linux/linux-5.18.11/sound/soc/sh/rcar/ssi.c

1254 lines
28 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0
//
// Renesas R-Car SSIU/SSI support
//
// Copyright (C) 2013 Renesas Solutions Corp.
// Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
//
// Based on fsi.c
// Kuninori Morimoto <morimoto.kuninori@renesas.com>
/*
* you can enable below define if you don't need
* SSI interrupt status debug message when debugging
* see rsnd_print_irq_status()
*
* #define RSND_DEBUG_NO_IRQ_STATUS 1
*/
#include <sound/simple_card_utils.h>
#include <linux/delay.h>
#include "rsnd.h"
#define RSND_SSI_NAME_SIZE 16
/*
* SSICR
*/
#define FORCE (1u << 31) /* Fixed */
#define DMEN (1u << 28) /* DMA Enable */
#define UIEN (1u << 27) /* Underflow Interrupt Enable */
#define OIEN (1u << 26) /* Overflow Interrupt Enable */
#define IIEN (1u << 25) /* Idle Mode Interrupt Enable */
#define DIEN (1u << 24) /* Data Interrupt Enable */
#define CHNL_4 (1u << 22) /* Channels */
#define CHNL_6 (2u << 22) /* Channels */
#define CHNL_8 (3u << 22) /* Channels */
#define DWL_MASK (7u << 19) /* Data Word Length mask */
#define DWL_8 (0u << 19) /* Data Word Length */
#define DWL_16 (1u << 19) /* Data Word Length */
#define DWL_18 (2u << 19) /* Data Word Length */
#define DWL_20 (3u << 19) /* Data Word Length */
#define DWL_22 (4u << 19) /* Data Word Length */
#define DWL_24 (5u << 19) /* Data Word Length */
#define DWL_32 (6u << 19) /* Data Word Length */
/*
* System word length
*/
#define SWL_16 (1 << 16) /* R/W System Word Length */
#define SWL_24 (2 << 16) /* R/W System Word Length */
#define SWL_32 (3 << 16) /* R/W System Word Length */
#define SCKD (1 << 15) /* Serial Bit Clock Direction */
#define SWSD (1 << 14) /* Serial WS Direction */
#define SCKP (1 << 13) /* Serial Bit Clock Polarity */
#define SWSP (1 << 12) /* Serial WS Polarity */
#define SDTA (1 << 10) /* Serial Data Alignment */
#define PDTA (1 << 9) /* Parallel Data Alignment */
#define DEL (1 << 8) /* Serial Data Delay */
#define CKDV(v) (v << 4) /* Serial Clock Division Ratio */
#define TRMD (1 << 1) /* Transmit/Receive Mode Select */
#define EN (1 << 0) /* SSI Module Enable */
/*
* SSISR
*/
#define UIRQ (1 << 27) /* Underflow Error Interrupt Status */
#define OIRQ (1 << 26) /* Overflow Error Interrupt Status */
#define IIRQ (1 << 25) /* Idle Mode Interrupt Status */
#define DIRQ (1 << 24) /* Data Interrupt Status Flag */
/*
* SSIWSR
*/
#define CONT (1 << 8) /* WS Continue Function */
#define WS_MODE (1 << 0) /* WS Mode */
#define SSI_NAME "ssi"
struct rsnd_ssi {
struct rsnd_mod mod;
u32 flags;
u32 cr_own;
u32 cr_clk;
u32 cr_mode;
u32 cr_en;
u32 wsr;
int chan;
int rate;
int irq;
unsigned int usrcnt;
/* for PIO */
int byte_pos;
int byte_per_period;
int next_period_byte;
};
/* flags */
#define RSND_SSI_CLK_PIN_SHARE (1 << 0)
#define RSND_SSI_NO_BUSIF (1 << 1) /* SSI+DMA without BUSIF */
#define RSND_SSI_PROBED (1 << 2)
#define for_each_rsnd_ssi(pos, priv, i) \
for (i = 0; \
(i < rsnd_ssi_nr(priv)) && \
((pos) = ((struct rsnd_ssi *)(priv)->ssi + i)); \
