linux/linux-5.18.11/drivers/scsi/csiostor/csio_hw.c

4435 lines
112 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
/*
* This file is part of the Chelsio FCoE driver for Linux.
*
* Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/firmware.h>
#include <linux/stddef.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/compiler.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include "csio_hw.h"
#include "csio_lnode.h"
#include "csio_rnode.h"
int csio_dbg_level = 0xFEFF;
unsigned int csio_port_mask = 0xf;
/* Default FW event queue entries. */
static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
/* Default MSI param level */
int csio_msi = 2;
/* FCoE function instances */
static int dev_num;
/* FCoE Adapter types & its description */
static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
};
static void csio_mgmtm_cleanup(struct csio_mgmtm *);
static void csio_hw_mbm_cleanup(struct csio_hw *);
/* State machine forward declarations */
static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
static void csio_hw_initialize(struct csio_hw *hw);
static void csio_evtq_stop(struct csio_hw *hw);
static void csio_evtq_start(struct csio_hw *hw);
int csio_is_hw_ready(struct csio_hw *hw)
{
return csio_match_state(hw, csio_hws_ready);
}
int csio_is_hw_removing(struct csio_hw *hw)
{
return csio_match_state(hw, csio_hws_removing);
}
/*
* csio_hw_wait_op_done_val - wait until an operation is completed
* @hw: the HW module
* @reg: the register to check for completion
* @mask: a single-bit field within @reg that indicates completion
* @polarity: the value of the field when the operation is completed
* @attempts: number of check iterations
* @delay: delay in usecs between iterations
* @valp: where to store the value of the register at completion time
*
* Wait until an operation is completed by checking a bit in a register
* up to @attempts times. If @valp is not NULL the value of the register
* at the time it indicated completion is stored there. Returns 0 if the
* operation completes and -EAGAIN otherwise.
*/
int
csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
int polarity, int attempts, int delay, uint32_t *valp)
{
uint32_t val;
while (1) {
val = csio_rd_reg32(hw, reg);
if (!!(val & mask) == polarity) {
if (valp)
*valp = val;
return 0;
}
if (--attempts == 0)
return -EAGAIN;
if (delay)
udelay(delay);
}
}
/*
* csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
* @hw: the adapter
* @addr: the indirect TP register address
* @mask: specifies the field within the register to modify
* @val: new value for the field
*
* Sets a field of an indirect TP register to the given value.
*/
void
csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
unsigned int mask, unsigned int val)
{
csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
csio_wr_reg32(hw, val, TP_PIO_DATA_A);
}
void
csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
uint32_t value)
{
uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
csio_wr_reg32(hw, val | value, reg);
/* Flush */
csio_rd_reg32(hw, reg);
}
static int
csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
{
return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
addr, len, buf, 0);
}
/*
* EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
*/
#define EEPROM_MAX_RD_POLL 40
#define EEPROM_MAX_WR_POLL 6
#define EEPROM_STAT_ADDR 0x7bfc
#define VPD_BASE 0x400
#define VPD_BASE_OLD 0
#define VPD_LEN 1024
#define VPD_INFO_FLD_HDR_SIZE 3
/*
* csio_hw_seeprom_read - read a serial EEPROM location
* @hw: hw to read
* @addr: EEPROM virtual address
* @data: where to store the read data
*
* Read a 32-bit word from a location in serial EEPROM using the card's PCI
* VPD capability. Note that this function must be called with a virtual
* address.
*/
static int
csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
{
uint16_t val = 0;
int attempts = EEPROM_MAX_RD_POLL;
uint32_t base = hw->params.pci.vpd_cap_addr;
if (addr >= EEPROMVSIZE || (addr & 3))
return -EINVAL;
pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
do {
udelay(10);
pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
} while (!(val & PCI_VPD_ADDR_F) && --attempts);
if (!(val & PCI_VPD_ADDR_F)) {
csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
return -EINVAL;
}
pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
*data = le32_to_cpu(*(__le32 *)data);
return 0;
}
/*
* Partial EEPROM Vital Product Data structure. Includes only the ID and
* VPD-R sections.
*/
struct t4_vpd_hdr {
u8 id_tag;
u8 id_len[2];
u8 id_data[ID_LEN];
u8 vpdr_tag;
u8 vpdr_len[2];
};
/*
* csio_hw_get_vpd_keyword_val - Locates an information field keyword in
* the VPD
* @v: Pointer to buffered vpd data structure
* @kw: The keyword to search for
*
* Returns the value of the information field keyword or
* -EINVAL otherwise.
*/
static int
csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
{
int32_t i;
int32_t offset , len;
const uint8_t *buf = &v->id_tag;
const uint8_t *vpdr_len = &v->vpdr_tag;
offset = sizeof(struct t4_vpd_hdr);
len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
return -EINVAL;
for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
if (memcmp(buf + i , kw, 2) == 0) {
i += VPD_INFO_FLD_HDR_SIZE;
return i;
}
i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
}
return -EINVAL;
}
static int
csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
{
*pos = pci_find_capability(pdev, cap);
if (*pos)
return 0;
return -1;
}
/*
* csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
* @hw: HW module
* @p: where to store the parameters
*
* Reads card parameters stored in VPD EEPROM.
*/
static int
csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
{
int i, ret, ec, sn, addr;
uint8_t *vpd, csum;
const struct t4_vpd_hdr *v;
/* To get around compilation warning from strstrip */
char __always_unused *s;
if (csio_is_valid_vpd(hw))
return 0;
ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
&hw->params.pci.vpd_cap_addr);
if (ret)
return -EINVAL;
vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
if (vpd == NULL)
return -ENOMEM;
/*
* Card information normally starts at VPD_BASE but early cards had
* it at 0.
*/
ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
for (i = 0; i < VPD_LEN; i += 4) {
ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
if (ret) {
kfree(vpd);
return ret;
}
}
/* Reset the VPD flag! */
hw->flags &= (~CSIO_HWF_VPD_VALID);
v = (const struct t4_vpd_hdr *)vpd;
#define FIND_VPD_KW(var, name) do { \
var = csio_hw_get_vpd_keyword_val(v, name); \
if (var < 0) { \
csio_err(hw, "missing VPD keyword " name "\n"); \
kfree(vpd); \
return -EINVAL; \
} \
} while (0)
FIND_VPD_KW(i, "RV");
for (csum = 0; i >= 0; i--)
csum += vpd[i];
if (csum) {
csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
kfree(vpd);
return -EINVAL;
}
FIND_VPD_KW(ec, "EC");
FIND_VPD_KW(sn, "SN");
#undef FIND_VPD_KW
memcpy(p->id, v->id_data, ID_LEN);
s = strstrip(p->id);
memcpy(p->ec, vpd + ec, EC_LEN);
s = strstrip(p->ec);
i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
s = strstrip(p->sn);
csio_valid_vpd_copied(hw);
kfree(vpd);
return 0;
}
/*
* csio_hw_sf1_read - read data from the serial flash
* @hw: the HW module
* @byte_cnt: number of bytes to read
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @valp: where to store the read data
*
* Reads up to 4 bytes of data from the serial flash. The location of
* the read needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int
csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
int32_t lock, uint32_t *valp)
{
int ret;
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
return -EBUSY;
csio_wr_reg32(hw, SF_LOCK_V(lock) | SF_CONT_V(cont) |
BYTECNT_V(byte_cnt - 1), SF_OP_A);
ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
10, NULL);
if (!ret)
*valp = csio_rd_reg32(hw, SF_DATA_A);
return ret;
}
/*
* csio_hw_sf1_write - write data to the serial flash
* @hw: the HW module
* @byte_cnt: number of bytes to write
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @val: value to write
*
* Writes up to 4 bytes of data to the serial flash. The location of
* the write needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int
csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
int32_t lock, uint32_t val)
{
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
return -EBUSY;
csio_wr_reg32(hw, val, SF_DATA_A);
csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
10, NULL);
}
/*
* csio_hw_flash_wait_op - wait for a flash operation to complete
* @hw: the HW module
* @attempts: max number of polls of the status register
* @delay: delay between polls in ms
*
* Wait for a flash operation to complete by polling the status register.
