid10_offset(layout)) return "offset"; if (__raid10_near_copies(layout) > 1) return "near"; if (__raid10_far_copies(layout) > 1) return "far"; return "unknown"; } /* Return md raid10 algorithm for @name */ static int raid10_name_to_format(const char *name) { if (!strcasecmp(name, "near")) return ALGORITHM_RAID10_NEAR; else if (!strcasecmp(name, "offset")) return ALGORITHM_RAID10_OFFSET; else if (!strcasecmp(name, "far")) return ALGORITHM_RAID10_FAR; return -EINVAL; } /* Return md raid10 copies for @layout */ static unsigned int raid10_md_layout_to_copies(int layout) { return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); } /* Return md raid10 format id for @format string */ static int raid10_format_to_md_layout(struct raid_set *rs, unsigned int algorithm, unsigned int copies) { unsigned int n = 1, f = 1, r = 0; /* * MD resilienece flaw: * * enabling use_far_sets for far/offset formats causes copies * to be colocated on the same devs together with their origins! * * -> disable it for now in the definition above */ if (algorithm == ALGORITHM_RAID10_DEFAULT || algorithm == ALGORITHM_RAID10_NEAR) n = copies; else if (algorithm == ALGORITHM_RAID10_OFFSET) { f = copies; r = RAID10_OFFSET; if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) r |= RAID10_USE_FAR_SETS; } else if (algorithm == ALGORITHM_RAID10_FAR) { f = copies; if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) r |= RAID10_USE_FAR_SETS; } else return -EINVAL; return r | (f << RAID10_FAR_COPIES_SHIFT) | n; } /* END: MD raid10 bit definitions and helpers */ /* Check for any of the raid10 algorithms */ static bool __got_raid10(struct raid_type *rtp, const int layout) { if (rtp->level == 10) { switch (rtp->algorithm) { case ALGORITHM_RAID10_DEFAULT: case ALGORITHM_RAID10_NEAR: return __is_raid10_near(layout); case ALGORITHM_RAID10_OFFSET: return __is_raid10_offset(layout); case ALGORITHM_RAID10_FAR: return __is_raid10_far(layout); default: break; } } return false; } /* Return raid_type for @name */ static struct raid_type *get_raid_type(const char *name) { struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); while (rtp-- > raid_types) if (!strcasecmp(rtp->name, name)) return rtp; return NULL; } /* Return raid_type for @name based derived from @level and @layout */ static struct raid_type *get_raid_type_by_ll(const int level, const int layout) { struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); while (rtp-- > raid_types) { /* RAID10 special checks based on @layout flags/properties */ if (rtp->level == level && (__got_raid10(rtp, layout) || rtp->algorithm == layout)) return rtp; } return NULL; } /* Adjust rdev sectors */ static void rs_set_rdev_sectors(struct raid_set *rs) { struct mddev *mddev = &rs->md; struct md_rdev *rdev; /* * raid10 sets rdev->sector to the device size, which * is unintended in case of out-of-place reshaping */ rdev_for_each(rdev, mddev) if (!test_bit(Journal, &rdev->flags)) rdev->sectors = mddev->dev_sectors; } /* * Change bdev capacity of @rs in case of a disk add/remove reshape */ static void rs_set_capacity(struct raid_set *rs) { struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); set_capacity_and_notify(gendisk, rs->md.array_sectors); } /* * Set the mddev properties in @rs to the current * ones retrieved from the freshest superblock */ static void rs_set_cur(struct raid_set *rs) { struct mddev *mddev = &rs->md; mddev->new_level = mddev->level; mddev->new_layout = mddev->layout; mddev->new_chunk_sectors = mddev->chunk_sectors; } /* * Set the mddev properties in @rs to the new * ones requested by the ctr */ static void rs_set_new(struct raid_set *rs) { struct mddev *mddev = &rs->md; mddev->level = mddev->new_level; mddev->layout = mddev->new_layout; mddev->chunk_sectors = mddev->new_chunk_sectors; mddev->raid_disks = rs->raid_disks; mddev->delta_disks = 0; } static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned int raid_devs) { unsigned int i; struct raid_set *rs; if (raid_devs <= raid_type->parity_devs) { ti->error = "Insufficient number of devices"; return ERR_PTR(-EINVAL); } rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); if (!rs) { ti->error = "Cannot allocate raid context"; return ERR_PTR(-ENOMEM); } mddev_init(&rs->md); rs->raid_disks = raid_devs; rs->delta_disks = 0; rs->ti = ti; rs->raid_type = raid_type; rs->stripe_cache_entries = 256; rs->md.raid_disks = raid_devs; rs->md.level = raid_type->level; rs->md.new_level = rs->md.level; rs->md.layout = raid_type->algorithm; rs->md.new_layout = rs->md.layout; rs->md.delta_disks = 0; rs->md.recovery_cp = MaxSector; for (i = 0; i < raid_devs; i++) md_rdev_init(&rs->dev[i].rdev); /* * Remaining items to be initialized by further RAID params: * rs->md.persistent * rs->md.external * rs->md.chunk_sectors * rs->md.new_chunk_sectors * rs->md.dev_sectors */ return rs; } /* Free all @rs allocations */ static void raid_set_free(struct raid_set *rs) { int i; if (rs->journal_dev.dev) { md_rdev_clear(&rs->journal_dev.rdev); dm_put_device(rs->ti, rs->journal_dev.dev); } for (i = 0; i < rs->raid_disks; i++) { if (rs->dev[i].meta_dev) dm_put_device(rs->ti, rs->dev[i].meta_dev); md_rdev_clear(&rs->dev[i].rdev); if (rs->dev[i].data_dev) dm_put_device(rs->ti, rs->dev[i].data_dev); } kfree(rs); } /* * For every device we have two words * : meta device name or '-' if missing * : data device name or '-' if missing * * The following are permitted: * - - * - * * * The following is not allowed: * - * * This code parses those words. If there is a failure, * the caller must use raid_set_free() to unwind the operations. */ static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) { int i; int rebuild = 0; int metadata_available = 0; int r = 0; const char *arg; /* Put off the number of raid devices argument to get to dev pairs */ arg = dm_shift_arg(as); if (!arg) return -EINVAL; for (i = 0; i < rs->raid_disks; i++) { rs->dev[i].rdev.raid_disk = i; rs->dev[i].meta_dev = NULL; rs->dev[i].data_dev = NULL; /* * There are no offsets initially. * Out of place reshape will set them accordingly. */ rs->dev[i].rdev.data_offset = 0; rs->dev[i].rdev.new_data_offset = 0; rs->dev[i].rdev.mddev = &rs->md; arg = dm_shift_arg(as); if (!arg) return -EINVAL; if (strcmp(arg, "-")) { r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), &rs->dev[i].meta_dev); if (r) { rs->ti->error = "RAID metadata device lookup failure"; return r; } rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); if (!rs->dev[i].rdev.sb_page) { rs->ti->error = "Failed to allocate superblock page"; return -ENOMEM; } } arg = dm_shift_arg(as); if (!arg) return -EINVAL; if (!strcmp(arg, "-")) { if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && (!rs->dev[i].rdev.recovery_offset)) { rs->ti->error = "Drive designated for rebuild not specified"; return -EINVAL; } if (rs->dev[i].meta_dev) { rs->ti->error = "No data device supplied with metadata device"; return -EINVAL; } continue; } r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), &rs->dev[i].data_dev); if (r) { rs->ti->error = "RAID device lookup failure"; return r; } if (rs->dev[i].meta_dev) { metadata_available = 1; rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; } rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) rebuild++; } if (rs->journal_dev.dev) list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); if (metadata_available) { rs->md.external = 0; rs->md.persistent = 1; rs->md.major_version = 2; } else if (rebuild && !rs->md.recovery_cp) { /* * Without metadata, we will not be able to tell if the array * is in-sync or not - we must assume it is not. Therefore, * it is impossible to rebuild a drive. * * Even if there is metadata, the on-disk information may * indicate that the array is not in-sync and it will then * fail at that time. * * User could specify 'nosync' option if desperate. */ rs->ti->error = "Unable to rebuild drive while array is not in-sync"; return -EINVAL; } return 0; } /* * validate_region_size * @rs * @region_size: region size in sectors. If 0, pick a size (4MiB default). * * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. * * Returns: 0 on success, -EINVAL on failure. */ static int validate_region_size(struct raid_set *rs, unsigned long region_size) { unsigned long min_region_size = rs->ti->len / (1 << 21); if (rs_is_raid0(rs)) return 0; if (!region_size) { /* * Choose a reasonable default. All figures in sectors. */ if (min_region_size > (1 << 13)) { /* If not a power of 2, make it the next power of 2 */ region_size = roundup_pow_of_two(min_region_size); DMINFO("Choosing default region size of %lu sectors", region_size); } else { DMINFO("Choosing default region size of 4MiB"); region_size = 1 << 13; /* sectors */ } } else { /* * Validate user-supplied value. */ if (region_size > rs->ti->len) { rs->ti->error = "Supplied region size is too large"; return -EINVAL; } if (region_size < min_region_size) { DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", region_size, min_region_size); rs->ti->error = "Supplied region size is too small"; return -EINVAL; } if (!is_power_of_2(region_size)) { rs->ti->error = "Region size is not a power of 2"; return -EINVAL; } if (region_size < rs->md.chunk_sectors) { rs->ti->error = "Region size is smaller than the chunk size"; return -EINVAL; } } /* * Convert sectors to bytes. */ rs->md.bitmap_info.chunksize = to_bytes(region_size); return 0; } /* * validate_raid_redundancy * @rs * * Determine if there are enough devices in the array that haven't * failed (or are being rebuilt) to form a usable array. * * Returns: 0 on success, -EINVAL on failure. */ static int validate_raid_redundancy(struct raid_set *rs) { unsigned int i, rebuild_cnt = 0; unsigned int rebuilds_per_group = 0, copies, raid_disks; unsigned int group_size, last_group_start; for (i = 0; i < rs->raid_disks; i++) if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) && ((!test_bit(In_sync, &rs->dev[i].rdev.flags) || !rs->dev[i].rdev.sb_page))) rebuild_cnt++; switch (rs->md.level) { case 0: break; case 1: if (rebuild_cnt >= rs->md.raid_disks) goto too_many; break; case 4: case 5: case 6: if (rebuild_cnt > rs->raid_type->parity_devs) goto too_many; break; case 10: copies = raid10_md_layout_to_copies(rs->md.new_layout); if (copies < 2) { DMERR("Bogus raid10 data copies < 2!"); return -EINVAL; } if (rebuild_cnt < copies) break; /* * It is possible to have a higher rebuild count for RAID10, * as long as the failed devices occur in different mirror * groups (i.e. different stripes). * * When checking "near" format, make sure no adjacent devices * have failed beyond what can be handled. In addition to the * simple case where the number of devices is a multiple of the * number of copies, we must also handle cases where the number * of devices is not a multiple of the number of copies. * E.g. dev1 dev2 dev3 dev4 dev5 * A A B B C * C D D E E */ raid_disks = min(rs->raid_disks, rs->md.raid_disks); if (__is_raid10_near(rs->md.new_layout)) { for (i = 0; i < raid_disks; i++) { if (!