344 lines
9.6 KiB
C
344 lines
9.6 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||
|
/*
|
||
|
* decompress_common.h - Code shared by the XPRESS and LZX decompressors
|
||
|
*
|
||
|
* Copyright (C) 2015 Eric Biggers
|
||
|
*/
|
||
|
|
||
|
#ifndef _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H
|
||
|
#define _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H
|
||
|
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/compiler.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <asm/unaligned.h>
|
||
|
|
||
|
|
||
|
/* "Force inline" macro (not required, but helpful for performance) */
|
||
|
#define forceinline __always_inline
|
||
|
|
||
|
/* Enable whole-word match copying on selected architectures */
|
||
|
#if defined(__i386__) || defined(__x86_64__) || defined(__ARM_FEATURE_UNALIGNED)
|
||
|
# define FAST_UNALIGNED_ACCESS
|
||
|
#endif
|
||
|
|
||
|
/* Size of a machine word */
|
||
|
#define WORDBYTES (sizeof(size_t))
|
||
|
|
||
|
static forceinline void
|
||
|
copy_unaligned_word(const void *src, void *dst)
|
||
|
{
|
||
|
put_unaligned(get_unaligned((const size_t *)src), (size_t *)dst);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Generate a "word" with platform-dependent size whose bytes all contain the
|
||
|
* value 'b'.
|
||
|
*/
|
||
|
static forceinline size_t repeat_byte(u8 b)
|
||
|
{
|
||
|
size_t v;
|
||
|
|
||
|
v = b;
|
||
|
v |= v << 8;
|
||
|
v |= v << 16;
|
||
|
v |= v << ((WORDBYTES == 8) ? 32 : 0);
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
/* Structure that encapsulates a block of in-memory data being interpreted as a
|
||
|
* stream of bits, optionally with interwoven literal bytes. Bits are assumed
|
||
|
* to be stored in little endian 16-bit coding units, with the bits ordered high
|
||
|
* to low.
|
||
|
*/
|
||
|
struct input_bitstream {
|
||
|
|
||
|
/* Bits that have been read from the input buffer. The bits are
|
||
|
* left-justified; the next bit is always bit 31.
|
||
|
*/
|
||
|
u32 bitbuf;
|
||
|
|
||
|
/* Number of bits currently held in @bitbuf. */
|
||
|
u32 bitsleft;
|
||
|
|
||
|
/* Pointer to the next byte to be retrieved from the input buffer. */
|
||
|
const u8 *next;
|
||
|
|
||
|
/* Pointer to just past the end of the input buffer. */
|
||
|
const u8 *end;
|
||
|
};
|
||
|
|
||
|
/* Initialize a bitstream to read from the specified input buffer. */
|
||
|
static forceinline void init_input_bitstream(struct input_bitstream *is,
|
||
|
const void *buffer, u32 size)
|
||
|
{
|
||
|
is->bitbuf = 0;
|
||
|
is->bitsleft = 0;
|
||
|
is->next = buffer;
|
||
|
is->end = is->next + size;
|
||
|
}
|
||
|
|
||
|
/* Ensure the bit buffer variable for the bitstream contains at least @num_bits
|
||
|
* bits. Following this, bitstream_peek_bits() and/or bitstream_remove_bits()
|
||
|
* may be called on the bitstream to peek or remove up to @num_bits bits. Note
|
||
|
* that @num_bits must be <= 16.
|
||
|
*/
|
||
|
static forceinline void bitstream_ensure_bits(struct input_bitstream *is,
|
||
|
u32 num_bits)
|
||
|
{
|
||
|
if (is->bitsleft < num_bits) {
|
||
|
if (is->end - is->next >= 2) {
|
||
|
is->bitbuf |= (u32)get_unaligned_le16(is->next)
|
||
|
<< (16 - is->bitsleft);
|
||
|
is->next += 2;
|
||
|
}
|
||
|
is->bitsleft += 16;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Return the next @num_bits bits from the bitstream, without removing them.
|
||
|
* There must be at least @num_bits remaining in the buffer variable, from a
|
||
|
* previous call to bitstream_ensure_bits().
|
||
|
*/
|
||
|
static forceinline u32
|
||
|
bitstream_peek_bits(const struct input_bitstream *is, const u32 num_bits)
|
||
|
{
|
||
|
return (is->bitbuf >> 1) >> (sizeof(is->bitbuf) * 8 - num_bits - 1);
|
||
|
}
|
||
|
|
||
|
/* Remove @num_bits from the bitstream. There must be at least @num_bits
|
||
|
* remaining in the buffer variable, from a previous call to
|
||
|
* bitstream_ensure_bits().
|
||
|
*/
|
||
|
static forceinline void
|
||
|
bitstream_remove_bits(struct input_bitstream *is, u32 num_bits)
|
||
|
{
|
||
|
is->bitbuf <<= num_bits;
|
||
|
is->bitsleft -= num_bits;
|
||
|
}
|
||
|
|
||
|
/* Remove and return @num_bits bits from the bitstream. There must be at least
|
||
|
* @num_bits remaining in the buffer variable, from a previous call to
|
||
|
* bitstream_ensure_bits().