*/
static int
csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
{
int ret;
uint32_t status;
while (1) {
ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
if (ret != 0)
return ret;
ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
if (ret != 0)
return ret;
if (!(status & 1))
return 0;
if (--attempts == 0)
return -EAGAIN;
if (delay)
msleep(delay);
}
}
/*
* csio_hw_read_flash - read words from serial flash
* @hw: the HW module
* @addr: the start address for the read
* @nwords: how many 32-bit words to read
* @data: where to store the read data
* @byte_oriented: whether to store data as bytes or as words
*
* Read the specified number of 32-bit words from the serial flash.
* If @byte_oriented is set the read data is stored as a byte array
* (i.e., big-endian), otherwise as 32-bit words in the platform's
* natural endianess.
*/
static int
csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
uint32_t *data, int32_t byte_oriented)
{
int ret;
if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
return -EINVAL;
addr = swab32(addr) | SF_RD_DATA_FAST;
ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
if (ret != 0)
return ret;
ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
if (ret != 0)
return ret;
for ( ; nwords; nwords--, data++) {
ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
if (nwords == 1)
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
if (ret)
return ret;
if (byte_oriented)
*data = (__force __u32) htonl(*data);
}
return 0;
}
/*
* csio_hw_write_flash - write up to a page of data to the serial flash
* @hw: the hw
* @addr: the start address to write
* @n: length of data to write in bytes
* @data: the data to write
*
* Writes up to a page of data (256 bytes) to the serial flash starting
* at the given address. All the data must be written to the same page.
*/
static int
csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
uint32_t n, const uint8_t *data)
{
int ret = -EINVAL;
uint32_t buf[64];
uint32_t i, c, left, val, offset = addr & 0xff;
if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
return -EINVAL;
val = swab32(addr) | SF_PROG_PAGE;
ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
if (ret != 0)
goto unlock;
ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
if (ret != 0)
goto unlock;
for (left = n; left; left -= c) {
c = min(left, 4U);
for (val = 0, i = 0; i < c; ++i)
val = (val << 8) + *data++;
ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
if (ret)
goto unlock;
}
ret = csio_hw_flash_wait_op(hw, 8, 1);
if (ret)
goto unlock;
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
/* Read the page to verify the write succeeded */
ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
if (ret)
return ret;
if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
csio_err(hw,
"failed to correctly write the flash page at %#x\n",
addr);
return -EINVAL;
}
return 0;
unlock:
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
return ret;
}
/*
* csio_hw_flash_erase_sectors - erase a range of flash sectors
* @hw: the HW module
* @start: the first sector to erase
* @end: the last sector to erase
*
* Erases the sectors in the given inclusive range.
*/
static int
csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
{
int ret = 0;
while (start <= end) {
ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
if (ret != 0)
goto out;
ret = csio_hw_sf1_write(hw, 4, 0, 1,
SF_ERASE_SECTOR | (start << 8));
if (ret != 0)
goto out;
ret = csio_hw_flash_wait_op(hw, 14, 500);
if (ret != 0)
goto out;
start++;
}
out:
if (ret)
csio_err(hw, "erase of flash sector %d failed, error %d\n",
start, ret);
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
return 0;
}
static void
csio_hw_print_fw_version(struct csio_hw *hw, char *str)
{
csio_info(hw, "%s: %u.%u.%u.%u\n", str,
FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
FW_HDR_FW_VER_MINOR_G(hw->fwrev),
FW_HDR_FW_VER_MICRO_G(hw->fwrev),
FW_HDR_FW_VER_BUILD_G(hw->fwrev));
}
/*
* csio_hw_get_fw_version - read the firmware version
* @hw: HW module
* @vers: where to place the version
*
* Reads the FW version from flash.
*/
static int
csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
{
return csio_hw_read_flash(hw, FLASH_FW_START +
offsetof(struct fw_hdr, fw_ver), 1,
vers, 0);
}
/*
* csio_hw_get_tp_version - read the TP microcode version
* @hw: HW module
* @vers: where to place the version
*
* Reads the TP microcode version from flash.
*/
static int
csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
{
return csio_hw_read_flash(hw, FLASH_FW_START +
offsetof(struct fw_hdr, tp_microcode_ver), 1,
vers, 0);
}
/*
* csio_hw_fw_dload - download firmware.
* @hw: HW module
* @fw_data: firmware image to write.
* @size: image size
*
* Write the supplied firmware image to the card's serial flash.
*/
static int
csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
{
uint32_t csum;
int32_t addr;
int ret;
uint32_t i;
uint8_t first_page[SF_PAGE_SIZE];
const __be32 *p = (const __be32 *)fw_data;
struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
uint32_t sf_sec_size;
if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
csio_err(hw, "Serial Flash data invalid\n");
return -EINVAL;
}
if (!size) {
csio_err(hw, "FW image has no data\n");
return -EINVAL;
}
if (size & 511) {
csio_err(hw, "FW image size not multiple of 512 bytes\n");
return -EINVAL;
}
if (ntohs(hdr->len512) * 512 != size) {
csio_err(hw, "FW image size differs from size in FW header\n");
return -EINVAL;
}
if (size > FLASH_FW_MAX_SIZE) {
csio_err(hw, "FW image too large, max is %u bytes\n",
FLASH_FW_MAX_SIZE);
return -EINVAL;
}
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
csum += ntohl(p[i]);
if (csum != 0xffffffff) {
csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
return -EINVAL;
}
sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
FLASH_FW_START_SEC + i - 1);
if (ret) {
csio_err(hw, "Flash Erase failed\n");
goto out;
}
/*
* We write the correct version at the end so the driver can see a bad
* version if the FW write fails. Start by writing a copy of the
* first page with a bad version.
*/
memcpy(first_page, fw_data, SF_PAGE_SIZE);
((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
if (ret)
goto out;
csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
FW_IMG_START, FW_IMG_START + size);
addr = FLASH_FW_START;
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
addr += SF_PAGE_SIZE;
fw_data += SF_PAGE_SIZE;
ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
if (ret)
goto out;
}
ret = csio_hw_write_flash(hw,
FLASH_FW_START +
offsetof(struct fw_hdr, fw_ver),
sizeof(hdr->fw_ver),
(const uint8_t *)&hdr->fw_ver);
out:
if (ret)
csio_err(hw, "firmware download failed, error %d\n", ret);
return ret;
}
static int
csio_hw_get_flash_params(struct csio_hw *hw)
{
/* Table for non-Numonix supported flash parts. Numonix parts are left
* to the preexisting code. All flash parts have 64KB sectors.
*/
static struct flash_desc {
u32 vendor_and_model_id;
u32 size_mb;
} supported_flash[] = {
{ 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
};
u32 part, manufacturer;
u32 density, size = 0;
u32 flashid = 0;
int ret;
ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
if (!ret)
ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid);
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
if (ret)
return ret;
/* Check to see if it's one of our non-standard supported Flash parts.
*/
for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
if (supported_flash[part].vendor_and_model_id == flashid) {
hw->params.sf_size = supported_flash[part].size_mb;
hw->params.sf_nsec =
hw->params.sf_size / SF_SEC_SIZE;
goto found;
}
/* Decode Flash part size. The code below looks repetitive with
* common encodings, but that's not guaranteed in the JEDEC
* specification for the Read JEDEC ID command. The only thing that
* we're guaranteed by the JEDEC specification is where the
* Manufacturer ID is in the returned result. After that each
* Manufacturer ~could~ encode things completely differently.
* Note, all Flash parts must have 64KB sectors.
*/
manufacturer = flashid & 0xff;
switch (manufacturer) {
case 0x20: { /* Micron/Numonix */
/* This Density -> Size decoding table is taken from Micron
* Data Sheets.
*/
density = (flashid >> 16) & 0xff;
switch (density) {
case 0x14 ... 0x19: /* 1MB - 32MB */
size = 1 << density;
break;
case 0x20: /* 64MB */
size = 1 << 26;
break;
case 0x21: /* 128MB */
size = 1 << 27;
break;
case 0x22: /* 256MB */
size = 1 << 28;
}
break;
}
case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
/* This Density -> Size decoding table is taken from ISSI
* Data Sheets.
*/
density = (flashid >> 16) & 0xff;
switch (density) {
case 0x16: /* 32 MB */
size = 1 << 25;
break;
case 0x17: /* 64MB */
size = 1 << 26;
}
break;
}
case 0xc2: /* Macronix */
case 0xef: /* Winbond */ {
/* This Density -> Size decoding table is taken from
* Macronix and Winbond Data Sheets.