(i % copies)) rebuilds_per_group = 0; if ((!rs->dev[i].rdev.sb_page || !test_bit(In_sync, &rs->dev[i].rdev.flags)) && (++rebuilds_per_group >= copies)) goto too_many; } break; } /* * When checking "far" and "offset" formats, we need to ensure * that the device that holds its copy is not also dead or * being rebuilt. (Note that "far" and "offset" formats only * support two copies right now. These formats also only ever * use the 'use_far_sets' variant.) * * This check is somewhat complicated by the need to account * for arrays that are not a multiple of (far) copies. This * results in the need to treat the last (potentially larger) * set differently. */ group_size = (raid_disks / copies); last_group_start = (raid_disks / group_size) - 1; last_group_start *= group_size; for (i = 0; i < raid_disks; i++) { if (!(i % copies) && !(i > last_group_start)) rebuilds_per_group = 0; if ((!rs->dev[i].rdev.sb_page || !test_bit(In_sync, &rs->dev[i].rdev.flags)) && (++rebuilds_per_group >= copies)) goto too_many; } break; default: if (rebuild_cnt) return -EINVAL; } return 0; too_many: return -EINVAL; } /* * Possible arguments are... * [optional_args] * * Argument definitions * The number of sectors per disk that * will form the "stripe" * [[no]sync] Force or prevent recovery of the * entire array * [rebuild ] Rebuild the drive indicated by the index * [daemon_sleep ] Time between bitmap daemon work to * clear bits * [min_recovery_rate ] Throttle RAID initialization * [max_recovery_rate ] Throttle RAID initialization * [write_mostly ] Indicate a write mostly drive via index * [max_write_behind ] See '-write-behind=' (man mdadm) * [stripe_cache ] Stripe cache size for higher RAIDs * [region_size ] Defines granularity of bitmap * [journal_dev ] raid4/5/6 journaling deviice * (i.e. write hole closing log) * * RAID10-only options: * [raid10_copies <# copies>] Number of copies. (Default: 2) * [raid10_format ] Layout algorithm. (Default: near) */ static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, unsigned int num_raid_params) { int value, raid10_format = ALGORITHM_RAID10_DEFAULT; unsigned int raid10_copies = 2; unsigned int i, write_mostly = 0; unsigned int region_size = 0; sector_t max_io_len; const char *arg, *key; struct raid_dev *rd; struct raid_type *rt = rs->raid_type; arg = dm_shift_arg(as); num_raid_params--; /* Account for chunk_size argument */ if (kstrtoint(arg, 10, &value) < 0) { rs->ti->error = "Bad numerical argument given for chunk_size"; return -EINVAL; } /* * First, parse the in-order required arguments * "chunk_size" is the only argument of this type. */ if (rt_is_raid1(rt)) { if (value) DMERR("Ignoring chunk size parameter for RAID 1"); value = 0; } else if (!is_power_of_2(value)) { rs->ti->error = "Chunk size must be a power of 2"; return -EINVAL; } else if (value < 8) { rs->ti->error = "Chunk size value is too small"; return -EINVAL; } rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; /* * We set each individual device as In_sync with a completed * 'recovery_offset'. If there has been a device failure or * replacement then one of the following cases applies: * * 1) User specifies 'rebuild'. * - Device is reset when param is read. * 2) A new device is supplied. * - No matching superblock found, resets device. * 3) Device failure was transient and returns on reload. * - Failure noticed, resets device for bitmap replay. * 4) Device hadn't completed recovery after previous failure. * - Superblock is read and overrides recovery_offset. * * What is found in the superblocks of the devices is always * authoritative, unless 'rebuild' or '[no]sync' was specified. */ for (i = 0; i < rs->raid_disks; i++) { set_bit(In_sync, &rs->dev[i].rdev.flags); rs->dev[i].rdev.recovery_offset = MaxSector; } /* * Second, parse the unordered optional arguments */ for (i = 0; i < num_raid_params; i++) { key = dm_shift_arg(as); if (!key) { rs->ti->error = "Not enough raid parameters given"; return -EINVAL; } if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { rs->ti->error = "Only one 'nosync' argument allowed"; return -EINVAL; } continue; } if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { rs->ti->error = "Only one 'sync' argument allowed"; return -EINVAL; } continue; } if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; return -EINVAL; } continue; } arg = dm_shift_arg(as); i++; /* Account for the argument pairs */ if (!arg) { rs->ti->error = "Wrong number of raid parameters given"; return -EINVAL; } /* * Parameters that take a string value are checked here. */ /* "raid10_format {near|offset|far} */ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { rs->ti->error = "Only one 'raid10_format' argument pair allowed"; return -EINVAL; } if (!rt_is_raid10(rt)) { rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; return -EINVAL; } raid10_format = raid10_name_to_format(arg); if (raid10_format < 0) { rs->ti->error = "Invalid 'raid10_format' value given"; return raid10_format; } continue; } /* "journal_dev " */ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { int r; struct md_rdev *jdev; if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; return -EINVAL; } if (!rt_is_raid456(rt)) { rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; return -EINVAL; } r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), &rs->journal_dev.dev); if (r) { rs->ti->error = "raid4/5/6 journal device lookup failure"; return r; } jdev = &rs->journal_dev.rdev; md_rdev_init(jdev); jdev->mddev = &rs->md; jdev->bdev = rs->journal_dev.dev->bdev; jdev->sectors = bdev_nr_sectors(jdev->bdev); if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { rs->ti->error = "No space for raid4/5/6 journal"; return -ENOSPC; } rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; set_bit(Journal, &jdev->flags); continue; } /* "journal_mode " ("journal_dev" mandatory!) */ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { int r; if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; return -EINVAL; } if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; return -EINVAL; } r = dm_raid_journal_mode_to_md(arg); if (r < 0) { rs->ti->error = "Invalid 'journal_mode' argument"; return r; } rs->journal_dev.mode = r; continue; } /* * Parameters with number values from here on. */ if (kstrtoint(arg, 10, &value) < 0) { rs->ti->error = "Bad numerical argument given in raid params"; return -EINVAL; } if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { /* * "rebuild" is being passed in by userspace to provide * indexes of replaced devices and to set up additional * devices on raid level takeover. */ if (!__within_range(value, 0, rs->raid_disks - 1)) { rs->ti->error = "Invalid rebuild index given"; return -EINVAL; } if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { rs->ti->error = "rebuild for this index already given"; return -EINVAL; } rd = rs->dev + value; clear_bit(In_sync, &rd->rdev.flags); clear_bit(Faulty, &rd->rdev.flags); rd->rdev.recovery_offset = 0; set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { if (!rt_is_raid1(rt)) { rs->ti->error = "write_mostly option is only valid for RAID1"; return -EINVAL; } if (!__within_range(value, 0, rs->md.raid_disks - 1)) { rs->ti->error = "Invalid write_mostly index given"; return -EINVAL; } write_mostly++; set_bit(WriteMostly, &rs->dev[value].rdev.flags); set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { if (!rt_is_raid1(rt)) { rs->ti->error = "max_write_behind option is only valid for RAID1"; return -EINVAL; } if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { rs->ti->error = "Only one max_write_behind argument pair allowed"; return -EINVAL; } /* * In device-mapper, we specify things in sectors, but * MD records this value in kB */ if (value < 0 || value / 2 > COUNTER_MAX) { rs->ti->error = "Max write-behind limit out of range"; return -EINVAL; } rs->md.bitmap_info.max_write_behind = value / 2; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { rs->ti->error = "Only one daemon_sleep argument pair allowed"; return -EINVAL; } if (value < 0) { rs->ti->error = "daemon sleep period out of range"; return -EINVAL; } rs->md.bitmap_info.daemon_sleep = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { /* Userspace passes new data_offset after having extended the the data image LV */ if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { rs->ti->error = "Only one data_offset argument pair allowed"; return -EINVAL; } /* Ensure sensible data offset */ if (value < 0 || (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { rs->ti->error = "Bogus data_offset value"; return -EINVAL; } rs->data_offset = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { /* Define the +/-# of disks to add to/remove from the given raid set */ if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { rs->ti->error = "Only one delta_disks argument pair allowed"; return -EINVAL; } /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { rs->ti->error = "Too many delta_disk requested"; return -EINVAL; } rs->delta_disks = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { rs->ti->error = "Only one stripe_cache argument pair allowed"; return -EINVAL; } if (!rt_is_raid456(rt)) { rs->ti->error = "Inappropriate argument: stripe_cache"; return -EINVAL; } if (value < 0) { rs->ti->error = "Bogus stripe cache entries value"; return -EINVAL; } rs->stripe_cache_entries = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { rs->ti->error = "Only one min_recovery_rate argument pair allowed"; return -EINVAL; } if (value < 0) { rs->ti->error = "min_recovery_rate out of range"; return -EINVAL; } rs->md.sync_speed_min = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { rs->ti->error = "Only one max_recovery_rate argument pair allowed"; return -EINVAL; } if (value < 0) { rs->ti->error = "max_recovery_rate out of range"; return -EINVAL; } rs->md.sync_speed_max = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { rs->ti->error = "Only one region_size argument pair allowed"; return -EINVAL; } region_size = value; rs->requested_bitmap_chunk_sectors = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { rs->ti->error = "Only one raid10_copies argument pair allowed"; return -EINVAL; } if (!