|
||
|
*/
|
||
|
static forceinline u32
|
||
|
bitstream_pop_bits(struct input_bitstream *is, u32 num_bits)
|
||
|
{
|
||
|
u32 bits = bitstream_peek_bits(is, num_bits);
|
||
|
|
||
|
bitstream_remove_bits(is, num_bits);
|
||
|
return bits;
|
||
|
}
|
||
|
|
||
|
/* Read and return the next @num_bits bits from the bitstream. */
|
||
|
static forceinline u32
|
||
|
bitstream_read_bits(struct input_bitstream *is, u32 num_bits)
|
||
|
{
|
||
|
bitstream_ensure_bits(is, num_bits);
|
||
|
return bitstream_pop_bits(is, num_bits);
|
||
|
}
|
||
|
|
||
|
/* Read and return the next literal byte embedded in the bitstream. */
|
||
|
static forceinline u8
|
||
|
bitstream_read_byte(struct input_bitstream *is)
|
||
|
{
|
||
|
if (unlikely(is->end == is->next))
|
||
|
return 0;
|
||
|
return *is->next++;
|
||
|
}
|
||
|
|
||
|
/* Read and return the next 16-bit integer embedded in the bitstream. */
|
||
|
static forceinline u16
|
||
|
bitstream_read_u16(struct input_bitstream *is)
|
||
|
{
|
||
|
u16 v;
|
||
|
|
||
|
if (unlikely(is->end - is->next < 2))
|
||
|
return 0;
|
||
|
v = get_unaligned_le16(is->next);
|
||
|
is->next += 2;
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
/* Read and return the next 32-bit integer embedded in the bitstream. */
|
||
|
static forceinline u32
|
||
|
bitstream_read_u32(struct input_bitstream *is)
|
||
|
{
|
||
|
u32 v;
|
||
|
|
||
|
if (unlikely(is->end - is->next < 4))
|
||
|
return 0;
|
||
|
v = get_unaligned_le32(is->next);
|
||
|
is->next += 4;
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
/* Read into @dst_buffer an array of literal bytes embedded in the bitstream.
|
||
|
* Return either a pointer to the byte past the last written, or NULL if the
|
||
|
* read overflows the input buffer.
|
||
|
*/
|
||
|
static forceinline void *bitstream_read_bytes(struct input_bitstream *is,
|
||
|
void *dst_buffer, size_t count)
|
||
|
{
|
||
|
if ((size_t)(is->end - is->next) < count)
|
||
|
return NULL;
|
||
|
memcpy(dst_buffer, is->next, count);
|
||
|
is->next += count;
|
||
|
return (u8 *)dst_buffer + count;
|
||
|
}
|
||
|
|
||
|
/* Align the input bitstream on a coding-unit boundary. */
|
||
|
static forceinline void bitstream_align(struct input_bitstream *is)
|
||
|
{
|
||
|
is->bitsleft = 0;
|
||
|
is->bitbuf = 0;
|
||
|
}
|
||
|
|
||
|
extern int make_huffman_decode_table(u16 decode_table[], const u32 num_syms,
|
||
|
const u32 num_bits, const u8 lens[],
|
||
|
const u32 max_codeword_len,
|
||
|
u16 working_space[]);
|
||
|
|
||
|
|
||
|
/* Reads and returns the next Huffman-encoded symbol from a bitstream. If the
|
||
|
* input data is exhausted, the Huffman symbol is decoded as if the missing bits
|
||
|
* are all zeroes.
|
||
|
*/
|
||
|
static forceinline u32 read_huffsym(struct input_bitstream *istream,
|
||
|
const u16 decode_table[],
|
||
|
u32 table_bits,
|
||
|
u32 max_codeword_len)
|
||
|
{
|
||
|
u32 entry;
|
||
|
u32 key_bits;
|
||
|
|
||
|
bitstream_ensure_bits(istream, max_codeword_len);
|
||
|
|
||
|
/* Index the decode table by the next table_bits bits of the input. */
|
||
|
key_bits = bitstream_peek_bits(istream, table_bits);
|
||
|
entry = decode_table[key_bits];
|
||
|
if (entry < 0xC000) {
|
||
|
/* Fast case: The decode table directly provided the
|
||
|
* symbol and codeword length. The low 11 bits are the
|
||
|
* symbol, and the high 5 bits are the codeword length.
|
||
|
*/
|
||
|
bitstream_remove_bits(istream, entry >> 11);
|
||
|
return entry & 0x7FF;
|
||
|
}
|
||
|
/* Slow case: The codeword for the symbol is longer than
|
||
|
* table_bits, so the symbol does not have an entry
|
||
|
* directly in the first (1 << table_bits) entries of the
|
||
|
* decode table. Traverse the appropriate binary tree
|
||
|
* bit-by-bit to decode the symbol.