i++)
#define rsnd_ssi_get(priv, id) ((struct rsnd_ssi *)(priv->ssi) + id)
#define rsnd_ssi_nr(priv) ((priv)->ssi_nr)
#define rsnd_mod_to_ssi(_mod) container_of((_mod), struct rsnd_ssi, mod)
#define rsnd_ssi_is_parent(ssi, io) ((ssi) == rsnd_io_to_mod_ssip(io))
#define rsnd_ssi_is_multi_secondary(mod, io) \
(rsnd_ssi_multi_secondaries(io) & (1 << rsnd_mod_id(mod)))
#define rsnd_ssi_is_run_mods(mod, io) \
(rsnd_ssi_run_mods(io) & (1 << rsnd_mod_id(mod)))
#define rsnd_ssi_can_output_clk(mod) (!__rsnd_ssi_is_pin_sharing(mod))
int rsnd_ssi_use_busif(struct rsnd_dai_stream *io)
{
struct rsnd_mod *mod = rsnd_io_to_mod_ssi(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
int use_busif = 0;
if (!rsnd_ssi_is_dma_mode(mod))
return 0;
if (!(rsnd_flags_has(ssi, RSND_SSI_NO_BUSIF)))
use_busif = 1;
if (rsnd_io_to_mod_src(io))
use_busif = 1;
return use_busif;
}
static void rsnd_ssi_status_clear(struct rsnd_mod *mod)
{
rsnd_mod_write(mod, SSISR, 0);
}
static u32 rsnd_ssi_status_get(struct rsnd_mod *mod)
{
return rsnd_mod_read(mod, SSISR);
}
static void rsnd_ssi_status_check(struct rsnd_mod *mod,
u32 bit)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
u32 status;
int i;
for (i = 0; i < 1024; i++) {
status = rsnd_ssi_status_get(mod);
if (status & bit)
return;
udelay(5);
}
dev_warn(dev, "%s status check failed\n", rsnd_mod_name(mod));
}
static u32 rsnd_ssi_multi_secondaries(struct rsnd_dai_stream *io)
{
static const enum rsnd_mod_type types[] = {
RSND_MOD_SSIM1,
RSND_MOD_SSIM2,
RSND_MOD_SSIM3,
};
int i, mask;
mask = 0;
for (i = 0; i < ARRAY_SIZE(types); i++) {
struct rsnd_mod *mod = rsnd_io_to_mod(io, types[i]);
if (!mod)
continue;
mask |= 1 << rsnd_mod_id(mod);
}
return mask;
}
static u32 rsnd_ssi_run_mods(struct rsnd_dai_stream *io)
{
struct rsnd_mod *ssi_mod = rsnd_io_to_mod_ssi(io);
struct rsnd_mod *ssi_parent_mod = rsnd_io_to_mod_ssip(io);
u32 mods;
mods = rsnd_ssi_multi_secondaries_runtime(io) |
1 << rsnd_mod_id(ssi_mod);
if (ssi_parent_mod)
mods |= 1 << rsnd_mod_id(ssi_parent_mod);
return mods;
}
u32 rsnd_ssi_multi_secondaries_runtime(struct rsnd_dai_stream *io)
{
if (rsnd_runtime_is_multi_ssi(io))
return rsnd_ssi_multi_secondaries(io);
return 0;
}
static u32 rsnd_rdai_width_to_swl(struct rsnd_dai *rdai)
{
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
struct device *dev = rsnd_priv_to_dev(priv);
int width = rsnd_rdai_width_get(rdai);
switch (width) {
case 32: return SWL_32;
case 24: return SWL_24;
case 16: return SWL_16;
}
dev_err(dev, "unsupported slot width value: %d\n", width);
return 0;
}
unsigned int rsnd_ssi_clk_query(struct rsnd_dai *rdai,
int param1, int param2, int *idx)
{
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
static const int ssi_clk_mul_table[] = {
1, 2, 4, 8, 16, 6, 12,
};
int j, ret;
unsigned int main_rate;
int width = rsnd_rdai_width_get(rdai);
for (j = 0; j < ARRAY_SIZE(ssi_clk_mul_table); j++) {
/*
* It will set SSIWSR.CONT here, but SSICR.CKDV = 000
* with it is not allowed. (SSIWSR.WS_MODE with
* SSICR.CKDV = 000 is not allowed either).