__within_range(value, 2, rs->md.raid_disks)) { rs->ti->error = "Bad value for 'raid10_copies'"; return -EINVAL; } raid10_copies = value; } else { DMERR("Unable to parse RAID parameter: %s", key); rs->ti->error = "Unable to parse RAID parameter"; return -EINVAL; } } if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { rs->ti->error = "sync and nosync are mutually exclusive"; return -EINVAL; } if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; return -EINVAL; } if (write_mostly >= rs->md.raid_disks) { rs->ti->error = "Can't set all raid1 devices to write_mostly"; return -EINVAL; } if (rs->md.sync_speed_max && rs->md.sync_speed_min > rs->md.sync_speed_max) { rs->ti->error = "Bogus recovery rates"; return -EINVAL; } if (validate_region_size(rs, region_size)) return -EINVAL; if (rs->md.chunk_sectors) max_io_len = rs->md.chunk_sectors; else max_io_len = region_size; if (dm_set_target_max_io_len(rs->ti, max_io_len)) return -EINVAL; if (rt_is_raid10(rt)) { if (raid10_copies > rs->md.raid_disks) { rs->ti->error = "Not enough devices to satisfy specification"; return -EINVAL; } rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); if (rs->md.new_layout < 0) { rs->ti->error = "Error getting raid10 format"; return rs->md.new_layout; } rt = get_raid_type_by_ll(10, rs->md.new_layout); if (!rt) { rs->ti->error = "Failed to recognize new raid10 layout"; return -EINVAL; } if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || rt->algorithm == ALGORITHM_RAID10_NEAR) && test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; return -EINVAL; } } rs->raid10_copies = raid10_copies; /* Assume there are no metadata devices until the drives are parsed */ rs->md.persistent = 0; rs->md.external = 1; /* Check, if any invalid ctr arguments have been passed in for the raid level */ return rs_check_for_valid_flags(rs); } /* Set raid4/5/6 cache size */ static int rs_set_raid456_stripe_cache(struct raid_set *rs) { int r; struct r5conf *conf; struct mddev *mddev = &rs->md; uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; uint32_t nr_stripes = rs->stripe_cache_entries; if (!rt_is_raid456(rs->raid_type)) { rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; return -EINVAL; } if (nr_stripes < min_stripes) { DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", nr_stripes, min_stripes); nr_stripes = min_stripes; } conf = mddev->private; if (!conf) { rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; return -EINVAL; } /* Try setting number of stripes in raid456 stripe cache */ if (conf->min_nr_stripes != nr_stripes) { r = raid5_set_cache_size(mddev, nr_stripes); if (r) { rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; return r; } DMINFO("%u stripe cache entries", nr_stripes); } return 0; } /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ static unsigned int mddev_data_stripes(struct raid_set *rs) { return rs->md.raid_disks - rs->raid_type->parity_devs; } /* Return # of data stripes of @rs (i.e. as of ctr) */ static unsigned int rs_data_stripes(struct raid_set *rs) { return rs->raid_disks - rs->raid_type->parity_devs; } /* * Retrieve rdev->sectors from any valid raid device of @rs * to allow userpace to pass in arbitray "- -" device tupples. */ static sector_t __rdev_sectors(struct raid_set *rs) { int i; for (i = 0; i < rs->raid_disks; i++) { struct md_rdev *rdev = &rs->dev[i].rdev; if (!test_bit(Journal, &rdev->flags) && rdev->bdev && rdev->sectors) return rdev->sectors; } return 0; } /* Check that calculated dev_sectors fits all component devices. */ static int _check_data_dev_sectors(struct raid_set *rs) { sector_t ds = ~0; struct md_rdev *rdev; rdev_for_each(rdev, &rs->md) if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { ds = min(ds, bdev_nr_sectors(rdev->bdev)); if (ds < rs->md.dev_sectors) { rs->ti->error = "Component device(s) too small"; return -EINVAL; } } return 0; } /* Calculate the sectors per device and per array used for @rs */ static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) { int delta_disks; unsigned int data_stripes; sector_t array_sectors = sectors, dev_sectors = sectors; struct mddev *mddev = &rs->md; if (use_mddev) { delta_disks = mddev->delta_disks; data_stripes = mddev_data_stripes(rs); } else { delta_disks = rs->delta_disks; data_stripes = rs_data_stripes(rs); } /* Special raid1 case w/o delta_disks support (yet) */ if (rt_is_raid1(rs->raid_type)) ; else if (rt_is_raid10(rs->raid_type)) { if (rs->raid10_copies < 2 || delta_disks < 0) { rs->ti->error = "Bogus raid10 data copies or delta disks"; return -EINVAL; } dev_sectors *= rs->raid10_copies; if (sector_div(dev_sectors, data_stripes)) goto bad; array_sectors = (data_stripes + delta_disks) * dev_sectors; if (sector_div(array_sectors, rs->raid10_copies)) goto bad; } else if (sector_div(dev_sectors, data_stripes)) goto bad; else /* Striped layouts */ array_sectors = (data_stripes + delta_disks) * dev_sectors; mddev->array_sectors = array_sectors; mddev->dev_sectors = dev_sectors; rs_set_rdev_sectors(rs); return _check_data_dev_sectors(rs); bad: rs->ti->error = "Target length not divisible by number of data devices"; return -EINVAL; } /* Setup recovery on @rs */ static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) { /* raid0 does not recover */ if (rs_is_raid0(rs)) rs->md.recovery_cp = MaxSector; /* * A raid6 set has to be recovered either * completely or for the grown part to * ensure proper parity and Q-Syndrome */ else if (rs_is_raid6(rs)) rs->md.recovery_cp = dev_sectors; /* * Other raid set types may skip recovery * depending on the 'nosync' flag. */ else rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) ? MaxSector : dev_sectors; } static void do_table_event(struct work_struct *ws) { struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); smp_rmb(); /* Make sure we access most actual mddev properties */ if (!rs_is_reshaping(rs)) { if (rs_is_raid10(rs)) rs_set_rdev_sectors(rs); rs_set_capacity(rs); } dm_table_event(rs->ti->table); } /* * Make sure a valid takover (level switch) is being requested on @rs * * Conversions of raid sets from one MD personality to another * have to conform to restrictions which are enforced here. */ static int rs_check_takeover(struct raid_set *rs) { struct mddev *mddev = &rs->md; unsigned int near_copies; if (rs->md.degraded) { rs->ti->error = "Can't takeover degraded raid set"; return -EPERM; } if (rs_is_reshaping(rs)) { rs->ti->error = "Can't takeover reshaping raid set"; return -EPERM; } switch (mddev->level) { case 0: /* raid0 -> raid1/5 with one disk */ if ((mddev->new_level == 1 || mddev->new_level == 5) && mddev->raid_disks == 1) return 0; /* raid0 -> raid10 */ if (mddev->new_level == 10 && !(rs->raid_disks % mddev->raid_disks)) return 0; /* raid0 with multiple disks -> raid4/5/6 */ if (__within_range(mddev->new_level, 4, 6) && mddev->new_layout == ALGORITHM_PARITY_N && mddev->raid_disks > 1) return 0; break; case 10: /* Can't takeover raid10_offset! */ if (__is_raid10_offset(mddev->layout)) break; near_copies = __raid10_near_copies(mddev->layout); /* raid10* -> raid0 */ if (mddev->new_level == 0) { /* Can takeover raid10_near with raid disks divisable by data copies! */ if (near_copies > 1 && !(mddev->raid_disks % near_copies)) { mddev->raid_disks /= near_copies; mddev->delta_disks = mddev->raid_disks; return 0; } /* Can takeover raid10_far */ if (near_copies == 1 && __raid10_far_copies(mddev->layout) > 1) return 0; break; } /* raid10_{near,far} -> raid1 */ if (mddev->new_level == 1 && max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) return 0; /* raid10_{near,far} with 2 disks -> raid4/5 */ if (__within_range(mddev->new_level, 4, 5) && mddev->raid_disks == 2) return 0; break; case 1: /* raid1 with 2 disks -> raid4/5 */ if (__within_range(mddev->new_level, 4, 5) && mddev->raid_disks == 2) { mddev->degraded = 1; return 0; } /* raid1 -> raid0 */ if (mddev->new_level == 0 && mddev->raid_disks == 1) return 0; /* raid1 -> raid10 */ if (mddev->new_level == 10) return 0; break; case 4: /* raid4 -> raid0 */ if (mddev->new_level == 0) return 0; /* raid4 -> raid1/5 with 2 disks */ if ((mddev->new_level == 1 || mddev->new_level == 5) && mddev->raid_disks == 2) return 0; /* raid4 -> raid5/6 with parity N */ if (__within_range(mddev->new_level, 5, 6) && mddev->layout == ALGORITHM_PARITY_N) return 0; break; case 5: /* raid5 with parity N -> raid0 */ if (mddev->new_level == 0 && mddev->layout == ALGORITHM_PARITY_N) return 0; /* raid5 with parity N -> raid4 */ if (mddev->new_level == 4 && mddev->layout == ALGORITHM_PARITY_N) return 0; /* raid5 with 2 disks -> raid1/4/10 */ if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && mddev->raid_disks == 2) return 0; /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ if (mddev->new_level == 6 && ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) return 0; break; case 6: /* raid6 with parity N -> raid0 */ if (mddev->new_level == 0 && mddev->layout == ALGORITHM_PARITY_N) return 0; /* raid6 with parity N -> raid4 */ if (mddev->new_level == 4 && mddev->layout == ALGORITHM_PARITY_N) return 0; /* raid6_*_n with Q-Syndrome N -> raid5_* */ if (mddev->new_level == 5 && ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) return 0; break; default: break; } rs->ti->error = "takeover not possible"; return -EINVAL; } /* True if @rs requested to be taken over */ static bool rs_takeover_requested(struct raid_set *rs) { return rs->md.new_level != rs->md.level; } /* True if layout is set to reshape. */ static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev) { return (use_mddev ? rs->md.delta_disks : rs->delta_disks) || rs->md.new_layout != rs->md.layout || rs->md.new_chunk_sectors != rs->md.chunk_sectors; } /* True if @rs is requested to reshape by ctr */ static bool rs_reshape_requested(struct raid_set *rs) { bool change; struct mddev *mddev = &rs->md; if (rs_takeover_requested(rs)) return false; if (rs_is_raid0(rs)) return false; change = rs_is_layout_change(rs, false); /* Historical case to support raid1 reshape without delta disks */ if (rs_is_raid1(rs)) { if (rs->delta_disks) return !!rs->delta_disks; return !change && mddev->raid_disks != rs->raid_disks; } if (rs_is_raid10(rs)) return change && !