*/
density = (flashid >> 16) & 0xff;
switch (density) {
case 0x17: /* 8MB */
case 0x18: /* 16MB */
size = 1 << density;
}
}
}
/* If we didn't recognize the FLASH part, that's no real issue: the
* Hardware/Software contract says that Hardware will _*ALWAYS*_
* use a FLASH part which is at least 4MB in size and has 64KB
* sectors. The unrecognized FLASH part is likely to be much larger
* than 4MB, but that's all we really need.
*/
if (size == 0) {
csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
flashid);
size = 1 << 22;
}
/* Store decoded Flash size */
hw->params.sf_size = size;
hw->params.sf_nsec = size / SF_SEC_SIZE;
found:
if (hw->params.sf_size < FLASH_MIN_SIZE)
csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
flashid, hw->params.sf_size, FLASH_MIN_SIZE);
return 0;
}
/*****************************************************************************/
/* HW State machine assists */
/*****************************************************************************/
static int
csio_hw_dev_ready(struct csio_hw *hw)
{
uint32_t reg;
int cnt = 6;
int src_pf;
while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
(--cnt != 0))
mdelay(100);
if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
src_pf = SOURCEPF_G(reg);
else
src_pf = T6_SOURCEPF_G(reg);
if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
(src_pf >= CSIO_MAX_PFN))) {
csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
return -EIO;
}
hw->pfn = src_pf;
return 0;
}
/*
* csio_do_hello - Perform the HELLO FW Mailbox command and process response.
* @hw: HW module
* @state: Device state
*
* FW_HELLO_CMD has to be polled for completion.
*/
static int
csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
{
struct csio_mb *mbp;
int rv = 0;
enum fw_retval retval;
uint8_t mpfn;
char state_str[16];
int retries = FW_CMD_HELLO_RETRIES;
memset(state_str, 0, sizeof(state_str));
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
rv = -ENOMEM;
CSIO_INC_STATS(hw, n_err_nomem);
goto out;
}
retry:
csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
hw->pfn, CSIO_MASTER_MAY, NULL);
rv = csio_mb_issue(hw, mbp);
if (rv) {
csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
goto out_free_mb;
}
csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
if (retval != FW_SUCCESS) {
csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
rv = -EINVAL;
goto out_free_mb;
}
/* Firmware has designated us to be master */
if (hw->pfn == mpfn) {
hw->flags |= CSIO_HWF_MASTER;
} else if (*state == CSIO_DEV_STATE_UNINIT) {
/*
* If we're not the Master PF then we need to wait around for
* the Master PF Driver to finish setting up the adapter.
*
* Note that we also do this wait if we're a non-Master-capable
* PF and there is no current Master PF; a Master PF may show up
* momentarily and we wouldn't want to fail pointlessly. (This
* can happen when an OS loads lots of different drivers rapidly
* at the same time). In this case, the Master PF returned by
* the firmware will be PCIE_FW_MASTER_MASK so the test below
* will work ...
*/
int waiting = FW_CMD_HELLO_TIMEOUT;
/*
* Wait for the firmware to either indicate an error or
* initialized state. If we see either of these we bail out
* and report the issue to the caller. If we exhaust the
* "hello timeout" and we haven't exhausted our retries, try
* again. Otherwise bail with a timeout error.
*/
for (;;) {
uint32_t pcie_fw;
spin_unlock_irq(&hw->lock);
msleep(50);
spin_lock_irq(&hw->lock);
waiting -= 50;
/*
* If neither Error nor Initialized are indicated
* by the firmware keep waiting till we exhaust our
* timeout ... and then retry if we haven't exhausted
* our retries ...
*/
pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
if (waiting <= 0) {
if (retries-- > 0)
goto retry;
rv = -ETIMEDOUT;
break;
}
continue;
}
/*
* We either have an Error or Initialized condition
* report errors preferentially.
*/
if (state) {
if (pcie_fw & PCIE_FW_ERR_F) {
*state = CSIO_DEV_STATE_ERR;
rv = -ETIMEDOUT;
} else if (pcie_fw & PCIE_FW_INIT_F)
*state = CSIO_DEV_STATE_INIT;
}
/*
* If we arrived before a Master PF was selected and
* there's not a valid Master PF, grab its identity
* for our caller.
*/
if (mpfn == PCIE_FW_MASTER_M &&
(pcie_fw & PCIE_FW_MASTER_VLD_F))
mpfn = PCIE_FW_MASTER_G(pcie_fw);
break;
}
hw->flags &= ~CSIO_HWF_MASTER;
}
switch (*state) {
case CSIO_DEV_STATE_UNINIT:
strcpy(state_str, "Initializing");
break;
case CSIO_DEV_STATE_INIT:
strcpy(state_str, "Initialized");
break;
case CSIO_DEV_STATE_ERR:
strcpy(state_str, "Error");
break;
default:
strcpy(state_str, "Unknown");
break;
}
if (hw->pfn == mpfn)
csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
hw->pfn, state_str);
else
csio_info(hw,
"PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
hw->pfn, mpfn, state_str);
out_free_mb:
mempool_free(mbp, hw->mb_mempool);
out:
return rv;
}
/*
* csio_do_bye - Perform the BYE FW Mailbox command and process response.
* @hw: HW module
*
*/
static int
csio_do_bye(struct csio_hw *hw)
{
struct csio_mb *mbp;
enum fw_retval retval;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of BYE command failed\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
mempool_free(mbp, hw->mb_mempool);
return 0;
}
/*
* csio_do_reset- Perform the device reset.
* @hw: HW module
* @fw_rst: FW reset
*
* If fw_rst is set, issues FW reset mbox cmd otherwise
* does PIO reset.
* Performs reset of the function.
*/
static int
csio_do_reset(struct csio_hw *hw, bool fw_rst)
{
struct csio_mb *mbp;
enum fw_retval retval;
if (!fw_rst) {
/* PIO reset */
csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
mdelay(2000);
return 0;
}
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
PIORSTMODE_F | PIORST_F, 0, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of RESET command failed.n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
mempool_free(mbp, hw->mb_mempool);
return 0;
}
static int
csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
{
struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
uint16_t caps;
caps = ntohs(rsp->fcoecaps);
if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
return -EINVAL;
}
if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
csio_err(hw, "No FCoE Control Offload capability\n");
return -EINVAL;
}
return 0;
}
/*
* csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
* @hw: the HW module
* @mbox: mailbox to use for the FW RESET command (if desired)
* @force: force uP into RESET even if FW RESET command fails
*
* Issues a RESET command to firmware (if desired) with a HALT indication
* and then puts the microprocessor into RESET state. The RESET command
* will only be issued if a legitimate mailbox is provided (mbox <=
* PCIE_FW_MASTER_MASK).
*
* This is generally used in order for the host to safely manipulate the
* adapter without fear of conflicting with whatever the firmware might
* be doing. The only way out of this state is to RESTART the firmware
* ...
*/
static int
csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
{
enum fw_retval retval = 0;
/*
* If a legitimate mailbox is provided, issue a RESET command
* with a HALT indication.
*/
if (mbox <= PCIE_FW_MASTER_M) {
struct csio_mb *mbp;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of RESET command failed!\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
mempool_free(mbp, hw->mb_mempool);
}
/*
* Normally we won't complete the operation if the firmware RESET
* command fails but if our caller insists we'll go ahead and put the
* uP into RESET. This can be useful if the firmware is hung or even
* missing ... We'll have to take the risk of putting the uP into
* RESET without the cooperation of firmware in that case.
*
* We also force the firmware's HALT flag to be on in case we bypassed
* the firmware RESET command above or we're dealing with old firmware
* which doesn't have the HALT capability. This will serve as a flag
* for the incoming firmware to know that it's coming out of a HALT
* rather than a RESET ... if it's new enough to understand that ...
*/
if (retval == 0 || force) {
csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
PCIE_FW_HALT_F);
}
/*
* And we always return the result of the firmware RESET command
* even when we force the uP into RESET ...
*/
return retval ? -EINVAL : 0;
}
/*
* csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
* @hw: the HW module
* @reset: if we want to do a RESET to restart things
*
* Restart firmware previously halted by csio_hw_fw_halt(). On successful
* return the previous PF Master remains as the new PF Master and there
* is no need to issue a new HELLO command, etc.