* Skip it. See SSICR.CKDV
*/
if (j == 0)
continue;
main_rate = width * param1 * param2 * ssi_clk_mul_table[j];
ret = rsnd_adg_clk_query(priv, main_rate);
if (ret < 0)
continue;
if (idx)
*idx = j;
return main_rate;
}
return 0;
}
static int rsnd_ssi_master_clk_start(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_io_to_priv(io);
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
int chan = rsnd_runtime_channel_for_ssi(io);
int idx, ret;
unsigned int main_rate;
unsigned int rate = rsnd_io_is_play(io) ?
rsnd_src_get_out_rate(priv, io) :
rsnd_src_get_in_rate(priv, io);
if (!rsnd_rdai_is_clk_master(rdai))
return 0;
if (!rsnd_ssi_can_output_clk(mod))
return 0;
if (rsnd_ssi_is_multi_secondary(mod, io))
return 0;
if (rsnd_runtime_is_tdm_split(io))
chan = rsnd_io_converted_chan(io);
chan = rsnd_channel_normalization(chan);
if (ssi->usrcnt > 0) {
if (ssi->rate != rate) {
dev_err(dev, "SSI parent/child should use same rate\n");
return -EINVAL;
}
if (ssi->chan != chan) {
dev_err(dev, "SSI parent/child should use same chan\n");
return -EINVAL;
}
return 0;
}
main_rate = rsnd_ssi_clk_query(rdai, rate, chan, &idx);
if (!main_rate) {
dev_err(dev, "unsupported clock rate\n");
return -EIO;
}
ret = rsnd_adg_ssi_clk_try_start(mod, main_rate);
if (ret < 0)
return ret;
/*
* SSI clock will be output contiguously
* by below settings.
* This means, rsnd_ssi_master_clk_start()
* and rsnd_ssi_register_setup() are necessary
* for SSI parent
*
* SSICR : FORCE, SCKD, SWSD
* SSIWSR : CONT
*/
ssi->cr_clk = FORCE | rsnd_rdai_width_to_swl(rdai) |
SCKD | SWSD | CKDV(idx);
ssi->wsr = CONT;
ssi->rate = rate;
ssi->chan = chan;
dev_dbg(dev, "%s outputs %d chan %u Hz\n",
rsnd_mod_name(mod), chan, rate);
return 0;
}
static void rsnd_ssi_master_clk_stop(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
if (!rsnd_rdai_is_clk_master(rdai))
return;
if (!rsnd_ssi_can_output_clk(mod))
return;
if (ssi->usrcnt > 1)
return;
ssi->cr_clk = 0;
ssi->rate = 0;
ssi->chan = 0;
rsnd_adg_ssi_clk_stop(mod);
}
static void rsnd_ssi_config_init(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
struct device *dev = rsnd_priv_to_dev(priv);
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
u32 cr_own = ssi->cr_own;
u32 cr_mode = ssi->cr_mode;
u32 wsr = ssi->wsr;
int width;
int is_tdm, is_tdm_split;
is_tdm = rsnd_runtime_is_tdm(io);
is_tdm_split = rsnd_runtime_is_tdm_split(io);
if (is_tdm)
dev_dbg(dev, "TDM mode\n");
if (is_tdm_split)
dev_dbg(dev, "TDM Split mode\n");
cr_own |= FORCE | rsnd_rdai_width_to_swl(rdai);
if (rdai->bit_clk_inv)
cr_own |= SCKP;
if (rdai->frm_clk_inv && !is_tdm)
cr_own |= SWSP;
if (rdai->data_alignment)
cr_own |= SDTA;
if (rdai->sys_delay)
cr_own |= DEL;
/*
* TDM Mode
* see
* rsnd_ssiu_init_gen2()
*/
if (is_tdm || is_tdm_split) {
wsr |= WS_MODE;
cr_own |= CHNL_8;
}
/*
* We shouldn't exchange SWSP after running.
* This means, parent needs to care it.
*/
if (rsnd_ssi_is_parent(mod, io))
goto init_end;
if (rsnd_io_is_play(io))
cr_own |= TRMD;
cr_own &= ~DWL_MASK;
width = snd_pcm_format_width(runtime->format);
if (is_tdm_split) {
/*
* The SWL and DWL bits in SSICR should be fixed at 32-bit
* setting when TDM split mode.