__is_raid10_far(mddev->new_layout) && rs->delta_disks >= 0; return change; } /* Features */ #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ /* State flags for sb->flags */ #define SB_FLAG_RESHAPE_ACTIVE 0x1 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 /* * This structure is never routinely used by userspace, unlike md superblocks. * Devices with this superblock should only ever be accessed via device-mapper. */ #define DM_RAID_MAGIC 0x64526D44 struct dm_raid_superblock { __le32 magic; /* "DmRd" */ __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ __le32 array_position; /* The position of this drive in the raid set */ __le64 events; /* Incremented by md when superblock updated */ __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ /* indicate failures (see extension below) */ /* * This offset tracks the progress of the repair or replacement of * an individual drive. */ __le64 disk_recovery_offset; /* * This offset tracks the progress of the initial raid set * synchronisation/parity calculation. */ __le64 array_resync_offset; /* * raid characteristics */ __le32 level; __le32 layout; __le32 stripe_sectors; /******************************************************************** * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! * * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist */ __le32 flags; /* Flags defining array states for reshaping */ /* * This offset tracks the progress of a raid * set reshape in order to be able to restart it */ __le64 reshape_position; /* * These define the properties of the array in case of an interrupted reshape */ __le32 new_level; __le32 new_layout; __le32 new_stripe_sectors; __le32 delta_disks; __le64 array_sectors; /* Array size in sectors */ /* * Sector offsets to data on devices (reshaping). * Needed to support out of place reshaping, thus * not writing over any stripes whilst converting * them from old to new layout */ __le64 data_offset; __le64 new_data_offset; __le64 sectors; /* Used device size in sectors */ /* * Additonal Bit field of devices indicating failures to support * up to 256 devices with the 1.9.0 on-disk metadata format */ __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; __le32 incompat_features; /* Used to indicate any incompatible features */ /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ } __packed; /* * Check for reshape constraints on raid set @rs: * * - reshape function non-existent * - degraded set * - ongoing recovery * - ongoing reshape * * Returns 0 if none or -EPERM if given constraint * and error message reference in @errmsg */ static int rs_check_reshape(struct raid_set *rs) { struct mddev *mddev = &rs->md; if (!mddev->pers || !mddev->pers->check_reshape) rs->ti->error = "Reshape not supported"; else if (mddev->degraded) rs->ti->error = "Can't reshape degraded raid set"; else if (rs_is_recovering(rs)) rs->ti->error = "Convert request on recovering raid set prohibited"; else if (rs_is_reshaping(rs)) rs->ti->error = "raid set already reshaping!"; else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; else return 0; return -EPERM; } static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) { BUG_ON(!rdev->sb_page); if (rdev->sb_loaded && !force_reload) return 0; rdev->sb_loaded = 0; if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) { DMERR("Failed to read superblock of device at position %d", rdev->raid_disk); md_error(rdev->mddev, rdev); set_bit(Faulty, &rdev->flags); return -EIO; } rdev->sb_loaded = 1; return 0; } static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) { failed_devices[0] = le64_to_cpu(sb->failed_devices); memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { int i = ARRAY_SIZE(sb->extended_failed_devices); while (i--) failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); } } static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) { int i = ARRAY_SIZE(sb->extended_failed_devices); sb->failed_devices = cpu_to_le64(failed_devices[0]); while (i--) sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); } /* * Synchronize the superblock members with the raid set properties * * All superblock data is little endian. */ static void super_sync(struct mddev *mddev, struct md_rdev *rdev) { bool update_failed_devices = false; unsigned int i; uint64_t failed_devices[DISKS_ARRAY_ELEMS]; struct dm_raid_superblock *sb; struct raid_set *rs = container_of(mddev, struct raid_set, md); /* No metadata device, no superblock */ if (!rdev->meta_bdev) return; BUG_ON(!rdev->sb_page); sb = page_address(rdev->sb_page); sb_retrieve_failed_devices(sb, failed_devices); for (i = 0; i < rs->raid_disks; i++) if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { update_failed_devices = true; set_bit(i, (void *) failed_devices); } if (update_failed_devices) sb_update_failed_devices(sb, failed_devices); sb->magic = cpu_to_le32(DM_RAID_MAGIC); sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); sb->num_devices = cpu_to_le32(mddev->raid_disks); sb->array_position = cpu_to_le32(rdev->raid_disk); sb->events = cpu_to_le64(mddev->events); sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); sb->level = cpu_to_le32(mddev->level); sb->layout = cpu_to_le32(mddev->layout); sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); /******************************************************************** * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! * * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist */ sb->new_level = cpu_to_le32(mddev->new_level); sb->new_layout = cpu_to_le32(mddev->new_layout); sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); sb->delta_disks = cpu_to_le32(mddev->delta_disks); smp_rmb(); /* Make sure we access most recent reshape position */ sb->reshape_position = cpu_to_le64(mddev->reshape_position); if (le64_to_cpu(sb->reshape_position) != MaxSector) { /* Flag ongoing reshape */ sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); if (mddev->delta_disks < 0 || mddev->reshape_backwards) sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); } else { /* Clear reshape flags */ sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); } sb->array_sectors = cpu_to_le64(mddev->array_sectors); sb->data_offset = cpu_to_le64(rdev->data_offset); sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); sb->sectors = cpu_to_le64(rdev->sectors); sb->incompat_features = cpu_to_le32(0); /* Zero out the rest of the payload after the size of the superblock */ memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); } /* * super_load * * This function creates a superblock if one is not found on the device * and will decide which superblock to use if there's a choice. * * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise */ static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) { int r; struct dm_raid_superblock *sb; struct dm_raid_superblock *refsb; uint64_t events_sb, events_refsb; r = read_disk_sb(rdev, rdev->sb_size, false); if (r) return r; sb = page_address(rdev->sb_page); /* * Two cases that we want to write new superblocks and rebuild: * 1) New device (no matching magic number) * 2) Device specified for rebuild (!In_sync w/ offset == 0) */ if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { super_sync(rdev->mddev, rdev); set_bit(FirstUse, &rdev->flags); sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); /* Force writing of superblocks to disk */ set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); /* Any superblock is better than none, choose that if given */ return refdev ? 0 : 1; } if (!refdev) return 1; events_sb = le64_to_cpu(sb->events); refsb = page_address(refdev->sb_page); events_refsb = le64_to_cpu(refsb->events); return (events_sb > events_refsb) ? 1 : 0; } static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) { int role; unsigned int d; struct mddev *mddev = &rs->md; uint64_t events_sb; uint64_t failed_devices[DISKS_ARRAY_ELEMS]; struct dm_raid_superblock *sb; uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; struct md_rdev *r; struct dm_raid_superblock *sb2; sb = page_address(rdev->sb_page); events_sb = le64_to_cpu(sb->events); /* * Initialise to 1 if this is a new superblock. */ mddev->events = events_sb ? : 1; mddev->reshape_position = MaxSector; mddev->raid_disks = le32_to_cpu(sb->num_devices); mddev->level = le32_to_cpu(sb->level); mddev->layout = le32_to_cpu(sb->layout); mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); /* * Reshaping is supported, e.g. reshape_position is valid * in superblock and superblock content is authoritative. */ if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { /* Superblock is authoritative wrt given raid set layout! */ mddev->new_level = le32_to_cpu(sb->new_level); mddev->new_layout = le32_to_cpu(sb->new_layout); mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); mddev->delta_disks = le32_to_cpu(sb->delta_disks); mddev->array_sectors = le64_to_cpu(sb->array_sectors); /* raid was reshaping and got interrupted */ if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { DMERR("Reshape requested but raid set is still reshaping"); return -EINVAL; } if (mddev->delta_disks < 0 || (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) mddev->reshape_backwards = 1; else mddev->reshape_backwards = 0; mddev->reshape_position = le64_to_cpu(sb->reshape_position); rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); } } else { /* * No takeover/reshaping, because we don't have the extended v1.9.0 metadata */ struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); if (rs_takeover_requested(rs)) { if (rt_cur && rt_new) DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", rt_cur->name, rt_new->name); else DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); return -EINVAL; } else if (rs_reshape_requested(rs)) { DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); if (mddev->layout != mddev->new_layout) { if (rt_cur && rt_new) DMERR(" current layout %s vs new layout %s", rt_cur->name, rt_new->name); else DMERR(" current layout 0x%X vs new layout 0x%X", le32_to_cpu(sb->layout), mddev->new_layout); } if (mddev->chunk_sectors != mddev->new_chunk_sectors) DMERR(" current stripe sectors %u vs new stripe sectors %u", mddev->chunk_sectors, mddev->new_chunk_sectors); if (rs->delta_disks) DMERR(" current %u disks vs new %u disks", mddev->raid_disks, mddev->raid_disks + rs->delta_disks); if (rs_is_raid10(rs)) { DMERR(" Old layout: %s w/ %u copies", raid10_md_layout_to_format(mddev->layout), raid10_md_layout_to_copies(mddev->layout)); DMERR(" New layout: %s w/ %u copies", raid10_md_layout_to_format(mddev->new_layout), raid10_md_layout_to_copies(mddev->new_layout)); } return -EINVAL; } DMINFO("Discovered old metadata format; upgrading to extended metadata format"); } if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); /* * During load, we set FirstUse if a new superblock was written. * There are two reasons we might not have a superblock: * 1) The raid set is brand new - in which case, all of the * devices must have their In_sync bit set. Also, * recovery_cp must be 0, unless forced. * 2) This is a new device being added to an old raid set * and the new device needs to be rebuilt - in which * case the In_sync bit will /not/ be set and * recovery_cp must be MaxSector. * 3) This is/are a new device(s) being added to an old * raid set during takeover to a higher raid level * to provide capacity for redundancy or during reshape * to add capacity to grow the raid set. */ d = 0; rdev_for_each(r, mddev) { if (test_bit(Journal, &rdev->flags)) continue; if (test_bit(FirstUse, &r->flags)) new_devs++; if (!test_bit(In_sync, &r->flags)) { DMINFO("Device %d specified for rebuild; clearing superblock", r->raid_disk); rebuilds++; if (test_bit(FirstUse, &r->flags)) rebuild_and_new++; } d++; } if (new_devs == rs->raid_disks || !rebuilds) { /* Replace a broken device */ if (new_devs == rs->raid_disks) { DMINFO("Superblocks created for new raid set"); set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); } else if (new_devs != rebuilds && new_devs != rs->delta_disks) { DMERR("New device injected into existing raid set without " "'delta_disks' or 'rebuild' parameter specified"); return -EINVAL; } } else if (new_devs && new_devs != rebuilds) { DMERR("%u 'rebuild' devices cannot be injected into" " a raid set with %u other first-time devices", rebuilds, new_devs); return -EINVAL; } else if (rebuilds) { if (rebuild_and_new && rebuilds != rebuild_and_new) { DMERR("new device%s provided without 'rebuild'", new_devs > 1 ? "s" : ""); return -EINVAL; } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", (unsigned long long) mddev->recovery_cp); return -EINVAL; } else if (rs_is_reshaping(rs)) { DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", (unsigned long long) mddev->reshape_position); return -EINVAL; } } /* * Now we set the Faulty bit for those devices that are * recorded in the superblock as failed. */ sb_retrieve_failed_devices(sb, failed_devices); rdev_for_each(r, mddev) { if (test_bit(Journal, &rdev->flags) || !r->sb_page) continue; sb2 = page_address(r->sb_page); sb2->failed_devices = 0; memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); /* * Check for any device re-ordering. */ if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { role = le32_to_cpu(sb2->array_position); if (role < 0) continue; if (role != r->raid_disk) { if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || rs->raid_disks % rs->raid10_copies) { rs->ti->error = "Cannot change raid10 near set to odd # of devices!"; return -EINVAL; } sb2->array_position = cpu_to_le32(r->raid_disk); } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && !rt_is_raid1(rs->raid_type)) { rs->ti->error = "Cannot change device positions in raid set"; return -EINVAL; } DMINFO("raid device #%d now at position #%d", role, r->raid_disk); } /* * Partial recovery is performed on * returning failed devices. */ if (test_bit(role, (void *) failed_devices)) set_bit(Faulty, &r->flags); } } return 0; } static int super_validate(struct raid_set *rs, struct md_rdev *rdev) { struct mddev *mddev = &rs->md; struct dm_raid_superblock *sb; if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) return 0; sb = page_address(rdev->sb_page); /* * If mddev->events is not set, we know we have not yet initialized * the array. */ if (!mddev->events && super_init_validation(rs, rdev)) return -EINVAL; if (le32_to_cpu(sb->compat_features) && le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; return -EINVAL; } if (sb->incompat_features) { rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; return -EINVAL; } /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; if (!test_and_clear_bit(FirstUse, &rdev->flags)) { /* * Retrieve rdev size stored in superblock to be prepared for shrink. * Check extended superblock members are present otherwise the size * will not be set! */ if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) rdev->sectors = le64_to_cpu(sb->sectors); rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); if (rdev->recovery_offset == MaxSector) set_bit(In_sync, &rdev->flags); /* * If no reshape in progress -> we're recovering single * disk(s) and have to set the device(s) to out-of-sync */ else if (!rs_is_reshaping(rs)) clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ } /* * If a device comes back, set it as not In_sync and no longer faulty. */ if (test_and_clear_bit(Faulty, &rdev->flags)) { rdev->recovery_offset = 0; clear_bit(In_sync, &rdev->flags); rdev->saved_raid_disk = rdev->raid_disk; } /* Reshape support -> restore repective data offsets */ rdev->data_offset = le64_to_cpu(sb->data_offset); rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); return 0; } /* * Analyse superblocks and select the freshest. */ static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) { int r; struct md_rdev *rdev, *freshest; struct mddev *mddev = &rs->md; freshest = NULL; rdev_for_each(rdev, mddev) { if (test_bit(Journal, &rdev->flags)) continue; if (!rdev->meta_bdev) continue; /* Set superblock offset/size for metadata device. */ rdev->sb_start = 0; rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { DMERR("superblock size of a logical block is no longer valid"); return -EINVAL; } /* * Skipping super_load due to CTR_FLAG_SYNC will cause * the array to undergo initialization again as * though it were new. This is the intended effect * of the "sync" directive. * * With reshaping capability added, we must ensure that * that the "sync" directive is disallowed during the reshape. */ if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) continue; r = super_load(rdev, freshest); switch (r) { case 1: freshest = rdev; break; case 0: break; default: /* This is a failure to read the superblock from the metadata device. */ /* * We have to keep any raid0 data/metadata device pairs or * the MD raid0 personality will fail to start the array. */ if (rs_is_raid0(rs)) continue; /* * We keep the dm_devs to be able to emit the device tuple * properly on the table line in raid_status() (rather than * mistakenly acting as if '- -' got passed into the constructor). * * The rdev has to stay on the same_set list to allow for * the attempt to restore faulty devices on second resume. */ rdev->raid_disk = rdev->saved_raid_disk = -1; break; } } if (!freshest) return 0; /* * Validation of the freshest device provides the source of * validation for the remaining devices. */ rs->ti->error = "Unable to assemble array: Invalid superblocks"; if (super_validate(rs, freshest)) return -EINVAL; if (validate_raid_redundancy(rs)) { rs->ti->error = "Insufficient redundancy to activate array"; return -EINVAL; } rdev_for_each(rdev, mddev) if (!test_bit(Journal, &rdev->flags) && rdev != freshest && super_validate(rs, rdev)) return -EINVAL; return 0; } /* * Adjust data_offset and new_data_offset on all disk members of @rs * for out of place reshaping if requested by contructor * * We need free space at the beginning of each raid disk for forward * and at the end for backward reshapes which userspace has to provide * via remapping/reordering of space. */ static int rs_adjust_data_offsets(struct raid_set *rs) { sector_t data_offset = 0, new_data_offset = 0; struct md_rdev *rdev; /* Constructor did not request data offset change */ if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { if (!rs_is_reshapable(rs)) goto out; return 0; } /* HM FIXME: get In_Sync raid_dev? */ rdev = &rs->dev[0].rdev; if (rs->delta_disks < 0) { /* * Removing disks (reshaping backwards): * * - before reshape: data is at offset 0 and free space * is at end of each component LV * * - after reshape: data is at offset rs->data_offset != 0 on each component LV */ data_offset = 0; new_data_offset = rs->data_offset; } else if (rs->delta_disks > 0) { /* * Adding disks (reshaping forwards): * * - before reshape: data is at offset rs->data_offset != 0 and * free space is at begin of each component LV * * - after reshape: data is at offset 0 on each component LV */ data_offset = rs->data_offset; new_data_offset = 0; } else { /* * User space passes in 0 for data offset after having removed reshape space * * - or - (data offset != 0) * * Changing RAID layout or chunk size -> toggle offsets * * - before reshape: data is at offset rs->data_offset 0 and * free space is at end of each component LV * -or- * data is at offset rs->data_offset != 0 and * free space is at begin of each component LV * * - after reshape: data is at offset 0 if it was at offset != 0 * or at offset != 0 if it was at offset 0 * on each component LV * */ data_offset = rs->data_offset ? rdev->data_offset : 0; new_data_offset = data_offset ? 0 : rs->data_offset; set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); } /* * Make sure we got a minimum amount of free sectors per device */ if (rs->data_offset && bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { rs->ti->error = data_offset ? "No space for forward reshape" : "No space for backward reshape"; return -ENOSPC; } out: /* * Raise recovery_cp in case data_offset != 0 to * avoid false recovery positives in the constructor. */ if (rs->md.recovery_cp < rs->md.dev_sectors) rs->md.recovery_cp += rs->dev[0].rdev.data_offset; /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ rdev_for_each(rdev, &rs->md) { if (!test_bit(Journal, &rdev->flags)) { rdev->data_offset = data_offset; rdev->new_data_offset = new_data_offset; } } return 0; } /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ static void __reorder_raid_disk_indexes(struct raid_set *rs) { int i = 0; struct md_rdev *rdev; rdev_for_each(rdev, &rs->md) { if (!test_bit(Journal, &rdev->flags)) { rdev->raid_disk = i++; rdev->saved_raid_disk = rdev->new_raid_disk = -1; } } } /* * Setup @rs for takeover by a different raid level */ static int rs_setup_takeover(struct raid_set *rs) { struct mddev *mddev = &rs->md; struct md_rdev *rdev; unsigned int d = mddev->raid_disks = rs->raid_disks; sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; if (rt_is_raid10(rs->raid_type)) { if (rs_is_raid0(rs)) { /* Userpace reordered disks -> adjust raid_disk indexes */ __reorder_raid_disk_indexes(rs); /* raid0 -> raid10_far layout */ mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, rs->raid10_copies); } else if (rs_is_raid1(rs)) /* raid1 -> raid10_near layout */ mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, rs->raid_disks); else return -EINVAL; } clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); mddev->recovery_cp = MaxSector; while (d--) { rdev = &rs->dev[d].rdev; if (test_bit(d, (void *) rs->rebuild_disks)) { clear_bit(In_sync, &rdev->flags); clear_bit(Faulty, &rdev->flags); mddev->recovery_cp = rdev->recovery_offset = 0; /* Bitmap has to be created when we do an "up" takeover */ set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); } rdev->new_data_offset = new_data_offset; } return 0; } /* Prepare @rs for reshape */ static int rs_prepare_reshape(struct raid_set *rs) { bool reshape; struct mddev *mddev = &rs->md; if (rs_is_raid10(rs)) { if (rs->raid_disks != mddev->raid_disks && __is_raid10_near(mddev->layout) && rs->raid10_copies && rs->raid10_copies != __raid10_near_copies(mddev->layout)) { /* * raid disk have to be multiple of data copies to allow this conversion, * * This is actually not a reshape it is a * rebuild of any additional mirrors per group */ if (rs->raid_disks % rs->raid10_copies) { rs->ti->error = "Can't reshape raid10 mirror groups"; return -EINVAL; } /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ __reorder_raid_disk_indexes(rs); mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, rs->raid10_copies); mddev->new_layout = mddev->layout; reshape = false; } else reshape = true; } else if (rs_is_raid456(rs)) reshape = true; else if (rs_is_raid1(rs)) { if (rs->delta_disks) { /* Process raid1 via delta_disks */ mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; reshape = true; } else { /* Process raid1 without delta_disks */ mddev->raid_disks = rs->raid_disks; reshape = false; } } else { rs->ti->error = "Called with bogus raid type"; return -EINVAL; } if (reshape) { set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); } else if (mddev->raid_disks < rs->raid_disks) /* Create new superblocks and bitmaps, if any new disks */ set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); return 0; } /* Get reshape sectors from data_offsets or raid set */ static sector_t _get_reshape_sectors(struct raid_set *rs) { struct md_rdev *rdev; sector_t reshape_sectors = 0; rdev_for_each(rdev, &rs->md) if (!test_bit(Journal, &rdev->flags)) { reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? rdev->data_offset - rdev->new_data_offset : rdev->new_data_offset - rdev->data_offset; break; } return max(reshape_sectors, (sector_t) rs->data_offset); } /* * Reshape: * - change raid layout * - change chunk size * - add disks * - remove disks */ static int rs_setup_reshape(struct raid_set *rs) { int r = 0; unsigned int cur_raid_devs, d; sector_t reshape_sectors = _get_reshape_sectors(rs); struct mddev *mddev = &rs->md; struct md_rdev *rdev; mddev->delta_disks = rs->delta_disks; cur_raid_devs = mddev->raid_disks; /* Ignore impossible layout change whilst adding/removing disks */ if (mddev->delta_disks && mddev->layout != mddev->new_layout) { DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); mddev->new_layout = mddev->layout; } /* * Adjust array size: * * - in case of adding disk(s), array size has * to grow after the disk adding reshape, * which'll hapen in the event handler; * reshape will happen forward, so space has to * be available at the beginning of each disk * * - in case of removing disk(s), array size * has to shrink before starting the reshape, * which'll happen here; * reshape will happen backward, so space has to * be available at the end of each disk * * - data_offset and new_data_offset are * adjusted for aforementioned out of place * reshaping based on userspace passing in * the "data_offset " key/value * pair via the constructor */ /* Add disk(s) */ if (rs->delta_disks > 0) { /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ for (d = cur_raid_devs; d < rs->raid_disks; d++) { rdev = &rs->dev[d].rdev; clear_bit(In_sync, &rdev->flags); /* * save_raid_disk needs to be -1, or recovery_offset will be set to 0 * by md, which'll store that erroneously in the superblock on reshape */ rdev->saved_raid_disk = -1; rdev->raid_disk = d; rdev->sectors = mddev->dev_sectors; rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; } mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ /* Remove disk(s) */ } else if (rs->delta_disks < 0) { r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ /* Change layout and/or chunk size */ } else { /* * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: * * keeping number of disks and do layout change -> * * toggle reshape_backward depending on data_offset: * * - free space upfront -> reshape forward * * - free space at the end -> reshape backward * * * This utilizes free reshape space avoiding the need * for userspace to move (parts of) LV segments in * case of layout/chunksize change (for disk * adding/removing reshape space has to be at * the proper address (see above with delta_disks): * * add disk(s) -> begin * remove disk(s)-> end */ mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; } /* * Adjust device size for forward reshape * because md_finish_reshape() reduces it. */ if (!mddev->reshape_backwards) rdev_for_each(rdev, &rs->md) if (!test_bit(Journal, &rdev->flags)) rdev->sectors += reshape_sectors; return r; } /* * If the md resync thread has updated superblock with max reshape position * at the end of a reshape but not (yet) reset the layout configuration * changes -> reset the latter. */ static void rs_reset_inconclusive_reshape(struct raid_set *rs) { if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) { rs_set_cur(rs); rs->md.delta_disks = 0; rs->md.reshape_backwards = 0; } } /* * Enable/disable discard support on RAID set depending on * RAID level and discard properties of underlying RAID members. */ static void configure_discard_support(struct raid_set *rs) { int i; bool raid456; struct dm_target *ti = rs->ti; /* * XXX: RAID level 4,5,6 require zeroing for safety. */ raid456 = rs_is_raid456(rs); for (i = 0; i < rs->raid_disks; i++) { struct request_queue *q; if (!rs->dev[i].rdev.bdev) continue; q = bdev_get_queue(rs->dev[i].rdev.bdev); if (!q || !blk_queue_discard(q)) return; if (raid456) { if (!devices_handle_discard_safely) { DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); return; } } } ti->num_discard_bios = 1; } /* * Construct a RAID0/1/10/4/5/6 mapping: * Args: * <#raid_params> {0,} \ * <#raid_devs> [ ]{1,} * * varies by . See 'parse_raid_params' for * details on possible . * * Userspace is free to initialize the metadata devices, hence the superblocks to * enforce recreation based on the passed in table parameters. * */ static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) { int r; bool resize = false; struct raid_type *rt; unsigned int num_raid_params, num_raid_devs; sector_t sb_array_sectors, rdev_sectors, reshape_sectors; struct raid_set *rs = NULL; const char *arg; struct rs_layout rs_layout; struct dm_arg_set as = { argc, argv }, as_nrd; struct dm_arg _args[] = { { 0, as.argc, "Cannot understand number of raid parameters" }, { 1, 254, "Cannot understand number of raid devices parameters" } }; arg = dm_shift_arg(&as); if (!arg) { ti->error = "No arguments"; return -EINVAL; } rt = get_raid_type(arg); if (!rt) { ti->error = "Unrecognised raid_type"; return -EINVAL; } /* Must have <#raid_params> */ if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) return -EINVAL; /* number of raid device tupples */ as_nrd = as; dm_consume_args(&as_nrd, num_raid_params); _args[1].max = (as_nrd.argc - 1) / 2; if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) return -EINVAL; if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { ti->error = "Invalid number of supplied raid devices"; return -EINVAL; } rs = raid_set_alloc(ti, rt, num_raid_devs); if (IS_ERR(rs)) return PTR_ERR(rs); r = parse_raid_params(rs, &as, num_raid_params); if (r) goto bad; r = parse_dev_params(rs, &as); if (r) goto bad; rs->md.sync_super = super_sync; /* * Calculate ctr requested array and device sizes to allow * for superblock analysis needing device sizes defined. * * Any existing superblock will overwrite the array and device sizes */ r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); if (r) goto bad; /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ rs->array_sectors = rs->md.array_sectors; rs->dev_sectors = rs->md.dev_sectors; /* * Backup any new raid set level, layout, ... * requested to be able to compare to superblock * members for conversion decisions. */ rs_config_backup(rs, &rs_layout); r = analyse_superblocks(ti, rs); if (r) goto bad; /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ sb_array_sectors = rs->md.array_sectors; rdev_sectors = __rdev_sectors(rs); if (!rdev_sectors) { ti->error = "Invalid rdev size"; r = -EINVAL; goto bad; } reshape_sectors = _get_reshape_sectors(rs); if (rs->dev_sectors != rdev_sectors) { resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); if (rs->dev_sectors > rdev_sectors - reshape_sectors) set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); } INIT_WORK(&rs->md.event_work, do_table_event); ti->private = rs; ti->num_flush_bios = 1; /* Restore any requested new layout for conversion decision */ rs_config_restore(rs, &rs_layout); /* * Now that we have any superblock metadata available, * check for new, recovering, reshaping, to be taken over, * to be reshaped or an existing, unchanged raid set to * run in sequence. */ if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ if (rs_is_raid6(rs) && test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { ti->error = "'nosync' not allowed for new raid6 set"; r = -EINVAL; goto bad; } rs_setup_recovery(rs, 0); set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); rs_set_new(rs); } else if (rs_is_recovering(rs)) { /* A recovering raid set may be resized */ goto size_check; } else if (rs_is_reshaping(rs)) { /* Have to reject size change request during reshape */ if (resize) { ti->error = "Can't resize a reshaping raid set"; r = -EPERM; goto bad; } /* skip setup rs */ } else if (rs_takeover_requested(rs)) { if (rs_is_reshaping(rs)) { ti->error = "Can't takeover a reshaping raid set"; r = -EPERM; goto bad; } /* We can't takeover a journaled raid4/5/6 */ if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { ti->error = "Can't takeover a journaled raid4/5/6 set"; r = -EPERM; goto bad; } /* * If a takeover is needed, userspace sets any additional * devices to rebuild and we can check for a valid request here. * * If acceptible, set the level to the new requested * one, prohibit requesting recovery, allow the raid * set to run and store superblocks during resume. */ r = rs_check_takeover(rs); if (r) goto bad; r = rs_setup_takeover(rs); if (r) goto bad; set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); /* Takeover ain't recovery, so disable recovery */ rs_setup_recovery(rs, MaxSector); rs_set_new(rs); } else if (rs_reshape_requested(rs)) { /* Only request grow on raid set size extensions, not on reshapes. */ clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); /* * No need to check for 'ongoing' takeover here, because takeover * is an instant operation as oposed to an ongoing reshape. */ /* We can't reshape a journaled raid4/5/6 */ if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { ti->error = "Can't reshape a journaled raid4/5/6 set"; r = -EPERM; goto bad; } /* Out-of-place space has to be available to allow for a reshape unless raid1! */ if (reshape_sectors || rs_is_raid1(rs)) { /* * We can only prepare for a reshape here, because the * raid set needs to run to provide the repective reshape * check functions via its MD personality instance. * * So do the reshape check after md_run() succeeded. */ r = rs_prepare_reshape(rs); if (r) goto bad; /* Reshaping ain't recovery, so disable recovery */ rs_setup_recovery(rs, MaxSector); } rs_set_cur(rs); } else { size_check: /* May not set recovery when a device rebuild is requested */ if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); rs_setup_recovery(rs, MaxSector); } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { /* * Set raid set to current size, i.e. size as of * superblocks to grow to larger size in preresume. */ r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); if (r) goto bad; rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); } else { /* This is no size change or it is shrinking, update size and record in superblocks */ r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); if (r) goto bad; if (sb_array_sectors > rs->array_sectors) set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); } rs_set_cur(rs); } /* If constructor requested it, change data and new_data offsets */ r = rs_adjust_data_offsets(rs); if (r) goto bad; /* Catch any inconclusive reshape superblock content. */ rs_reset_inconclusive_reshape(rs); /* Start raid set read-only and assumed clean to change in raid_resume() */ rs->md.ro = 1; rs->md.in_sync = 1; /* Keep array frozen until resume. */ set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); /* Has to be held on running the array */ mddev_lock_nointr(&rs->md); r = md_run(&rs->md); rs->md.in_sync = 0; /* Assume already marked dirty */ if (r) { ti->error = "Failed to run raid array"; mddev_unlock(&rs->md); goto bad; } r = md_start(&rs->md); if (r) { ti->error = "Failed to start raid array"; mddev_unlock(&rs->md); goto bad_md_start; } /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); if (r) { ti->error = "Failed to set raid4/5/6 journal mode"; mddev_unlock(&rs->md); goto bad_journal_mode_set; } } mddev_suspend(&rs->md); set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ if (rs_is_raid456(rs)) { r = rs_set_raid456_stripe_cache(rs); if (r) goto bad_stripe_cache; } /* Now do an early reshape check */ if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { r = rs_check_reshape(rs); if (r) goto bad_check_reshape; /* Restore new, ctr requested layout to perform check */ rs_config_restore(rs, &rs_layout); if (rs->md.pers->start_reshape) { r = rs->md.pers->check_reshape(&rs->md); if (r) { ti->error = "Reshape check failed"; goto bad_check_reshape; } } } /* Disable/enable discard support on raid set. */ configure_discard_support(rs); mddev_unlock(&rs->md); return 0; bad_md_start: bad_journal_mode_set: bad_stripe_cache: bad_check_reshape: md_stop(&rs->md); bad: raid_set_free(rs); return r; } static void raid_dtr(struct dm_target *ti) { struct raid_set *rs = ti->private; md_stop(&rs->md); raid_set_free(rs); } static int raid_map(struct dm_target *ti, struct bio *bio) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; /* * If we're reshaping to add disk(s)), ti->len and * mddev->array_sectors will differ during the process * (ti->len > mddev->array_sectors), so we have to requeue * bios with addresses > mddev->array_sectors here or * there will occur accesses past EOD of the component * data images thus erroring the raid set. */ if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) return DM_MAPIO_REQUEUE; md_handle_request(mddev, bio); return DM_MAPIO_SUBMITTED; } /* Return sync state string for @state */ enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; static const char *sync_str(enum sync_state state) { /* Has to be in above sync_state order! */ static const char *sync_strs[] = { "frozen", "reshape", "resync", "check", "repair", "recover", "idle" }; return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; }; /* Return enum sync_state for @mddev derived from @recovery flags */ static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) { if (test_bit(MD_RECOVERY_FROZEN, &recovery)) return st_frozen; /* The MD sync thread can be done with io or be interrupted but still be running */ if (!test_bit(MD_RECOVERY_DONE, &recovery) && (test_bit(MD_RECOVERY_RUNNING, &recovery) || (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) return st_reshape; if (test_bit(MD_RECOVERY_SYNC, &recovery)) { if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) return st_resync; if (test_bit(MD_RECOVERY_CHECK, &recovery)) return st_check; return st_repair; } if (test_bit(MD_RECOVERY_RECOVER, &recovery)) return st_recover; if (mddev->reshape_position != MaxSector) return st_reshape; } return st_idle; } /* * Return status string for @rdev * * Status characters: * * 'D' = Dead/Failed raid set component or raid4/5/6 journal device * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) */ static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) { if (!rdev->bdev) return "-"; else if (test_bit(Faulty, &rdev->flags)) return "D"; else if (test_bit(Journal, &rdev->flags)) return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && !test_bit(In_sync, &rdev->flags))) return "a"; else return "A"; } /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, enum sync_state state, sector_t resync_max_sectors) { sector_t r; struct mddev *mddev = &rs->md; clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); if (rs_is_raid0(rs)) { r = resync_max_sectors; set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); } else { if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) r = mddev->recovery_cp; else r = mddev->curr_resync_completed; if (state == st_idle && r >= resync_max_sectors) { /* * Sync complete. */ /* In case we have finished recovering, the array is in sync. */ if (test_bit(MD_RECOVERY_RECOVER, &recovery)) set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); } else if (state == st_recover) /* * In case we are recovering, the array is not in sync * and health chars should show the recovering legs. * * Already retrieved recovery offset from curr_resync_completed above. */ ; else if (state == st_resync || state == st_reshape) /* * If "resync/reshape" is occurring, the raid set * is or may be out of sync hence the health * characters shall be 'a'. */ set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); else if (state == st_check || state == st_repair) /* * If "check" or "repair" is occurring, the raid set has * undergone an initial sync and the health characters * should not be 'a' anymore. */ set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) /* * We are idle and recovery is needed, prevent 'A' chars race * caused by components still set to in-sync by constructor. */ set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); else { /* * We are idle and the raid set may be doing an initial * sync, or it may be rebuilding individual components. * If all the devices are In_sync, then it is the raid set * that is being initialized. */ struct md_rdev *rdev; set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); rdev_for_each(rdev, mddev) if (!test_bit(Journal, &rdev->flags) && !test_bit(In_sync, &rdev->flags)) { clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); break; } } } return min(r, resync_max_sectors); } /* Helper to return @dev name or "-" if !@dev */ static const char *__get_dev_name(struct dm_dev *dev) { return dev ? dev->name : "-"; } static void raid_status(struct dm_target *ti, status_type_t type, unsigned int status_flags, char *result, unsigned int maxlen) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; struct r5conf *conf = mddev->private; int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; unsigned long recovery; unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ unsigned int sz = 0; unsigned int rebuild_writemostly_count = 0; sector_t progress, resync_max_sectors, resync_mismatches; enum sync_state state; struct raid_type *rt; switch (type) { case STATUSTYPE_INFO: /* *Should* always succeed */ rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); if (!rt) return; DMEMIT("%s %d ", rt->name, mddev->raid_disks); /* Access most recent mddev properties for status output */ smp_rmb(); /* Get sensible max sectors even if raid set not yet started */ resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? mddev->resync_max_sectors : mddev->dev_sectors; recovery = rs->md.recovery; state = decipher_sync_action(mddev, recovery); progress = rs_get_progress(rs, recovery, state, resync_max_sectors); resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? atomic64_read(&mddev->resync_mismatches) : 0; /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ for (i = 0; i < rs->raid_disks; i++) DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); /* * In-sync/Reshape ratio: * The in-sync ratio shows the progress of: * - Initializing the raid set * - Rebuilding a subset of devices of the raid set * The user can distinguish between the two by referring * to the status characters. * * The reshape ratio shows the progress of * changing the raid layout or the number of * disks of a raid set */ DMEMIT(" %llu/%llu", (unsigned long long) progress, (unsigned long long) resync_max_sectors); /* * v1.5.0+: * * Sync action: * See Documentation/admin-guide/device-mapper/dm-raid.rst for * information on each of these states. */ DMEMIT(" %s", sync_str(state)); /* * v1.5.0+: * * resync_mismatches/mismatch_cnt * This field shows the number of discrepancies found when * performing a "check" of the raid set. */ DMEMIT(" %llu", (unsigned long long) resync_mismatches); /* * v1.9.0+: * * data_offset (needed for out of space reshaping) * This field shows the data offset into the data * image LV where the first stripes data starts. * * We keep data_offset equal on all raid disks of the set, * so retrieving it from the first raid disk is sufficient. */ DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); /* * v1.10.0+: */ DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); break; case STATUSTYPE_TABLE: /* Report the table line string you would use to construct this raid set */ /* * Count any rebuild or writemostly argument pairs and subtract the * hweight count being added below of any rebuild and writemostly ctr flags. */ for (i = 0; i < rs->raid_disks; i++) { rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); } rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ raid_param_cnt += rebuild_writemostly_count + hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; /* Emit table line */ /* This has to be in the documented order for userspace! */ DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) for (i = 0; i < rs->raid_disks; i++) if (test_bit(i, (void *) rs->rebuild_disks)) DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), mddev->bitmap_info.daemon_sleep); if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), mddev->sync_speed_min); if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), mddev->sync_speed_max); if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) for (i = 0; i < rs->raid_disks; i++) if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), rs->dev[i].rdev.raid_disk); if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), mddev->bitmap_info.max_write_behind); if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), max_nr_stripes); if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), raid10_md_layout_to_copies(mddev->layout)); if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), raid10_md_layout_to_format(mddev->layout)); if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), max(rs->delta_disks, mddev->delta_disks)); if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), (unsigned long