287 lines
8.2 KiB
C
287 lines
8.2 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
|
||
|
/*
|
||
|
* Linux-specific definitions for managing interactions with Microsoft's
|
||
|
* Hyper-V hypervisor. The definitions in this file are architecture
|
||
|
* independent. See arch/<arch>/include/asm/mshyperv.h for definitions
|
||
|
* that are specific to architecture <arch>.
|
||
|
*
|
||
|
* Definitions that are specified in the Hyper-V Top Level Functional
|
||
|
* Spec (TLFS) should not go in this file, but should instead go in
|
||
|
* hyperv-tlfs.h.
|
||
|
*
|
||
|
* Copyright (C) 2019, Microsoft, Inc.
|
||
|
*
|
||
|
* Author : Michael Kelley <mikelley@microsoft.com>
|
||
|
*/
|
||
|
|
||
|
#ifndef _ASM_GENERIC_MSHYPERV_H
|
||
|
#define _ASM_GENERIC_MSHYPERV_H
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/nmi.h>
|
||
|
#include <asm/ptrace.h>
|
||
|
#include <asm/hyperv-tlfs.h>
|
||
|
|
||
|
struct ms_hyperv_info {
|
||
|
u32 features;
|
||
|
u32 priv_high;
|
||
|
u32 misc_features;
|
||
|
u32 hints;
|
||
|
u32 nested_features;
|
||
|
u32 max_vp_index;
|
||
|
u32 max_lp_index;
|
||
|
u32 isolation_config_a;
|
||
|
union {
|
||
|
u32 isolation_config_b;
|
||
|
struct {
|
||
|
u32 cvm_type : 4;
|
||
|
u32 reserved1 : 1;
|
||
|
u32 shared_gpa_boundary_active : 1;
|
||
|
u32 shared_gpa_boundary_bits : 6;
|
||
|
u32 reserved2 : 20;
|
||
|
};
|
||
|
};
|
||
|
u64 shared_gpa_boundary;
|
||
|
};
|
||
|
extern struct ms_hyperv_info ms_hyperv;
|
||
|
|
||
|
extern void * __percpu *hyperv_pcpu_input_arg;
|
||
|
extern void * __percpu *hyperv_pcpu_output_arg;
|
||
|
|
||
|
extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
|
||
|
extern u64 hv_do_fast_hypercall8(u16 control, u64 input8);
|
||
|
extern bool hv_isolation_type_snp(void);
|
||
|
|
||
|
/* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
|
||
|
static inline int hv_result(u64 status)
|
||
|
{
|
||
|
return status & HV_HYPERCALL_RESULT_MASK;
|
||
|
}
|
||
|
|
||
|
static inline bool hv_result_success(u64 status)
|
||
|
{
|
||
|
return hv_result(status) == HV_STATUS_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static inline unsigned int hv_repcomp(u64 status)
|
||
|
{
|
||
|
/* Bits [43:32] of status have 'Reps completed' data. */
|
||
|
return (status & HV_HYPERCALL_REP_COMP_MASK) >>
|
||
|
HV_HYPERCALL_REP_COMP_OFFSET;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Rep hypercalls. Callers of this functions are supposed to ensure that
|
||
|
* rep_count and varhead_size comply with Hyper-V hypercall definition.