* see datasheet
* Operation :: TDM Format Split Function (TDM Split Mode)
*/
width = 32;
}
switch (width) {
case 8:
cr_own |= DWL_8;
break;
case 16:
cr_own |= DWL_16;
break;
case 24:
cr_own |= DWL_24;
break;
case 32:
cr_own |= DWL_32;
break;
}
if (rsnd_ssi_is_dma_mode(mod)) {
cr_mode = UIEN | OIEN | /* over/under run */
DMEN; /* DMA : enable DMA */
} else {
cr_mode = DIEN; /* PIO : enable Data interrupt */
}
init_end:
ssi->cr_own = cr_own;
ssi->cr_mode = cr_mode;
ssi->wsr = wsr;
}
static void rsnd_ssi_register_setup(struct rsnd_mod *mod)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
rsnd_mod_write(mod, SSIWSR, ssi->wsr);
rsnd_mod_write(mod, SSICR, ssi->cr_own |
ssi->cr_clk |
ssi->cr_mode |
ssi->cr_en);
}
/*
* SSI mod common functions
*/
static int rsnd_ssi_init(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
int ret;
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
ret = rsnd_ssi_master_clk_start(mod, io);
if (ret < 0)
return ret;
ssi->usrcnt++;
rsnd_mod_power_on(mod);
rsnd_ssi_config_init(mod, io);
rsnd_ssi_register_setup(mod);
/* clear error status */
rsnd_ssi_status_clear(mod);
return 0;
}
static int rsnd_ssi_quit(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
struct device *dev = rsnd_priv_to_dev(priv);
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
if (!ssi->usrcnt) {
dev_err(dev, "%s usrcnt error\n", rsnd_mod_name(mod));
return -EIO;
}
rsnd_ssi_master_clk_stop(mod, io);
rsnd_mod_power_off(mod);
ssi->usrcnt--;
if (!ssi->usrcnt) {
ssi->cr_own = 0;
ssi->cr_mode = 0;
ssi->wsr = 0;
}
return 0;
}
static int rsnd_ssi_hw_params(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
unsigned int fmt_width = snd_pcm_format_width(params_format(params));
if (fmt_width > rdai->chan_width) {
struct rsnd_priv *priv = rsnd_io_to_priv(io);
struct device *dev = rsnd_priv_to_dev(priv);
dev_err(dev, "invalid combination of slot-width and format-data-width\n");
return -EINVAL;
}
return 0;
}
static int rsnd_ssi_start(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
/*
* EN will be set via SSIU :: SSI_CONTROL
* if Multi channel mode
*/
if (rsnd_ssi_multi_secondaries_runtime(io))
return 0;
/*
* EN is for data output.
* SSI parent EN is not needed.
*/
if (rsnd_ssi_is_parent(mod, io))
return 0;
ssi->cr_en = EN;
rsnd_mod_write(mod, SSICR, ssi->cr_own |
ssi->cr_clk |
ssi->cr_mode |
ssi->cr_en);
return 0;
}
static int rsnd_ssi_stop(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
u32 cr;
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
if (rsnd_ssi_is_parent(mod, io))
return 0;
cr = ssi->cr_own |
ssi->cr_clk;
/*
* disable all IRQ,
* Playback: Wait all data was sent
* Capture: It might not receave data. Do nothing
*/
if (rsnd_io_is_play(io)) {
rsnd_mod_write(mod, SSICR, cr | ssi->cr_en);
rsnd_ssi_status_check(mod, DIRQ);
}
/* In multi-SSI mode, stop is performed by setting ssi0129 in
* SSI_CONTROL to 0 (in rsnd_ssio_stop_gen2). Do nothing here.