*
* We do this in two ways:
*
* 1. If we're dealing with newer firmware we'll simply want to take
* the chip's microprocessor out of RESET. This will cause the
* firmware to start up from its start vector. And then we'll loop
* until the firmware indicates it's started again (PCIE_FW.HALT
* reset to 0) or we timeout.
*
* 2. If we're dealing with older firmware then we'll need to RESET
* the chip since older firmware won't recognize the PCIE_FW.HALT
* flag and automatically RESET itself on startup.
*/
static int
csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
{
if (reset) {
/*
* Since we're directing the RESET instead of the firmware
* doing it automatically, we need to clear the PCIE_FW.HALT
* bit.
*/
csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
/*
* If we've been given a valid mailbox, first try to get the
* firmware to do the RESET. If that works, great and we can
* return success. Otherwise, if we haven't been given a
* valid mailbox or the RESET command failed, fall back to
* hitting the chip with a hammer.
*/
if (mbox <= PCIE_FW_MASTER_M) {
csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
msleep(100);
if (csio_do_reset(hw, true) == 0)
return 0;
}
csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
msleep(2000);
} else {
int ms;
csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
return 0;
msleep(100);
ms += 100;
}
return -ETIMEDOUT;
}
return 0;
}
/*
* csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
* @hw: the HW module
* @mbox: mailbox to use for the FW RESET command (if desired)
* @fw_data: the firmware image to write
* @size: image size
* @force: force upgrade even if firmware doesn't cooperate
*
* Perform all of the steps necessary for upgrading an adapter's
* firmware image. Normally this requires the cooperation of the
* existing firmware in order to halt all existing activities
* but if an invalid mailbox token is passed in we skip that step
* (though we'll still put the adapter microprocessor into RESET in
* that case).
*
* On successful return the new firmware will have been loaded and
* the adapter will have been fully RESET losing all previous setup
* state. On unsuccessful return the adapter may be completely hosed ...
* positive errno indicates that the adapter is ~probably~ intact, a
* negative errno indicates that things are looking bad ...
*/
static int
csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
const u8 *fw_data, uint32_t size, int32_t force)
{
const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
int reset, ret;
ret = csio_hw_fw_halt(hw, mbox, force);
if (ret != 0 && !force)
return ret;
ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
if (ret != 0)
return ret;
/*
* Older versions of the firmware don't understand the new
* PCIE_FW.HALT flag and so won't know to perform a RESET when they
* restart. So for newly loaded older firmware we'll have to do the
* RESET for it so it starts up on a clean slate. We can tell if
* the newly loaded firmware will handle this right by checking
* its header flags to see if it advertises the capability.
*/
reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
return csio_hw_fw_restart(hw, mbox, reset);
}
/*
* csio_get_device_params - Get device parameters.
* @hw: HW module
*
*/
static int
csio_get_device_params(struct csio_hw *hw)
{
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
struct csio_mb *mbp;
enum fw_retval retval;
u32 param[6];
int i, j = 0;
/* Initialize portids to -1 */
for (i = 0; i < CSIO_MAX_PPORTS; i++)
hw->pport[i].portid = -1;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/* Get port vec information. */
param[0] = FW_PARAM_DEV(PORTVEC);
/* Get Core clock. */
param[1] = FW_PARAM_DEV(CCLK);
/* Get EQ id start and end. */
param[2] = FW_PARAM_PFVF(EQ_START);
param[3] = FW_PARAM_PFVF(EQ_END);
/* Get IQ id start and end. */
param[4] = FW_PARAM_PFVF(IQFLINT_START);
param[5] = FW_PARAM_PFVF(IQFLINT_END);
csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
ARRAY_SIZE(param), param, NULL, false, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
csio_mb_process_read_params_rsp(hw, mbp, &retval,
ARRAY_SIZE(param), param);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
/* cache the information. */
hw->port_vec = param[0];
hw->vpd.cclk = param[1];
wrm->fw_eq_start = param[2];
wrm->fw_iq_start = param[4];
/* Using FW configured max iqs & eqs */
if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
!csio_is_hw_master(hw)) {
hw->cfg_niq = param[5] - param[4] + 1;
hw->cfg_neq = param[3] - param[2] + 1;
csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
hw->cfg_niq, hw->cfg_neq);
}
hw->port_vec &= csio_port_mask;
hw->num_pports = hweight32(hw->port_vec);
csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
hw->port_vec, hw->num_pports);
for (i = 0; i < hw->num_pports; i++) {
while ((hw->port_vec & (1 << j)) == 0)
j++;
hw->pport[i].portid = j++;
csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
}
mempool_free(mbp, hw->mb_mempool);
return 0;
}
/*
* csio_config_device_caps - Get and set device capabilities.
* @hw: HW module
*
*/
static int
csio_config_device_caps(struct csio_hw *hw)
{
struct csio_mb *mbp;
enum fw_retval retval;
int rv = -EINVAL;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/* Get device capabilities */
csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
goto out;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
goto out;
}
/* Validate device capabilities */
rv = csio_hw_validate_caps(hw, mbp);
if (rv != 0)
goto out;
/* Don't config device capabilities if already configured */
if (hw->fw_state == CSIO_DEV_STATE_INIT) {
rv = 0;
goto out;
}
/* Write back desired device capabilities */
csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
false, true, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
goto out;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
goto out;
}
rv = 0;
out:
mempool_free(mbp, hw->mb_mempool);
return rv;
}
static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
{
enum cc_fec cc_fec = 0;
if (fw_fec & FW_PORT_CAP32_FEC_RS)
cc_fec |= FEC_RS;
if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
cc_fec |= FEC_BASER_RS;
return cc_fec;
}
static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
{
fw_port_cap32_t fw_pause = 0;
if (cc_pause & PAUSE_RX)
fw_pause |= FW_PORT_CAP32_FC_RX;
if (cc_pause & PAUSE_TX)
fw_pause |= FW_PORT_CAP32_FC_TX;
return fw_pause;
}
static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
{
fw_port_cap32_t fw_fec = 0;
if (cc_fec & FEC_RS)
fw_fec |= FW_PORT_CAP32_FEC_RS;
if (cc_fec & FEC_BASER_RS)
fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
return fw_fec;
}
/**
* fwcap_to_fwspeed - return highest speed in Port Capabilities
* @acaps: advertised Port Capabilities
*
* Get the highest speed for the port from the advertised Port
* Capabilities.
*/
fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
{
#define TEST_SPEED_RETURN(__caps_speed) \
do { \
if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
return FW_PORT_CAP32_SPEED_##__caps_speed; \
} while (0)
TEST_SPEED_RETURN(400G);
TEST_SPEED_RETURN(200G);
TEST_SPEED_RETURN(100G);
TEST_SPEED_RETURN(50G);
TEST_SPEED_RETURN(40G);
TEST_SPEED_RETURN(25G);
TEST_SPEED_RETURN(10G);
TEST_SPEED_RETURN(1G);
TEST_SPEED_RETURN(100M);
#undef TEST_SPEED_RETURN
return 0;
}
/**
* fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
* @caps16: a 16-bit Port Capabilities value
*
* Returns the equivalent 32-bit Port Capabilities value.
*/
fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
{
fw_port_cap32_t caps32 = 0;
#define CAP16_TO_CAP32(__cap) \
do { \
if (caps16 & FW_PORT_CAP_##__cap) \
caps32 |= FW_PORT_CAP32_##__cap; \
} while (0)
CAP16_TO_CAP32(SPEED_100M);
CAP16_TO_CAP32(SPEED_1G);
CAP16_TO_CAP32(SPEED_25G);
CAP16_TO_CAP32(SPEED_10G);
CAP16_TO_CAP32(SPEED_40G);
CAP16_TO_CAP32(SPEED_100G);
CAP16_TO_CAP32(FC_RX);
CAP16_TO_CAP32(FC_TX);
CAP16_TO_CAP32(ANEG);
CAP16_TO_CAP32(MDIAUTO);
CAP16_TO_CAP32(MDISTRAIGHT);
CAP16_TO_CAP32(FEC_RS);
CAP16_TO_CAP32(FEC_BASER_RS);
CAP16_TO_CAP32(802_3_PAUSE);
CAP16_TO_CAP32(802_3_ASM_DIR);
#undef CAP16_TO_CAP32
return caps32;
}
/**
* fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
* @caps32: a 32-bit Port Capabilities value
*
* Returns the equivalent 16-bit Port Capabilities value. Note that
* not all 32-bit Port Capabilities can be represented in the 16-bit
* Port Capabilities and some fields/values may not make it.
