linux/linux-5.18.11/fs/xfs/libxfs/xfs_attr.h

500 lines
19 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2000,2002-2003,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#ifndef __XFS_ATTR_H__
#define __XFS_ATTR_H__
struct xfs_inode;
struct xfs_da_args;
struct xfs_attr_list_context;
/*
* Large attribute lists are structured around Btrees where all the data
* elements are in the leaf nodes. Attribute names are hashed into an int,
* then that int is used as the index into the Btree. Since the hashval
* of an attribute name may not be unique, we may have duplicate keys.
* The internal links in the Btree are logical block offsets into the file.
*
* Small attribute lists use a different format and are packed as tightly
* as possible so as to fit into the literal area of the inode.
*/
/*
* The maximum size (into the kernel or returned from the kernel) of an
* attribute value or the buffer used for an attr_list() call. Larger
* sizes will result in an ERANGE return code.
*/
#define ATTR_MAX_VALUELEN (64*1024) /* max length of a value */
/*
* Kernel-internal version of the attrlist cursor.
*/
struct xfs_attrlist_cursor_kern {
__u32 hashval; /* hash value of next entry to add */
__u32 blkno; /* block containing entry (suggestion) */
__u32 offset; /* offset in list of equal-hashvals */
__u16 pad1; /* padding to match user-level */
__u8 pad2; /* padding to match user-level */
__u8 initted; /* T/F: cursor has been initialized */
};
/*========================================================================
* Structure used to pass context around among the routines.
*========================================================================*/
/* void; state communicated via *context */
typedef void (*put_listent_func_t)(struct xfs_attr_list_context *, int,
unsigned char *, int, int);
struct xfs_attr_list_context {
struct xfs_trans *tp;
struct xfs_inode *dp; /* inode */
struct xfs_attrlist_cursor_kern cursor; /* position in list */
void *buffer; /* output buffer */
/*
* Abort attribute list iteration if non-zero. Can be used to pass
* error values to the xfs_attr_list caller.
*/
int seen_enough;
bool allow_incomplete;
ssize_t count; /* num used entries */
int dupcnt; /* count dup hashvals seen */
int bufsize; /* total buffer size */
int firstu; /* first used byte in buffer */
unsigned int attr_filter; /* XFS_ATTR_{ROOT,SECURE} */
int resynch; /* T/F: resynch with cursor */
put_listent_func_t put_listent; /* list output fmt function */
int index; /* index into output buffer */
};
/*
* ========================================================================
* Structure used to pass context around among the delayed routines.
* ========================================================================
*/
/*
* Below is a state machine diagram for attr remove operations. The XFS_DAS_*
* states indicate places where the function would return -EAGAIN, and then
* immediately resume from after being called by the calling function. States
* marked as a "subroutine state" indicate that they belong to a subroutine, and
* so the calling function needs to pass them back to that subroutine to allow
* it to finish where it left off. But they otherwise do not have a role in the
* calling function other than just passing through.
*
* xfs_attr_remove_iter()
*
* v
* have attr to remove? n> done
*
* y
*
* v
* are we short form? y> xfs_attr_shortform_remove > done
*
* n
*
* V
* are we leaf form? y> xfs_attr_leaf_removename > done
*
* n
*
* V
* need to setup state?
*
* n y
*
* v
* find attr and get state
* attr has remote blks? n
* v
* find and invalidate
* y the remote blocks.
* mark attr incomplete
*
*
*
* v
* Have remote blks to remove? y
* ^ remove the blks
*
* v
* XFS_DAS_RMTBLK <n done?
* re-enter with
* one less blk to y
* remove
* V
* refill the state
* n
* v
* XFS_DAS_RM_NAME
*
*
*
* v
* remove leaf and
* update hash with
* xfs_attr_node_remove_cleanup
*
* v
* need to
* shrink tree? n
*
* y
*
* v
* join leaf
*
* v
* XFS_DAS_RM_SHRINK
*
* v
* do the shrink
*
* v
* free state <
*
* v
* done
*
*
* Below is a state machine diagram for attr set operations.
*
* It seems the challenge with understanding this system comes from trying to
* absorb the state machine all at once, when really one should only be looking
* at it with in the context of a single function. Once a state sensitive
* function is called, the idea is that it "takes ownership" of the
* state machine. It isn't concerned with the states that may have belonged to
* it's calling parent. Only the states relevant to itself or any other
* subroutines there in. Once a calling function hands off the state machine to
* a subroutine, it needs to respect the simple rule that it doesn't "own" the
* state machine anymore, and it's the responsibility of that calling function
* to propagate the -EAGAIN back up the call stack. Upon reentry, it is
* committed to re-calling that subroutine until it returns something other than
* -EAGAIN. Once that subroutine signals completion (by returning anything other
* than -EAGAIN), the calling function can resume using the state machine.
*
* xfs_attr_set_iter()
*
* v
* y has an attr fork?
* |
* n
* |
* V
* add a fork
*
*
*
* V
* is shortform?
*
* y
*
* V
* xfs_attr_set_fmt
* |
* V
* xfs_attr_try_sf_addname
*
* V
* had enough y> done
* space?
* n
* n
*
* V
* transform to leaf
*
* V
* hold the leaf buffer
*
* V
* return -EAGAIN
* Re-enter in
* leaf form
*
* > release leaf buffer
* if needed
*
* V
* n fork has
* only 1 blk?
*
* y
*
* v
* xfs_attr_leaf_try_add()
*
* v
* had enough y
* space?