*/
if (rsnd_ssi_multi_secondaries_runtime(io))
return 0;
/*
* disable SSI,
* and, wait idle state
*/
rsnd_mod_write(mod, SSICR, cr); /* disabled all */
rsnd_ssi_status_check(mod, IIRQ);
ssi->cr_en = 0;
return 0;
}
static int rsnd_ssi_irq(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv,
int enable)
{
u32 val = 0;
int is_tdm, is_tdm_split;
int id = rsnd_mod_id(mod);
is_tdm = rsnd_runtime_is_tdm(io);
is_tdm_split = rsnd_runtime_is_tdm_split(io);
if (rsnd_is_gen1(priv))
return 0;
if (rsnd_ssi_is_parent(mod, io))
return 0;
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
if (enable)
val = rsnd_ssi_is_dma_mode(mod) ? 0x0e000000 : 0x0f000000;
if (is_tdm || is_tdm_split) {
switch (id) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 9:
val |= 0x0000ff00;
break;
}
}
rsnd_mod_write(mod, SSI_INT_ENABLE, val);
return 0;
}
static bool rsnd_ssi_pio_interrupt(struct rsnd_mod *mod,
struct rsnd_dai_stream *io);
static void __rsnd_ssi_interrupt(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
int is_dma = rsnd_ssi_is_dma_mode(mod);
u32 status;
bool elapsed = false;
bool stop = false;
spin_lock(&priv->lock);
/* ignore all cases if not working */
if (!rsnd_io_is_working(io))
goto rsnd_ssi_interrupt_out;
status = rsnd_ssi_status_get(mod);
/* PIO only */
if (!is_dma && (status & DIRQ))
elapsed = rsnd_ssi_pio_interrupt(mod, io);
/* DMA only */
if (is_dma && (status & (UIRQ | OIRQ))) {
rsnd_print_irq_status(dev, "%s err status : 0x%08x\n",
rsnd_mod_name(mod), status);
stop = true;
}
stop |= rsnd_ssiu_busif_err_status_clear(mod);
rsnd_ssi_status_clear(mod);
rsnd_ssi_interrupt_out:
spin_unlock(&priv->lock);
if (elapsed)
rsnd_dai_period_elapsed(io);
if (stop)
snd_pcm_stop_xrun(io->substream);
}
static irqreturn_t rsnd_ssi_interrupt(int irq, void *data)
{
struct rsnd_mod *mod = data;
rsnd_mod_interrupt(mod, __rsnd_ssi_interrupt);
return IRQ_HANDLED;
}
static u32 *rsnd_ssi_get_status(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
enum rsnd_mod_type type)
{
/*
* SSIP (= SSI parent) needs to be special, otherwise,
* 2nd SSI might doesn't start. see also rsnd_mod_call()
*
* We can't include parent SSI status on SSI, because we don't know
* how many SSI requests parent SSI. Thus, it is localed on "io" now.
* ex) trouble case
* Playback: SSI0
* Capture : SSI1 (needs SSI0)
*
* 1) start Capture -> SSI0/SSI1 are started.
* 2) start Playback -> SSI0 doesn't work, because it is already
* marked as "started" on 1)
*
* OTOH, using each mod's status is good for MUX case.
* It doesn't need to start in 2nd start
* ex)
* IO-0: SRC0 -> CTU1 -+-> MUX -> DVC -> SSIU -> SSI0
* |
* IO-1: SRC1 -> CTU2 -+
*
* 1) start IO-0 -> start SSI0
* 2) start IO-1 -> SSI0 doesn't need to start, because it is
* already started on 1)
*/
if (type == RSND_MOD_SSIP)
return &io->parent_ssi_status;
return rsnd_mod_get_status(mod, io, type);
}
/*
* SSI PIO
*/
static void rsnd_ssi_parent_attach(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
if (!__rsnd_ssi_is_pin_sharing(mod))
return;
if (!rsnd_rdai_is_clk_master(rdai))
return;
if (rsnd_ssi_is_multi_secondary(mod, io))
return;
switch (rsnd_mod_id(mod)) {
case 1:
case 2:
case 9:
rsnd_dai_connect(rsnd_ssi_mod_get(priv, 0), io, RSND_MOD_SSIP);
break;
case 4:
rsnd_dai_connect(rsnd_ssi_mod_get(priv, 3), io, RSND_MOD_SSIP);
break;
case 8:
rsnd_dai_connect(rsnd_ssi_mod_get(priv, 7), io, RSND_MOD_SSIP);
break;
}
}
static int rsnd_ssi_pcm_new(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct snd_soc_pcm_runtime *rtd)
{
/*
* rsnd_rdai_is_clk_master() will be enabled after set_fmt,
* and, pcm_new will be called after it.