|
||
|
*/
|
||
|
bitstream_remove_bits(istream, table_bits);
|
||
|
do {
|
||
|
key_bits = (entry & 0x3FFF) + bitstream_pop_bits(istream, 1);
|
||
|
} while ((entry = decode_table[key_bits]) >= 0xC000);
|
||
|
return entry;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Copy an LZ77 match at (dst - offset) to dst.
|
||
|
*
|
||
|
* The length and offset must be already validated --- that is, (dst - offset)
|
||
|
* can't underrun the output buffer, and (dst + length) can't overrun the output
|
||
|
* buffer. Also, the length cannot be 0.
|
||
|
*
|
||
|
* @bufend points to the byte past the end of the output buffer. This function
|
||
|
* won't write any data beyond this position.
|
||
|
*
|
||
|
* Returns dst + length.
|
||
|
*/
|
||
|
static forceinline u8 *lz_copy(u8 *dst, u32 length, u32 offset, const u8 *bufend,
|
||
|
u32 min_length)
|
||
|
{
|
||
|
const u8 *src = dst - offset;
|
||
|
|
||
|
/*
|
||
|
* Try to copy one machine word at a time. On i386 and x86_64 this is
|
||
|
* faster than copying one byte at a time, unless the data is
|
||
|
* near-random and all the matches have very short lengths. Note that
|
||
|
* since this requires unaligned memory accesses, it won't necessarily
|
||
|
* be faster on every architecture.
|
||
|
*
|
||
|
* Also note that we might copy more than the length of the match. For
|
||
|
* example, if a word is 8 bytes and the match is of length 5, then
|
||
|
* we'll simply copy 8 bytes. This is okay as long as we don't write
|
||
|
* beyond the end of the output buffer, hence the check for (bufend -
|
||
|
* end >= WORDBYTES - 1).
|
||
|
*/
|
||
|
#ifdef FAST_UNALIGNED_ACCESS
|
||
|
u8 * const end = dst + length;
|
||
|
|
||
|
if (bufend - end >= (ptrdiff_t)(WORDBYTES - 1)) {
|
||
|
|
||
|
if (offset >= WORDBYTES) {
|
||
|
/* The source and destination words don't overlap. */
|
||
|
|
||
|
/* To improve branch prediction, one iteration of this
|
||
|
* loop is unrolled. Most matches are short and will
|
||
|
* fail the first check. But if that check passes, then
|
||
|
* it becomes increasing likely that the match is long
|
||
|
* and we'll need to continue copying.
|
||
|
*/
|
||
|
|
||
|
copy_unaligned_word(src, dst);
|
||
|
src += WORDBYTES;
|
||
|
dst += WORDBYTES;
|
||
|
|
||
|
if (dst < end) {
|
||
|
do {
|
||
|
copy_unaligned_word(src, dst);
|
||
|
src += WORDBYTES;
|
||
|
dst += WORDBYTES;
|
||
|
} while (dst < end);
|
||
|
}
|
||
|
return end;
|
||
|
} else if (offset == 1) {
|
||
|
|
||
|
/* Offset 1 matches are equivalent to run-length
|
||
|
* encoding of the previous byte. This case is common
|
||
|
* if the data contains many repeated bytes.
|
||
|
*/
|
||
|
size_t v = repeat_byte(*(dst - 1));
|
||
|
|
||
|
do {
|
||
|
put_unaligned(v, (size_t *)dst);
|
||
|
src += WORDBYTES;
|
||
|
dst += WORDBYTES;
|
||
|
} while (dst < end);
|
||
|
return end;
|
||
|
}
|
||
|
/*
|
||
|
* We don't bother with special cases for other 'offset <
|
||
|
* WORDBYTES', which are usually rarer than 'offset == 1'. Extra
|
||
|
* checks will just slow things down. Actually, it's possible
|
||
|
* to handle all the 'offset < WORDBYTES' cases using the same
|
||
|
* code, but it still becomes more complicated doesn't seem any
|
||
|
* faster overall; it definitely slows down the more common
|
||
|
* 'offset == 1' case.
|
||
|
*/
|
||
|
}
|
||
|
#endif /* FAST_UNALIGNED_ACCESS */
|
||
|
|
||
|
/* Fall back to a bytewise copy. */
|
||
|
|
||
|
if (min_length >= 2) {
|
||
|
*dst++ = *src++;
|
||
|
length--;
|
||
|
}
|
||
|
if (min_length >= 3) {
|
||
|
*dst++ = *src++;
|
||
|
length--;
|
||
|
}
|
||
|
do {
|
||
|
*dst++ = *src++;
|
||
|
} while (--length);
|
||
|
|
||
|
return dst;
|
||
|
}
|
||
|
|
||
|
#endif /* _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H */
|