*
* n
*
* v
* return -EAGAIN
* re-enter in
* node form
*
*
*
* V
* xfs_attr_node_addname_find_attr
* determines if this
* is create or rename
* find space to store attr
*
* v
* xfs_attr_node_addname
*
* v
* fits in a node leaf? n
* ^ v
* single leaf node?
*
* y y n
*
* v v v
* update grow the leaf split if
* hashvals return -EAGAIN needed
* retry leaf add
* on reentry
*
*
* v
* need to alloc
* y or flip flag?
*
* n
*
* v
* done
*
*
* XFS_DAS_FOUND_LBLK <
*
* V
* xfs_attr_leaf_addname()
*
* v
* first time through?
*
* y
*
* n v
* if we have rmt blks
* find space for them
*
*
*
* v
* still have
* n blks to alloc? <
*
* y
*
* v
* alloc one blk
* return -EAGAIN
* re-enter with one
* less blk to alloc
*
*
* > set the rmt
* value
*
* v
* was this
* a rename? n
*
* y
*
* v
* flip incomplete
* flag
*
* v
* XFS_DAS_FLIP_LFLAG
*
* v
* need to remove
* old bks? n
*
* y
*
* V
* remove
* > old blks
*
* XFS_DAS_RM_LBLK
* ^
* v
* y more to
* remove?
*
* n
*
* v
* XFS_DAS_RD_LEAF
*
* v
* remove leaf
*
* v
* shrink to sf
* if needed
*
* v
* done <
*
* > XFS_DAS_FOUND_NBLK
*
* v
* n need to
* alloc blks?
*
* y
*
* v
* find space
*
* v
* >XFS_DAS_ALLOC_NODE
*
* v
* alloc blk
*
* v
* y need to alloc
* more blocks?
*
* n
*
* v
* set the rmt value
*
* v
* was this
* > a rename? n
*
* y
*
* v
* flip incomplete
* flag
*
* v
* XFS_DAS_FLIP_NFLAG
*
* v
* need to
* remove blks? n
*
* y
*
* v
* remove
* > old blks
*
* XFS_DAS_RM_NBLK
* ^
* v
* y more to
* remove
*
* n
*
* v
* XFS_DAS_CLR_FLAG
*
* v
* clear flags
*
*
*
* v
* done
*/
/*
* Enum values for xfs_delattr_context.da_state
*
* These values are used by delayed attribute operations to keep track of where
* they were before they returned -EAGAIN. A return code of -EAGAIN signals the
* calling function to roll the transaction, and then call the subroutine to
* finish the operation. The enum is then used by the subroutine to jump back
* to where it was and resume executing where it left off.
*/
enum xfs_delattr_state {
XFS_DAS_UNINIT = 0, /* No state has been set yet */
XFS_DAS_RMTBLK, /* Removing remote blks */
XFS_DAS_RM_NAME, /* Remove attr name */
XFS_DAS_RM_SHRINK, /* We are shrinking the tree */
XFS_DAS_FOUND_LBLK, /* We found leaf blk for attr */
XFS_DAS_FOUND_NBLK, /* We found node blk for attr */
XFS_DAS_FLIP_LFLAG, /* Flipped leaf INCOMPLETE attr flag */
XFS_DAS_RM_LBLK, /* A rename is removing leaf blocks */
XFS_DAS_RD_LEAF, /* Read in the new leaf */
XFS_DAS_ALLOC_NODE, /* We are allocating node blocks */
XFS_DAS_FLIP_NFLAG, /* Flipped node INCOMPLETE attr flag */
XFS_DAS_RM_NBLK, /* A rename is removing node blocks */
XFS_DAS_CLR_FLAG, /* Clear incomplete flag */
};
/*
* Defines for xfs_delattr_context.flags
*/
#define XFS_DAC_DEFER_FINISH 0x01 /* finish the transaction */
#define XFS_DAC_LEAF_ADDNAME_INIT 0x02 /* xfs_attr_leaf_addname init*/
/*
* Context used for keeping track of delayed attribute operations
*/
struct xfs_delattr_context {
struct xfs_da_args *da_args;
/* Used in xfs_attr_rmtval_set_blk to roll through allocating blocks */
struct xfs_bmbt_irec map;
xfs_dablk_t lblkno;
int blkcnt;
/* Used in xfs_attr_node_removename to roll through removing blocks */
struct xfs_da_state *da_state;
/* Used to keep track of current state of delayed operation */
unsigned int flags;
enum xfs_delattr_state dela_state;
};
/*========================================================================
* Function prototypes for the kernel.
*========================================================================*/
/*
* Overall external interface routines.
*/
int xfs_attr_inactive(struct xfs_inode *dp);
int xfs_attr_list_ilocked(struct xfs_attr_list_context *);
int xfs_attr_list(struct xfs_attr_list_context *);
int xfs_inode_hasattr(struct xfs_inode *ip);
bool xfs_attr_is_leaf(struct xfs_inode *ip);
int xfs_attr_get_ilocked(struct xfs_da_args *args);
int xfs_attr_get(struct xfs_da_args *args);
int xfs_attr_set(struct xfs_da_args *args);
int xfs_attr_set_args(struct xfs_da_args *args);
int xfs_attr_remove_args(struct xfs_da_args *args);
int xfs_attr_remove_iter(struct xfs_delattr_context *dac);
bool xfs_attr_namecheck(const void *name, size_t length);
void xfs_delattr_context_init(struct xfs_delattr_context *dac,
struct xfs_da_args *args);
#endif /* __XFS_ATTR_H__ */