*/
fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
{
fw_port_cap16_t caps16 = 0;
#define CAP32_TO_CAP16(__cap) \
do { \
if (caps32 & FW_PORT_CAP32_##__cap) \
caps16 |= FW_PORT_CAP_##__cap; \
} while (0)
CAP32_TO_CAP16(SPEED_100M);
CAP32_TO_CAP16(SPEED_1G);
CAP32_TO_CAP16(SPEED_10G);
CAP32_TO_CAP16(SPEED_25G);
CAP32_TO_CAP16(SPEED_40G);
CAP32_TO_CAP16(SPEED_100G);
CAP32_TO_CAP16(FC_RX);
CAP32_TO_CAP16(FC_TX);
CAP32_TO_CAP16(802_3_PAUSE);
CAP32_TO_CAP16(802_3_ASM_DIR);
CAP32_TO_CAP16(ANEG);
CAP32_TO_CAP16(FORCE_PAUSE);
CAP32_TO_CAP16(MDIAUTO);
CAP32_TO_CAP16(MDISTRAIGHT);
CAP32_TO_CAP16(FEC_RS);
CAP32_TO_CAP16(FEC_BASER_RS);
#undef CAP32_TO_CAP16
return caps16;
}
/**
* lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
* @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
*
* Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
* 32-bit Port Capabilities value.
*/
fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
{
fw_port_cap32_t linkattr = 0;
/* The format of the Link Status in the old
* 16-bit Port Information message isn't the same as the
* 16-bit Port Capabilities bitfield used everywhere else.
*/
if (lstatus & FW_PORT_CMD_RXPAUSE_F)
linkattr |= FW_PORT_CAP32_FC_RX;
if (lstatus & FW_PORT_CMD_TXPAUSE_F)
linkattr |= FW_PORT_CAP32_FC_TX;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
linkattr |= FW_PORT_CAP32_SPEED_100M;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
linkattr |= FW_PORT_CAP32_SPEED_1G;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
linkattr |= FW_PORT_CAP32_SPEED_10G;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
linkattr |= FW_PORT_CAP32_SPEED_25G;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
linkattr |= FW_PORT_CAP32_SPEED_40G;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
linkattr |= FW_PORT_CAP32_SPEED_100G;
return linkattr;
}
/**
* csio_init_link_config - initialize a link's SW state
* @lc: pointer to structure holding the link state
* @pcaps: link Port Capabilities
* @acaps: link current Advertised Port Capabilities
*
* Initializes the SW state maintained for each link, including the link's
* capabilities and default speed/flow-control/autonegotiation settings.
*/
static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
fw_port_cap32_t acaps)
{
lc->pcaps = pcaps;
lc->def_acaps = acaps;
lc->lpacaps = 0;
lc->speed_caps = 0;
lc->speed = 0;
lc->requested_fc = PAUSE_RX | PAUSE_TX;
lc->fc = lc->requested_fc;
/*
* For Forward Error Control, we default to whatever the Firmware
* tells us the Link is currently advertising.
*/
lc->requested_fec = FEC_AUTO;
lc->fec = fwcap_to_cc_fec(lc->def_acaps);
/* If the Port is capable of Auto-Negtotiation, initialize it as
* "enabled" and copy over all of the Physical Port Capabilities
* to the Advertised Port Capabilities. Otherwise mark it as
* Auto-Negotiate disabled and select the highest supported speed
* for the link. Note parallel structure in t4_link_l1cfg_core()
* and t4_handle_get_port_info().
*/
if (lc->pcaps & FW_PORT_CAP32_ANEG) {
lc->acaps = lc->pcaps & ADVERT_MASK;
lc->autoneg = AUTONEG_ENABLE;
lc->requested_fc |= PAUSE_AUTONEG;
} else {
lc->acaps = 0;
lc->autoneg = AUTONEG_DISABLE;
}
}
static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps,
uint32_t *rcaps)
{
unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap;
lc->link_ok = 0;
/*
* Convert driver coding of Pause Frame Flow Control settings into the
* Firmware's API.
*/
fw_fc = cc_to_fwcap_pause(lc->requested_fc);
/*
* Convert Common Code Forward Error Control settings into the
* Firmware's API. If the current Requested FEC has "Automatic"
* (IEEE 802.3) specified, then we use whatever the Firmware
* sent us as part of it's IEEE 802.3-based interpretation of
* the Transceiver Module EPROM FEC parameters. Otherwise we
* use whatever is in the current Requested FEC settings.
*/
if (lc->requested_fec & FEC_AUTO)
cc_fec = fwcap_to_cc_fec(lc->def_acaps);
else
cc_fec = lc->requested_fec;
fw_fec = cc_to_fwcap_fec(cc_fec);
/* Figure out what our Requested Port Capabilities are going to be.
* Note parallel structure in t4_handle_get_port_info() and
* init_link_config().
*/
if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
lc->fec = cc_fec;
} else if (lc->autoneg == AUTONEG_DISABLE) {
lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
lc->fec = cc_fec;
} else {
lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
}
*rcaps = lrcap;
}
/*
* csio_enable_ports - Bring up all available ports.
* @hw: HW module.
*
*/
static int
csio_enable_ports(struct csio_hw *hw)
{
struct csio_mb *mbp;
u16 fw_caps = FW_CAPS_UNKNOWN;
enum fw_retval retval;
uint8_t portid;
fw_port_cap32_t pcaps, acaps, rcaps;
int i;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
for (i = 0; i < hw->num_pports; i++) {
portid = hw->pport[i].portid;
if (fw_caps == FW_CAPS_UNKNOWN) {
u32 param, val;
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
val = 1;
csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO,
hw->pfn, 0, 1, &param, &val, true,
NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n",
portid);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
csio_mb_process_read_params_rsp(hw, mbp, &retval,
0, NULL);
fw_caps = retval ? FW_CAPS16 : FW_CAPS32;
}
/* Read PORT information */
csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
false, 0, fw_caps, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
portid);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps,
&pcaps, &acaps);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
portid, retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps);
csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps);
/* Write back PORT information */
csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
true, rcaps, fw_caps, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
portid);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
portid, retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
} /* For all ports */
mempool_free(mbp, hw->mb_mempool);
return 0;
}
/*
* csio_get_fcoe_resinfo - Read fcoe fw resource info.
* @hw: HW module
* Issued with lock held.
*/
static int
csio_get_fcoe_resinfo(struct csio_hw *hw)
{
struct csio_fcoe_res_info *res_info = &hw->fres_info;
struct fw_fcoe_res_info_cmd *rsp;
struct csio_mb *mbp;
enum fw_retval retval;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/* Get FCoE FW resource information */
csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
res_info->e_d_tov = ntohs(rsp->e_d_tov);
res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
res_info->r_r_tov = ntohs(rsp->r_r_tov);
res_info->max_xchgs = ntohl(rsp->max_xchgs);
res_info->max_ssns = ntohl(rsp->max_ssns);
res_info->used_xchgs = ntohl(rsp->used_xchgs);
res_info->used_ssns = ntohl(rsp->used_ssns);
res_info->max_fcfs = ntohl(rsp->max_fcfs);
res_info->max_vnps = ntohl(rsp->max_vnps);
res_info->used_fcfs = ntohl(rsp->used_fcfs);
res_info->used_vnps = ntohl(rsp->used_vnps);
csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
res_info->max_xchgs);
mempool_free(mbp, hw->mb_mempool);
return 0;
}
static int
csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
{
struct csio_mb *mbp;
enum fw_retval retval;
u32 _param[1];
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/*
* Find out whether we're dealing with a version of
* the firmware which has configuration file support.