* This function reuse pcm_new at this point.
*/
rsnd_ssi_parent_attach(mod, io);
return 0;
}
static int rsnd_ssi_common_probe(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
int ret = 0;
/*
* SSIP/SSIU/IRQ are not needed on
* SSI Multi secondaries
*/
if (rsnd_ssi_is_multi_secondary(mod, io))
return 0;
/*
* It can't judge ssi parent at this point
* see rsnd_ssi_pcm_new()
*/
/*
* SSI might be called again as PIO fallback
* It is easy to manual handling for IRQ request/free
*
* OTOH, this function might be called many times if platform is
* using MIX. It needs xxx_attach() many times on xxx_probe().
* Because of it, we can't control .probe/.remove calling count by
* mod->status.
* But it don't need to call request_irq() many times.
* Let's control it by RSND_SSI_PROBED flag.
*/
if (!rsnd_flags_has(ssi, RSND_SSI_PROBED)) {
ret = request_irq(ssi->irq,
rsnd_ssi_interrupt,
IRQF_SHARED,
dev_name(dev), mod);
rsnd_flags_set(ssi, RSND_SSI_PROBED);
}
return ret;
}
static int rsnd_ssi_common_remove(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
struct rsnd_mod *pure_ssi_mod = rsnd_io_to_mod_ssi(io);
/* Do nothing if non SSI (= SSI parent, multi SSI) mod */
if (pure_ssi_mod != mod)
return 0;
/* PIO will request IRQ again */
if (rsnd_flags_has(ssi, RSND_SSI_PROBED)) {
free_irq(ssi->irq, mod);
rsnd_flags_del(ssi, RSND_SSI_PROBED);
}
return 0;
}
/*
* SSI PIO functions
*/
static bool rsnd_ssi_pio_interrupt(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
u32 *buf = (u32 *)(runtime->dma_area + ssi->byte_pos);
int shift = 0;
int byte_pos;
bool elapsed = false;
if (snd_pcm_format_width(runtime->format) == 24)
shift = 8;
/*
* 8/16/32 data can be assesse to TDR/RDR register
* directly as 32bit data
* see rsnd_ssi_init()
*/
if (rsnd_io_is_play(io))
rsnd_mod_write(mod, SSITDR, (*buf) << shift);
else
*buf = (rsnd_mod_read(mod, SSIRDR) >> shift);
byte_pos = ssi->byte_pos + sizeof(*buf);
if (byte_pos >= ssi->next_period_byte) {
int period_pos = byte_pos / ssi->byte_per_period;
if (period_pos >= runtime->periods) {
byte_pos = 0;
period_pos = 0;
}
ssi->next_period_byte = (period_pos + 1) * ssi->byte_per_period;
elapsed = true;
}
WRITE_ONCE(ssi->byte_pos, byte_pos);
return elapsed;
}
static int rsnd_ssi_pio_init(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
if (!rsnd_ssi_is_parent(mod, io)) {
ssi->byte_pos = 0;
ssi->byte_per_period = runtime->period_size *
runtime->channels *
samples_to_bytes(runtime, 1);
ssi->next_period_byte = ssi->byte_per_period;
}
return rsnd_ssi_init(mod, io, priv);
}
static int rsnd_ssi_pio_pointer(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
snd_pcm_uframes_t *pointer)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
*pointer = bytes_to_frames(runtime, READ_ONCE(ssi->byte_pos));
return 0;
}
static struct rsnd_mod_ops rsnd_ssi_pio_ops = {
.name = SSI_NAME,
.probe = rsnd_ssi_common_probe,
.remove = rsnd_ssi_common_remove,
.init = rsnd_ssi_pio_init,
.quit = rsnd_ssi_quit,
.start = rsnd_ssi_start,
.stop = rsnd_ssi_stop,
.irq = rsnd_ssi_irq,
.pointer = rsnd_ssi_pio_pointer,
.pcm_new = rsnd_ssi_pcm_new,
.hw_params = rsnd_ssi_hw_params,
.get_status = rsnd_ssi_get_status,
};
static int rsnd_ssi_dma_probe(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
int ret;
/*
* SSIP/SSIU/IRQ/DMA are not needed on
* SSI Multi secondaries
*/
if (rsnd_ssi_is_multi_secondary(mod, io))
return 0;
ret = rsnd_ssi_common_probe(mod, io, priv);
if (ret)
return ret;
/* SSI probe might be called many times in MUX multi path */
ret = rsnd_dma_attach(io, mod, &io->dma);
return ret;
}
static int rsnd_ssi_fallback(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct device *dev = rsnd_priv_to_dev(priv);
/*
* fallback to PIO
*
* SSI .probe might be called again.