|
||
|
*/
|
||
|
static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
|
||
|
void *input, void *output)
|
||
|
{
|
||
|
u64 control = code;
|
||
|
u64 status;
|
||
|
u16 rep_comp;
|
||
|
|
||
|
control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
|
||
|
control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
|
||
|
|
||
|
do {
|
||
|
status = hv_do_hypercall(control, input, output);
|
||
|
if (!hv_result_success(status))
|
||
|
return status;
|
||
|
|
||
|
rep_comp = hv_repcomp(status);
|
||
|
|
||
|
control &= ~HV_HYPERCALL_REP_START_MASK;
|
||
|
control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
|
||
|
|
||
|
touch_nmi_watchdog();
|
||
|
} while (rep_comp < rep_count);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* Generate the guest OS identifier as described in the Hyper-V TLFS */
|
||
|
static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
|
||
|
__u64 d_info2)
|
||
|
{
|
||
|
__u64 guest_id = 0;
|
||
|
|
||
|
guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
|
||
|
guest_id |= (d_info1 << 48);
|
||
|
guest_id |= (kernel_version << 16);
|
||
|
guest_id |= d_info2;
|
||
|
|
||
|
return guest_id;
|
||
|
}
|
||
|
|
||
|
/* Free the message slot and signal end-of-message if required */
|
||
|
static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
|
||
|
{
|
||
|
/*
|
||
|
* On crash we're reading some other CPU's message page and we need
|
||
|
* to be careful: this other CPU may already had cleared the header
|
||
|
* and the host may already had delivered some other message there.
|
||
|
* In case we blindly write msg->header.message_type we're going
|
||
|
* to lose it. We can still lose a message of the same type but
|
||
|
* we count on the fact that there can only be one
|
||
|
* CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
|
||
|
* on crash.
|
||
|
*/
|
||
|
if (cmpxchg(&msg->header.message_type, old_msg_type,
|
||
|
HVMSG_NONE) != old_msg_type)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* The cmxchg() above does an implicit memory barrier to
|
||
|
* ensure the write to MessageType (ie set to
|
||
|
* HVMSG_NONE) happens before we read the
|
||
|
* MessagePending and EOMing. Otherwise, the EOMing
|
||
|
* will not deliver any more messages since there is
|
||
|
* no empty slot
|
||
|
*/
|
||
|
if (msg->header.message_flags.msg_pending) {
|
||
|
/*
|
||
|
* This will cause message queue rescan to
|
||
|
* possibly deliver another msg from the
|
||
|
* hypervisor
|
||
|
*/
|
||
|
hv_set_register(HV_REGISTER_EOM, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void hv_setup_vmbus_handler(void (*handler)(void));
|
||
|
void hv_remove_vmbus_handler(void);
|
||
|
void hv_setup_stimer0_handler(void (*handler)(void));
|
||
|
void hv_remove_stimer0_handler(void);
|
||
|
|
||
|
void hv_setup_kexec_handler(void (*handler)(void));
|
||
|
void hv_remove_kexec_handler(void);
|
||
|
void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
|
||
|
void hv_remove_crash_handler(void);
|
||
|
|
||
|
extern int vmbus_interrupt;
|
||
|
extern int vmbus_irq;
|
||
|
|
||
|
extern bool hv_root_partition;
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_HYPERV)
|
||
|
/*
|
||
|
* Hypervisor's notion of virtual processor ID is different from
|
||
|
* Linux' notion of CPU ID. This information can only be retrieved
|
||
|
* in the context of the calling CPU. Setup a map for easy access
|
||
|
* to this information.
|
||
|
*/
|
||
|
extern u32 *hv_vp_index;
|
||
|
extern u32 hv_max_vp_index;
|
||
|
|
||
|
extern u64 (*hv_read_reference_counter)(void);
|
||
|
|
||
|
/* Sentinel value for an uninitialized entry in hv_vp_index array */
|
||
|
#define VP_INVAL U32_MAX
|
||
|
|
||
|
int __init hv_common_init(void);
|
||
|
void __init hv_common_free(void);
|
||
|
int hv_common_cpu_init(unsigned int cpu);
|
||
|
int hv_common_cpu_die(unsigned int cpu);
|
||
|
|
||
|
void *hv_alloc_hyperv_page(void);
|
||
|
void *hv_alloc_hyperv_zeroed_page(void);
|
||
|
void hv_free_hyperv_page(unsigned long addr);
|
||
|
|
||
|
/**
|
||
|
* hv_cpu_number_to_vp_number() - Map CPU to VP.