*/
_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
ARRAY_SIZE(_param), _param, NULL, false, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
csio_mb_process_read_params_rsp(hw, mbp, &retval,
ARRAY_SIZE(_param), _param);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
mempool_free(mbp, hw->mb_mempool);
*param = _param[0];
return 0;
}
static int
csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
{
int ret = 0;
const struct firmware *cf;
struct pci_dev *pci_dev = hw->pdev;
struct device *dev = &pci_dev->dev;
unsigned int mtype = 0, maddr = 0;
uint32_t *cfg_data;
int value_to_add = 0;
const char *fw_cfg_file;
if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
fw_cfg_file = FW_CFG_NAME_T5;
else
fw_cfg_file = FW_CFG_NAME_T6;
if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
csio_err(hw, "could not find config file %s, err: %d\n",
fw_cfg_file, ret);
return -ENOENT;
}
if (cf->size%4 != 0)
value_to_add = 4 - (cf->size % 4);
cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
if (cfg_data == NULL) {
ret = -ENOMEM;
goto leave;
}
memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
ret = -EINVAL;
goto leave;
}
mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
ret = csio_memory_write(hw, mtype, maddr,
cf->size + value_to_add, cfg_data);
if ((ret == 0) && (value_to_add != 0)) {
union {
u32 word;
char buf[4];
} last;
size_t size = cf->size & ~0x3;
int i;
last.word = cfg_data[size >> 2];
for (i = value_to_add; i < 4; i++)
last.buf[i] = 0;
ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
}
if (ret == 0) {
csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
}
leave:
kfree(cfg_data);
release_firmware(cf);
return ret;
}
/*
* HW initialization: contact FW, obtain config, perform basic init.
*
* If the firmware we're dealing with has Configuration File support, then
* we use that to perform all configuration -- either using the configuration
* file stored in flash on the adapter or using a filesystem-local file
* if available.
*
* If we don't have configuration file support in the firmware, then we'll
* have to set things up the old fashioned way with hard-coded register
* writes and firmware commands ...
*/
/*
* Attempt to initialize the HW via a Firmware Configuration File.
*/
static int
csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
{
struct csio_mb *mbp = NULL;
struct fw_caps_config_cmd *caps_cmd;
unsigned int mtype, maddr;
int rv = -EINVAL;
uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
char path[64];
char *config_name = NULL;
/*
* Reset device if necessary
*/
if (reset) {
rv = csio_do_reset(hw, true);
if (rv != 0)
goto bye;
}
/*
* If we have a configuration file in host ,
* then use that. Otherwise, use the configuration file stored
* in the HW flash ...
*/
spin_unlock_irq(&hw->lock);
rv = csio_hw_flash_config(hw, fw_cfg_param, path);
spin_lock_irq(&hw->lock);
if (rv != 0) {
/*
* config file was not found. Use default
* config file from flash.
*/
config_name = "On FLASH";
mtype = FW_MEMTYPE_CF_FLASH;
maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
} else {
config_name = path;
mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
}
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/*
* Tell the firmware to process the indicated Configuration File.
* If there are no errors and the caller has provided return value
* pointers for the [fini] section version, checksum and computed
* checksum, pass those back to the caller.
*/
caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
caps_cmd->op_to_write =
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
caps_cmd->cfvalid_to_len16 =
htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
FW_LEN16(*caps_cmd));
if (csio_mb_issue(hw, mbp)) {
rv = -EINVAL;
goto bye;
}
rv = csio_mb_fw_retval(mbp);
/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
* Configuration File in FLASH), our last gasp effort is to use the
* Firmware Configuration File which is embedded in the
* firmware. A very few early versions of the firmware didn't
* have one embedded but we can ignore those.
*/
if (rv == ENOENT) {
CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
if (csio_mb_issue(hw, mbp)) {
rv = -EINVAL;
goto bye;
}
rv = csio_mb_fw_retval(mbp);
config_name = "Firmware Default";
}
if (rv != FW_SUCCESS)
goto bye;
finiver = ntohl(caps_cmd->finiver);
finicsum = ntohl(caps_cmd->finicsum);
cfcsum = ntohl(caps_cmd->cfcsum);
/*
* And now tell the firmware to use the configuration we just loaded.
*/
caps_cmd->op_to_write =
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F);
caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
if (csio_mb_issue(hw, mbp)) {
rv = -EINVAL;
goto bye;
}
rv = csio_mb_fw_retval(mbp);
if (rv != FW_SUCCESS) {
csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
goto bye;
}
if (finicsum != cfcsum) {
csio_warn(hw,
"Config File checksum mismatch: csum=%#x, computed=%#x\n",
finicsum, cfcsum);
}
/* Validate device capabilities */
rv = csio_hw_validate_caps(hw, mbp);
if (rv != 0)
goto bye;
mempool_free(mbp, hw->mb_mempool);
mbp = NULL;
/*
* Note that we're operating with parameters
* not supplied by the driver, rather than from hard-wired
* initialization constants buried in the driver.
*/
hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
/* device parameters */
rv = csio_get_device_params(hw);
if (rv != 0)
goto bye;
/* Configure SGE */
csio_wr_sge_init(hw);
/*
* And finally tell the firmware to initialize itself using the
* parameters from the Configuration File.
*/
/* Post event to notify completion of configuration */
csio_post_event(&hw->sm, CSIO_HWE_INIT);
csio_info(hw, "Successfully configure using Firmware "
"Configuration File %s, version %#x, computed checksum %#x\n",
config_name, finiver, cfcsum);
return 0;
/*
* Something bad happened. Return the error ...
*/
bye:
if (mbp)
mempool_free(mbp, hw->mb_mempool);
hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
csio_warn(hw, "Configuration file error %d\n", rv);
return rv;
}
/* Is the given firmware API compatible with the one the driver was compiled
* with?
*/
static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
{
/* short circuit if it's the exact same firmware version */
if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
return 1;
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
return 1;
#undef SAME_INTF
return 0;
}
/* The firmware in the filesystem is usable, but should it be installed?
* This routine explains itself in detail if it indicates the filesystem
* firmware should be installed.
*/
static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
int k, int c)
{
const char *reason;
if (!card_fw_usable) {
reason = "incompatible or unusable";
goto install;
}
if (k > c) {
reason = "older than the version supported with this driver";
goto install;
}
return 0;
install:
csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
"installing firmware %u.%u.%u.%u on card.\n",
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
return 1;
}
static struct fw_info fw_info_array[] = {
{
.chip = CHELSIO_T5,
.fs_name = FW_CFG_NAME_T5,
.fw_mod_name = FW_FNAME_T5,
.fw_hdr = {
.chip = FW_HDR_CHIP_T5,
.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
.intfver_nic = FW_INTFVER(T5, NIC),
.intfver_vnic = FW_INTFVER(T5, VNIC),
.intfver_ri = FW_INTFVER(T5, RI),
.intfver_iscsi = FW_INTFVER(T5, ISCSI),
.intfver_fcoe = FW_INTFVER(T5, FCOE),
},
}, {
.chip = CHELSIO_T6,
.fs_name = FW_CFG_NAME_T6,
.fw_mod_name = FW_FNAME_T6,
.fw_hdr = {
.chip = FW_HDR_CHIP_T6,
.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
.intfver_nic = FW_INTFVER(T6, NIC),
.intfver_vnic = FW_INTFVER(T6, VNIC),
.intfver_ri = FW_INTFVER(T6, RI),
.intfver_iscsi = FW_INTFVER(T6, ISCSI),
.intfver_fcoe = FW_INTFVER(T6, FCOE),
},
}
};
static struct fw_info *find_fw_info(int chip)
{
int i;
for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
if (fw_info_array[i].chip == chip)
return &fw_info_array[i];
}
return NULL;
}
static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
const u8 *fw_data, unsigned int fw_size,
struct fw_hdr *card_fw, enum csio_dev_state state,
int *reset)
{
int ret, card_fw_usable, fs_fw_usable;
const struct fw_hdr *fs_fw;
const struct fw_hdr *drv_fw;
drv_fw = &fw_info->fw_hdr;
/* Read the header of the firmware on the card */
ret = csio_hw_read_flash(hw, FLASH_FW_START,
sizeof(*card_fw) / sizeof(uint32_t),
(uint32_t *)card_fw, 1);
if (ret == 0) {
card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
} else {
csio_err(hw,
"Unable to read card's firmware header: %d\n", ret);
card_fw_usable = 0;
}
if (fw_data != NULL) {
fs_fw = (const void *)fw_data;
fs_fw_usable = fw_compatible(drv_fw, fs_fw);
} else {
fs_fw = NULL;
fs_fw_usable = 0;
}
if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
(!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
/* Common case: the firmware on the card is an exact match and
* the filesystem one is an exact match too, or the filesystem
* one is absent/incompatible.