* see
* rsnd_rdai_continuance_probe()
*/
mod->ops = &rsnd_ssi_pio_ops;
dev_info(dev, "%s fallback to PIO mode\n", rsnd_mod_name(mod));
return 0;
}
static struct dma_chan *rsnd_ssi_dma_req(struct rsnd_dai_stream *io,
struct rsnd_mod *mod)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
int is_play = rsnd_io_is_play(io);
char *name;
/*
* It should use "rcar_sound,ssiu" on DT.
* But, we need to keep compatibility for old version.
*
* If it has "rcar_sound.ssiu", it will be used.
* If not, "rcar_sound.ssi" will be used.
* see
* rsnd_ssiu_dma_req()
* rsnd_dma_of_path()
*/
if (rsnd_ssi_use_busif(io))
name = is_play ? "rxu" : "txu";
else
name = is_play ? "rx" : "tx";
return rsnd_dma_request_channel(rsnd_ssi_of_node(priv),
SSI_NAME, mod, name);
}
#ifdef CONFIG_DEBUG_FS
static void rsnd_ssi_debug_info(struct seq_file *m,
struct rsnd_dai_stream *io,
struct rsnd_mod *mod)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
seq_printf(m, "clock: %s\n", rsnd_rdai_is_clk_master(rdai) ?
"provider" : "consumer");
seq_printf(m, "bit_clk_inv: %d\n", rdai->bit_clk_inv);
seq_printf(m, "frm_clk_inv: %d\n", rdai->frm_clk_inv);
seq_printf(m, "pin share: %d\n", __rsnd_ssi_is_pin_sharing(mod));
seq_printf(m, "can out clk: %d\n", rsnd_ssi_can_output_clk(mod));
seq_printf(m, "multi secondary: %d\n", rsnd_ssi_is_multi_secondary(mod, io));
seq_printf(m, "tdm: %d, %d\n", rsnd_runtime_is_tdm(io),
rsnd_runtime_is_tdm_split(io));
seq_printf(m, "chan: %d\n", ssi->chan);
seq_printf(m, "user: %d\n", ssi->usrcnt);
rsnd_debugfs_mod_reg_show(m, mod, RSND_GEN2_SSI,
rsnd_mod_id(mod) * 0x40, 0x40);
}
#define DEBUG_INFO .debug_info = rsnd_ssi_debug_info
#else
#define DEBUG_INFO
#endif
static struct rsnd_mod_ops rsnd_ssi_dma_ops = {
.name = SSI_NAME,
.dma_req = rsnd_ssi_dma_req,
.probe = rsnd_ssi_dma_probe,
.remove = rsnd_ssi_common_remove,
.init = rsnd_ssi_init,
.quit = rsnd_ssi_quit,
.start = rsnd_ssi_start,
.stop = rsnd_ssi_stop,
.irq = rsnd_ssi_irq,
.pcm_new = rsnd_ssi_pcm_new,
.fallback = rsnd_ssi_fallback,
.hw_params = rsnd_ssi_hw_params,
.get_status = rsnd_ssi_get_status,
DEBUG_INFO
};
int rsnd_ssi_is_dma_mode(struct rsnd_mod *mod)
{
return mod->ops == &rsnd_ssi_dma_ops;
}
/*
* ssi mod function
*/
static void rsnd_ssi_connect(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
static const enum rsnd_mod_type types[] = {
RSND_MOD_SSI,
RSND_MOD_SSIM1,
RSND_MOD_SSIM2,
RSND_MOD_SSIM3,
};
enum rsnd_mod_type type;
int i;
/* try SSI -> SSIM1 -> SSIM2 -> SSIM3 */
for (i = 0; i < ARRAY_SIZE(types); i++) {
type = types[i];
if (!rsnd_io_to_mod(io, type)) {
rsnd_dai_connect(mod, io, type);
rsnd_rdai_channels_set(rdai, (i + 1) * 2);
rsnd_rdai_ssi_lane_set(rdai, (i + 1));
return;
}
}
}