|
||
|
* @cpu_number: CPU number in Linux terms
|
||
|
*
|
||
|
* This function returns the mapping between the Linux processor
|
||
|
* number and the hypervisor's virtual processor number, useful
|
||
|
* in making hypercalls and such that talk about specific
|
||
|
* processors.
|
||
|
*
|
||
|
* Return: Virtual processor number in Hyper-V terms
|
||
|
*/
|
||
|
static inline int hv_cpu_number_to_vp_number(int cpu_number)
|
||
|
{
|
||
|
return hv_vp_index[cpu_number];
|
||
|
}
|
||
|
|
||
|
static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
|
||
|
const struct cpumask *cpus,
|
||
|
bool exclude_self)
|
||
|
{
|
||
|
int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
|
||
|
int this_cpu = smp_processor_id();
|
||
|
|
||
|
/* valid_bank_mask can represent up to 64 banks */
|
||
|
if (hv_max_vp_index / 64 >= 64)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
|
||
|
* structs are not cleared between calls, we risk flushing unneeded
|
||
|
* vCPUs otherwise.
|
||
|
*/
|
||
|
for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++)
|
||
|
vpset->bank_contents[vcpu_bank] = 0;
|
||
|
|
||
|
/*
|
||
|
* Some banks may end up being empty but this is acceptable.
|
||
|
*/
|
||
|
for_each_cpu(cpu, cpus) {
|
||
|
if (exclude_self && cpu == this_cpu)
|
||
|
continue;
|
||
|
vcpu = hv_cpu_number_to_vp_number(cpu);
|
||
|
if (vcpu == VP_INVAL)
|
||
|
return -1;
|
||
|
vcpu_bank = vcpu / 64;
|
||
|
vcpu_offset = vcpu % 64;
|
||
|
__set_bit(vcpu_offset, (unsigned long *)
|
||
|
&vpset->bank_contents[vcpu_bank]);
|
||
|
if (vcpu_bank >= nr_bank)
|
||
|
nr_bank = vcpu_bank + 1;
|
||
|
}
|
||
|
vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
|
||
|
return nr_bank;
|
||
|
}
|
||
|
|
||
|
static inline int cpumask_to_vpset(struct hv_vpset *vpset,
|
||
|
const struct cpumask *cpus)
|
||
|
{
|
||
|
return __cpumask_to_vpset(vpset, cpus, false);
|
||
|
}
|
||
|
|
||
|
static inline int cpumask_to_vpset_noself(struct hv_vpset *vpset,
|
||
|
const struct cpumask *cpus)
|
||
|
{
|
||
|
WARN_ON_ONCE(preemptible());
|
||
|
return __cpumask_to_vpset(vpset, cpus, true);
|
||
|
}
|
||
|
|
||
|
void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
|
||
|
bool hv_is_hyperv_initialized(void);
|
||
|
bool hv_is_hibernation_supported(void);
|
||
|
enum hv_isolation_type hv_get_isolation_type(void);
|
||
|
bool hv_is_isolation_supported(void);
|
||
|
bool hv_isolation_type_snp(void);
|
||
|
u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
|
||
|
void hyperv_cleanup(void);
|
||
|
bool hv_query_ext_cap(u64 cap_query);
|
||
|
void hv_setup_dma_ops(struct device *dev, bool coherent);
|
||
|
void *hv_map_memory(void *addr, unsigned long size);
|
||
|
void hv_unmap_memory(void *addr);
|
||
|
#else /* CONFIG_HYPERV */
|
||
|
static inline bool hv_is_hyperv_initialized(void) { return false; }
|
||
|
static inline bool hv_is_hibernation_supported(void) { return false; }
|
||
|
static inline void hyperv_cleanup(void) {}
|
||
|
static inline bool hv_is_isolation_supported(void) { return false; }
|
||
|
static inline enum hv_isolation_type hv_get_isolation_type(void)
|
||
|
{
|
||
|
return HV_ISOLATION_TYPE_NONE;
|
||
|
}
|
||
|
#endif /* CONFIG_HYPERV */
|
||
|
|
||
|
#endif
|