*/
} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
csio_should_install_fs_fw(hw, card_fw_usable,
be32_to_cpu(fs_fw->fw_ver),
be32_to_cpu(card_fw->fw_ver))) {
ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
fw_size, 0);
if (ret != 0) {
csio_err(hw,
"failed to install firmware: %d\n", ret);
goto bye;
}
/* Installed successfully, update the cached header too. */
memcpy(card_fw, fs_fw, sizeof(*card_fw));
card_fw_usable = 1;
*reset = 0; /* already reset as part of load_fw */
}
if (!card_fw_usable) {
uint32_t d, c, k;
d = be32_to_cpu(drv_fw->fw_ver);
c = be32_to_cpu(card_fw->fw_ver);
k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
csio_err(hw, "Cannot find a usable firmware: "
"chip state %d, "
"driver compiled with %d.%d.%d.%d, "
"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
state,
FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
ret = -EINVAL;
goto bye;
}
/* We're using whatever's on the card and it's known to be good. */
hw->fwrev = be32_to_cpu(card_fw->fw_ver);
hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
bye:
return ret;
}
/*
* Returns -EINVAL if attempts to flash the firmware failed,
* -ENOMEM if memory allocation failed else returns 0,
* if flashing was not attempted because the card had the
* latest firmware ECANCELED is returned
*/
static int
csio_hw_flash_fw(struct csio_hw *hw, int *reset)
{
int ret = -ECANCELED;
const struct firmware *fw;
struct fw_info *fw_info;
struct fw_hdr *card_fw;
struct pci_dev *pci_dev = hw->pdev;
struct device *dev = &pci_dev->dev ;
const u8 *fw_data = NULL;
unsigned int fw_size = 0;
const char *fw_bin_file;
/* This is the firmware whose headers the driver was compiled
* against
*/
fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
if (fw_info == NULL) {
csio_err(hw,
"unable to get firmware info for chip %d.\n",
CHELSIO_CHIP_VERSION(hw->chip_id));
return -EINVAL;
}
/* allocate memory to read the header of the firmware on the
* card
*/
card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
if (!card_fw)
return -ENOMEM;
if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
fw_bin_file = FW_FNAME_T5;
else
fw_bin_file = FW_FNAME_T6;
if (request_firmware(&fw, fw_bin_file, dev) < 0) {
csio_err(hw, "could not find firmware image %s, err: %d\n",
fw_bin_file, ret);
} else {
fw_data = fw->data;
fw_size = fw->size;
}
/* upgrade FW logic */
ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
hw->fw_state, reset);
/* Cleaning up */
if (fw != NULL)
release_firmware(fw);
kfree(card_fw);
return ret;
}
static int csio_hw_check_fwver(struct csio_hw *hw)
{
if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
(hw->fwrev < CSIO_MIN_T6_FW)) {
csio_hw_print_fw_version(hw, "T6 unsupported fw");
return -1;
}
return 0;
}
/*
* csio_hw_configure - Configure HW
* @hw - HW module
*
*/
static void
csio_hw_configure(struct csio_hw *hw)
{
int reset = 1;
int rv;
u32 param[1];
rv = csio_hw_dev_ready(hw);
if (rv != 0) {
CSIO_INC_STATS(hw, n_err_fatal);
csio_post_event(&hw->sm, CSIO_HWE_FATAL);
goto out;
}
/* HW version */
hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
/* Needed for FW download */
rv = csio_hw_get_flash_params(hw);
if (rv != 0) {
csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
csio_post_event(&hw->sm, CSIO_HWE_FATAL);
goto out;
}
/* Set PCIe completion timeout to 4 seconds */
if (pci_is_pcie(hw->pdev))
pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
rv = csio_hw_get_fw_version(hw, &hw->fwrev);
if (rv != 0)
goto out;
csio_hw_print_fw_version(hw, "Firmware revision");
rv = csio_do_hello(hw, &hw->fw_state);
if (rv != 0) {
CSIO_INC_STATS(hw, n_err_fatal);
csio_post_event(&hw->sm, CSIO_HWE_FATAL);
goto out;
}
/* Read vpd */
rv = csio_hw_get_vpd_params(hw, &hw->vpd);
if (rv != 0)
goto out;
csio_hw_get_fw_version(hw, &hw->fwrev);
csio_hw_get_tp_version(hw, &hw->tp_vers);
if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
/* Do firmware update */
spin_unlock_irq(&hw->lock);
rv = csio_hw_flash_fw(hw, &reset);
spin_lock_irq(&hw->lock);
if (rv != 0)
goto out;
rv = csio_hw_check_fwver(hw);
if (rv < 0)
goto out;
/* If the firmware doesn't support Configuration Files,
* return an error.
*/
rv = csio_hw_check_fwconfig(hw, param);
if (rv != 0) {
csio_info(hw, "Firmware doesn't support "
"Firmware Configuration files\n");
goto out;
}
/* The firmware provides us with a memory buffer where we can
* load a Configuration File from the host if we want to
* override the Configuration File in flash.
*/
rv = csio_hw_use_fwconfig(hw, reset, param);
if (rv == -ENOENT) {
csio_info(hw, "Could not initialize "
"adapter, error%d\n", rv);
goto out;
}
if (rv != 0) {
csio_info(hw, "Could not initialize "
"adapter, error%d\n", rv);
goto out;
}
} else {
rv = csio_hw_check_fwver(hw);
if (rv < 0)
goto out;
if (hw->fw_state == CSIO_DEV_STATE_INIT) {
hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
/* device parameters */
rv = csio_get_device_params(hw);
if (rv != 0)
goto out;
/* Get device capabilities */
rv = csio_config_device_caps(hw);
if (rv != 0)
goto out;
/* Configure SGE */
csio_wr_sge_init(hw);
/* Post event to notify completion of configuration */
csio_post_event(&hw->sm, CSIO_HWE_INIT);
goto out;
}
} /* if not master */
out:
return;
}
/*
* csio_hw_initialize - Initialize HW
* @hw - HW module
*
*/
static void
csio_hw_initialize(struct csio_hw *hw)
{
struct csio_mb *mbp;
enum fw_retval retval;
int rv;
int i;
if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp)
goto out;
csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
goto free_and_out;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
retval);
goto free_and_out;
}
mempool_free(mbp, hw->mb_mempool);
}
rv = csio_get_fcoe_resinfo(hw);
if (rv != 0) {
csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
goto out;
}
spin_unlock_irq(&hw->lock);
rv = csio_config_queues(hw);
spin_lock_irq(&hw->lock);
if (rv != 0) {
csio_err(hw, "Config of queues failed!: %d\n", rv);
goto out;
}
for (i = 0; i < hw->num_pports; i++)
hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
rv = csio_enable_ports(hw);
if (rv != 0) {
csio_err(hw, "Failed to enable ports: %d\n", rv);
goto out;
}
}
csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
return;
free_and_out:
mempool_free(mbp, hw->mb_mempool);
out:
return;
}
#define PF_INTR_MASK (PFSW_F | PFCIM_F)
/*
* csio_hw_intr_enable - Enable HW interrupts
* @hw: Pointer to HW module.
*
* Enable interrupts in HW registers.
*/
static void
csio_hw_intr_enable(struct csio_hw *hw)
{
uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
u32 pf = 0;
uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
else
pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
/*
* Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
* by FW, so do nothing for INTX.
*/
if (hw->intr_mode == CSIO_IM_MSIX)
csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
AIVEC_V(AIVEC_M), vec);
else if (hw->intr_mode == CSIO_IM_MSI)
csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
AIVEC_V(AIVEC_M), 0);
csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
/* Turn on MB interrupts - this will internally flush PIO as well */
csio_mb_intr_enable(hw);
/* These are common registers - only a master can modify them */
if (csio_is_hw_master(hw)) {
/*
* Disable the Serial FLASH interrupt, if enabled!
*/
pl &= (~SF_F);
csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
ERR_DATA_CPL_ON_HIGH_QID1_F |
ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
SGE_INT_ENABLE3_A);
csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
}
hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
}
/*
* csio_hw_intr_disable - Disable HW interrupts
* @hw: Pointer to HW module.
*
* Turn off Mailbox and PCI_PF_CFG interrupts.