void rsnd_parse_connect_ssi(struct rsnd_dai *rdai,
struct device_node *playback,
struct device_node *capture)
{
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
struct device *dev = rsnd_priv_to_dev(priv);
struct device_node *node;
struct device_node *np;
int i;
node = rsnd_ssi_of_node(priv);
if (!node)
return;
i = 0;
for_each_child_of_node(node, np) {
struct rsnd_mod *mod;
i = rsnd_node_fixed_index(dev, np, SSI_NAME, i);
if (i < 0) {
of_node_put(np);
break;
}
mod = rsnd_ssi_mod_get(priv, i);
if (np == playback)
rsnd_ssi_connect(mod, &rdai->playback);
if (np == capture)
rsnd_ssi_connect(mod, &rdai->capture);
i++;
}
of_node_put(node);
}
struct rsnd_mod *rsnd_ssi_mod_get(struct rsnd_priv *priv, int id)
{
if (WARN_ON(id < 0 || id >= rsnd_ssi_nr(priv)))
id = 0;
return rsnd_mod_get(rsnd_ssi_get(priv, id));
}
int __rsnd_ssi_is_pin_sharing(struct rsnd_mod *mod)
{
if (!mod)
return 0;
return !!(rsnd_flags_has(rsnd_mod_to_ssi(mod), RSND_SSI_CLK_PIN_SHARE));
}
int rsnd_ssi_probe(struct rsnd_priv *priv)
{
struct device_node *node;
struct device_node *np;
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_mod_ops *ops;
struct clk *clk;
struct rsnd_ssi *ssi;
char name[RSND_SSI_NAME_SIZE];
int i, nr, ret;
node = rsnd_ssi_of_node(priv);
if (!node)
return -EINVAL;
nr = rsnd_node_count(priv, node, SSI_NAME);
if (!nr) {
ret = -EINVAL;
goto rsnd_ssi_probe_done;
}
ssi = devm_kcalloc(dev, nr, sizeof(*ssi), GFP_KERNEL);
if (!ssi) {
ret = -ENOMEM;
goto rsnd_ssi_probe_done;
}
priv->ssi = ssi;
priv->ssi_nr = nr;
i = 0;
for_each_child_of_node(node, np) {
if (!of_device_is_available(np))
goto skip;
i = rsnd_node_fixed_index(dev, np, SSI_NAME, i);
if (i < 0) {
ret = -EINVAL;
of_node_put(np);
goto rsnd_ssi_probe_done;
}
ssi = rsnd_ssi_get(priv, i);
snprintf(name, RSND_SSI_NAME_SIZE, "%s.%d",
SSI_NAME, i);
clk = devm_clk_get(dev, name);
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
of_node_put(np);
goto rsnd_ssi_probe_done;
}
if (of_get_property(np, "shared-pin", NULL))
rsnd_flags_set(ssi, RSND_SSI_CLK_PIN_SHARE);
if (of_get_property(np, "no-busif", NULL))
rsnd_flags_set(ssi, RSND_SSI_NO_BUSIF);
ssi->irq = irq_of_parse_and_map(np, 0);
if (!ssi->irq) {
ret = -EINVAL;
of_node_put(np);
goto rsnd_ssi_probe_done;
}
if (of_property_read_bool(np, "pio-transfer"))
ops = &rsnd_ssi_pio_ops;
else
ops = &rsnd_ssi_dma_ops;
ret = rsnd_mod_init(priv, rsnd_mod_get(ssi), ops, clk,
RSND_MOD_SSI, i);
if (ret) {
of_node_put(np);
goto rsnd_ssi_probe_done;
}
skip:
i++;
}
ret = 0;
rsnd_ssi_probe_done:
of_node_put(node);
return ret;
}
void rsnd_ssi_remove(struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi;
int i;
for_each_rsnd_ssi(ssi, priv, i) {
rsnd_mod_quit(rsnd_mod_get(ssi));
}
}