long) rs->data_offset); if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), __get_dev_name(rs->journal_dev.dev)); if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), md_journal_mode_to_dm_raid(rs->journal_dev.mode)); DMEMIT(" %d", rs->raid_disks); for (i = 0; i < rs->raid_disks; i++) DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), __get_dev_name(rs->dev[i].data_dev)); break; case STATUSTYPE_IMA: rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); if (!rt) return; DMEMIT_TARGET_NAME_VERSION(ti->type); DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks); /* Access most recent mddev properties for status output */ smp_rmb(); recovery = rs->md.recovery; state = decipher_sync_action(mddev, recovery); DMEMIT(",raid_state=%s", sync_str(state)); for (i = 0; i < rs->raid_disks; i++) { DMEMIT(",raid_device_%d_status=", i); DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); } if (rt_is_raid456(rt)) { DMEMIT(",journal_dev_mode="); switch (rs->journal_dev.mode) { case R5C_JOURNAL_MODE_WRITE_THROUGH: DMEMIT("%s", _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param); break; case R5C_JOURNAL_MODE_WRITE_BACK: DMEMIT("%s", _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param); break; default: DMEMIT("invalid"); break; } } DMEMIT(";"); break; } } static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, char *result, unsigned maxlen) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; if (!mddev->pers || !mddev->pers->sync_request) return -EINVAL; if (!strcasecmp(argv[0], "frozen")) set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); else clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { if (mddev->sync_thread) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_reap_sync_thread(mddev); } } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle) return -EBUSY; else if (!strcasecmp(argv[0], "resync")) ; /* MD_RECOVERY_NEEDED set below */ else if (!strcasecmp(argv[0], "recover")) set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); else { if (!strcasecmp(argv[0], "check")) { set_bit(MD_RECOVERY_CHECK, &mddev->recovery); set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_SYNC, &mddev->recovery); } else if (!strcasecmp(argv[0], "repair")) { set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_SYNC, &mddev->recovery); } else return -EINVAL; } if (mddev->ro == 2) { /* A write to sync_action is enough to justify * canceling read-auto mode */ mddev->ro = 0; if (!mddev->suspended && mddev->sync_thread) md_wakeup_thread(mddev->sync_thread); } set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); if (!mddev->suspended && mddev->thread) md_wakeup_thread(mddev->thread); return 0; } static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct raid_set *rs = ti->private; unsigned int i; int r = 0; for (i = 0; !r && i < rs->raid_disks; i++) { if (rs->dev[i].data_dev) { r = fn(ti, rs->dev[i].data_dev, 0, /* No offset on data devs */ rs->md.dev_sectors, data); } } return r; } static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct raid_set *rs = ti->private; unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); blk_limits_io_min(limits, chunk_size_bytes); blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs)); } static void raid_postsuspend(struct dm_target *ti) { struct raid_set *rs = ti->private; if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { /* Writes have to be stopped before suspending to avoid deadlocks. */ if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery)) md_stop_writes(&rs->md); mddev_lock_nointr(&rs->md); mddev_suspend(&rs->md); mddev_unlock(&rs->md); } } static void attempt_restore_of_faulty_devices(struct raid_set *rs) { int i; uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; unsigned long flags; bool cleared = false; struct dm_raid_superblock *sb; struct mddev *mddev = &rs->md; struct md_rdev *r; /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) return; memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); for (i = 0; i < mddev->raid_disks; i++) { r = &rs->dev[i].rdev; /* HM FIXME: enhance journal device recovery processing */ if (test_bit(Journal, &r->flags)) continue; if (test_bit(Faulty, &r->flags) && r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { DMINFO("Faulty %s device #%d has readable super block." " Attempting to revive it.", rs->raid_type->name, i); /* * Faulty bit may be set, but sometimes the array can * be suspended before the personalities can respond * by removing the device from the array (i.e. calling * 'hot_remove_disk'). If they haven't yet removed * the failed device, its 'raid_disk' number will be * '>= 0' - meaning we must call this function * ourselves. */ flags = r->flags; clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ if (r->raid_disk >= 0) { if (mddev->pers->hot_remove_disk(mddev, r)) { /* Failed to revive this device, try next */ r->flags = flags; continue; } } else r->raid_disk = r->saved_raid_disk = i; clear_bit(Faulty, &r->flags); clear_bit(WriteErrorSeen, &r->flags); if (mddev->pers->hot_add_disk(mddev, r)) { /* Failed to revive this device, try next */ r->raid_disk = r->saved_raid_disk = -1; r->flags = flags; } else { clear_bit(In_sync, &r->flags); r->recovery_offset = 0; set_bit(i, (void *) cleared_failed_devices); cleared = true; } } } /* If any failed devices could be cleared, update all sbs failed_devices bits */ if (cleared) { uint64_t failed_devices[DISKS_ARRAY_ELEMS]; rdev_for_each(r, &rs->md) { if (test_bit(Journal, &r->flags)) continue; sb = page_address(r->sb_page); sb_retrieve_failed_devices(sb, failed_devices); for (i = 0; i < DISKS_ARRAY_ELEMS; i++) failed_devices[i] &= ~cleared_failed_devices[i]; sb_update_failed_devices(sb, failed_devices); } } } static int __load_dirty_region_bitmap(struct raid_set *rs) { int r = 0; /* Try loading the bitmap unless "raid0", which does not have one */ if (!rs_is_raid0(rs) && !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { r = md_bitmap_load(&rs->md); if (r) DMERR("Failed to load bitmap"); } return r; } /* Enforce updating all superblocks */ static void rs_update_sbs(struct raid_set *rs) { struct mddev *mddev = &rs->md; int ro = mddev->ro; set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); mddev->ro = 0; md_update_sb(mddev, 1); mddev->ro = ro; } /* * Reshape changes raid algorithm of @rs to new one within personality * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes * disks from a raid set thus growing/shrinking it or resizes the set * * Call mddev_lock_nointr() before! */ static int rs_start_reshape(struct raid_set *rs) { int r; struct mddev *mddev = &rs->md; struct md_personality *pers = mddev->pers; /* Don't allow the sync thread to work until the table gets reloaded. */ set_bit(MD_RECOVERY_WAIT, &mddev->recovery); r = rs_setup_reshape(rs); if (r) return r; /* * Check any reshape constraints enforced by the personalility * * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. */ r = pers->check_reshape(mddev); if (r) { rs->ti->error = "pers->check_reshape() failed"; return r; } /* * Personality may not provide start reshape method in which * case check_reshape above has already covered everything */ if (pers->start_reshape) { r = pers->start_reshape(mddev); if (r) { rs->ti->error = "pers->start_reshape() failed"; return r; } } /* * Now reshape got set up, update superblocks to * reflect the fact so that a table reload will * access proper superblock content in the ctr. */ rs_update_sbs(rs); return 0; } static int raid_preresume(struct dm_target *ti) { int r; struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; /* This is a resume after a suspend of the set -> it's already started. */ if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) return 0; /* * The superblocks need to be updated on disk if the * array is new or new devices got added (thus zeroed * out by userspace) or __load_dirty_region_bitmap * will overwrite them in core with old data or fail. */ if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) rs_update_sbs(rs); /* Load the bitmap from disk unless raid0 */ r = __load_dirty_region_bitmap(rs); if (r) return r; /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { mddev->array_sectors = rs->array_sectors; mddev->dev_sectors = rs->dev_sectors; rs_set_rdev_sectors(rs); rs_set_capacity(rs); } /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || (rs->requested_bitmap_chunk_sectors && mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0); if (r) DMERR("Failed to resize bitmap"); } /* Check for any resize/reshape on @rs and adjust/initiate */ /* Be prepared for mddev_resume() in raid_resume() */ set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); mddev->resync_min = mddev->recovery_cp; if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) mddev->resync_max_sectors = mddev->dev_sectors; } /* Check for any reshape request unless new raid set */ if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { /* Initiate a reshape. */ rs_set_rdev_sectors(rs); mddev_lock_nointr(mddev); r = rs_start_reshape(rs); mddev_unlock(mddev); if (r) DMWARN("Failed to check/start reshape, continuing without change"); r = 0; } return r; } static void raid_resume(struct dm_target *ti) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { /* * A secondary resume while the device is active. * Take this opportunity to check whether any failed * devices are reachable again. */ attempt_restore_of_faulty_devices(rs); } if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { /* Only reduce raid set size before running a disk removing reshape. */ if (mddev->delta_disks < 0) rs_set_capacity(rs); mddev_lock_nointr(mddev); clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); mddev->ro = 0; mddev->in_sync = 0; mddev_resume(mddev); mddev_unlock(mddev); } } static struct target_type raid_target = { .name = "raid", .version = {1, 15, 1}, .module = THIS_MODULE, .ctr = raid_ctr, .dtr = raid_dtr, .map = raid_map, .status = raid_status, .message = raid_message, .iterate_devices = raid_iterate_devices, .io_hints = raid_io_hints, .postsuspend = raid_postsuspend, .preresume = raid_preresume, .resume = raid_resume, }; static int __init dm_raid_init(void) { DMINFO("Loading target version %u.%u.%u", raid_target.version[0], raid_target.version[1], raid_target.version[2]); return dm_register_target(&raid_target); } static void __exit dm_raid_exit(void) { dm_unregister_target(&raid_target); } module_init(dm_raid_init); module_exit(dm_raid_exit); module_param(devices_handle_discard_safely, bool, 0644); MODULE_PARM_DESC(devices_handle_discard_safely, "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); MODULE_ALIAS("dm-raid0"); MODULE_ALIAS("dm-raid1"); MODULE_ALIAS("dm-raid10"); MODULE_ALIAS("dm-raid4"); MODULE_ALIAS("dm-raid5"); MODULE_ALIAS("dm-raid6"); MODULE_AUTHOR("Neil Brown "); MODULE_AUTHOR("Heinz Mauelshagen "); MODULE_LICENSE("GPL");