*/
void
csio_hw_intr_disable(struct csio_hw *hw)
{
u32 pf = 0;
if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
else
pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
return;
hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
if (csio_is_hw_master(hw))
csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
/* Turn off MB interrupts */
csio_mb_intr_disable(hw);
}
void
csio_hw_fatal_err(struct csio_hw *hw)
{
csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
csio_hw_intr_disable(hw);
/* Do not reset HW, we may need FW state for debugging */
csio_fatal(hw, "HW Fatal error encountered!\n");
}
/*****************************************************************************/
/* START: HW SM */
/*****************************************************************************/
/*
* csio_hws_uninit - Uninit state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_CFG:
csio_set_state(&hw->sm, csio_hws_configuring);
csio_hw_configure(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_configuring - Configuring state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_INIT:
csio_set_state(&hw->sm, csio_hws_initializing);
csio_hw_initialize(hw);
break;
case CSIO_HWE_INIT_DONE:
csio_set_state(&hw->sm, csio_hws_ready);
/* Fan out event to all lnode SMs */
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
break;
case CSIO_HWE_FATAL:
csio_set_state(&hw->sm, csio_hws_uninit);
break;
case CSIO_HWE_PCI_REMOVE:
csio_do_bye(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_initializing - Initializing state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_INIT_DONE:
csio_set_state(&hw->sm, csio_hws_ready);
/* Fan out event to all lnode SMs */
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
/* Enable interrupts */
csio_hw_intr_enable(hw);
break;
case CSIO_HWE_FATAL:
csio_set_state(&hw->sm, csio_hws_uninit);
break;
case CSIO_HWE_PCI_REMOVE:
csio_do_bye(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_ready - Ready state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
{
/* Remember the event */
hw->evtflag = evt;
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_HBA_RESET:
case CSIO_HWE_FW_DLOAD:
case CSIO_HWE_SUSPEND:
case CSIO_HWE_PCI_REMOVE:
case CSIO_HWE_PCIERR_DETECTED:
csio_set_state(&hw->sm, csio_hws_quiescing);
/* cleanup all outstanding cmds */
if (evt == CSIO_HWE_HBA_RESET ||
evt == CSIO_HWE_PCIERR_DETECTED)
csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
else
csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
csio_hw_intr_disable(hw);
csio_hw_mbm_cleanup(hw);
csio_evtq_stop(hw);
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
csio_evtq_flush(hw);
csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
break;
case CSIO_HWE_FATAL:
csio_set_state(&hw->sm, csio_hws_uninit);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_quiescing - Quiescing state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_QUIESCED:
switch (hw->evtflag) {
case CSIO_HWE_FW_DLOAD:
csio_set_state(&hw->sm, csio_hws_resetting);
/* Download firmware */
fallthrough;
case CSIO_HWE_HBA_RESET:
csio_set_state(&hw->sm, csio_hws_resetting);
/* Start reset of the HBA */
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
csio_wr_destroy_queues(hw, false);
csio_do_reset(hw, false);
csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
break;
case CSIO_HWE_PCI_REMOVE:
csio_set_state(&hw->sm, csio_hws_removing);
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
csio_wr_destroy_queues(hw, true);
/* Now send the bye command */
csio_do_bye(hw);
break;
case CSIO_HWE_SUSPEND:
csio_set_state(&hw->sm, csio_hws_quiesced);
break;
case CSIO_HWE_PCIERR_DETECTED:
csio_set_state(&hw->sm, csio_hws_pcierr);
csio_wr_destroy_queues(hw, false);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_quiesced - Quiesced state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_RESUME:
csio_set_state(&hw->sm, csio_hws_configuring);
csio_hw_configure(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_resetting - HW Resetting state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_HBA_RESET_DONE:
csio_evtq_start(hw);
csio_set_state(&hw->sm, csio_hws_configuring);
csio_hw_configure(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_removing - PCI Hotplug removing state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_HBA_RESET:
if (!csio_is_hw_master(hw))
break;
/*
* The BYE should have already been issued, so we can't
* use the mailbox interface. Hence we use the PL_RST
* register directly.
*/
csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
mdelay(2000);
break;
/* Should never receive any new events */
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_pcierr - PCI Error state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_PCIERR_SLOT_RESET:
csio_evtq_start(hw);
csio_set_state(&hw->sm, csio_hws_configuring);
csio_hw_configure(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*****************************************************************************/
/* END: HW SM */
/*****************************************************************************/
/*
* csio_handle_intr_status - table driven interrupt handler
* @hw: HW instance
* @reg: the interrupt status register to process
* @acts: table of interrupt actions
*
* A table driven interrupt handler that applies a set of masks to an
* interrupt status word and performs the corresponding actions if the
* interrupts described by the mask have occurred. The actions include
* optionally emitting a warning or alert message. The table is terminated
* by an entry specifying mask 0. Returns the number of fatal interrupt
* conditions.
*/
int
csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
const struct intr_info *acts)
{
int fatal = 0;
unsigned int mask = 0;
unsigned int status = csio_rd_reg32(hw, reg);
for ( ; acts->mask; ++acts) {
if (!(status & acts->mask))
continue;
if (acts->fatal) {
fatal++;
csio_fatal(hw, "Fatal %s (0x%x)\n",
acts->msg, status & acts->mask);
} else if (acts->msg)
csio_info(hw, "%s (0x%x)\n",
acts->msg, status & acts->mask);
mask |= acts->mask;
}
status &= mask;
if (status) /* clear processed interrupts */
csio_wr_reg32(hw, status, reg);
return fatal;
}
/*
* TP interrupt handler.
*/
static void csio_tp_intr_handler(struct csio_hw *hw)
{
static struct intr_info tp_intr_info[] = {
{ 0x3fffffff, "TP parity error", -1, 1 },
{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
csio_hw_fatal_err(hw);
}
/*
* SGE interrupt handler.
*/
static void csio_sge_intr_handler(struct csio_hw *hw)
{
uint64_t v;
static struct intr_info sge_intr_info[] = {
{ ERR_CPL_EXCEED_IQE_SIZE_F,
"SGE received CPL exceeding IQE size", -1, 1 },
{ ERR_INVALID_CIDX_INC_F,
"SGE GTS CIDX increment too large", -1, 0 },
{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
"SGE IQID > 1023 received CPL for FL", -1, 0 },
{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
0 },
{ ERR_ING_CTXT_PRIO_F,
"SGE too many priority ingress contexts", -1, 0 },
{ ERR_EGR_CTXT_PRIO_F,
"SGE too many priority egress contexts", -1, 0 },
{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
{ 0, NULL, 0, 0 }
};
v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
if (v) {
csio_fatal(hw, "SGE parity error (%#llx)\n",
(unsigned long long)v);
csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
SGE_INT_CAUSE1_A);
csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
}
v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
v != 0)
csio_hw_fatal_err(hw);
}
#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
/*
* CIM interrupt handler.
*/
static void csio_cim_intr_handler(struct csio_hw *hw)
{
static struct intr_info cim_intr_info[] = {
{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info cim_upintr_info[] = {
{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
{ ILLWRINT_F, "CIM illegal write", -1, 1 },
{ ILLRDINT_F, "CIM illegal read", -1, 1 },
{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
{ 0, NULL, 0, 0 }
};
int fat;
fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
cim_intr_info) +
csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
cim_upintr_info);
if (fat)
csio_hw_fatal_err(hw);
}
/*
* ULP RX interrupt handler.
*/
static void csio_ulprx_intr_handler(struct csio_hw *hw)
{
static struct intr_info ulprx_intr_info[] = {
{ 0x1800000, "ULPRX context error", -1, 1 },
{ 0x7fffff, "ULPRX parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
csio_hw_fatal_err(hw);
}
/*
* ULP TX interrupt handler.
*/
static void csio_ulptx_intr_handler(struct csio_hw *hw)
{
static struct intr_info ulptx_intr_info[] = {
{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
0 },
{ 0xfffffff, "ULPTX parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
csio_hw_fatal_err(hw);
}
/*
* PM TX interrupt handler.
*/
static void csio_pmtx_intr_handler(struct csio_hw *hw)
{
static struct intr_info pmtx_intr_info[] = {
{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
{ 0xffffff0, "PMTX framing error", -1, 1 },
{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
1 },
{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
csio_hw_fatal_err(hw);
}
/*
* PM RX interrupt handler.
*/
static void csio_pmrx_intr_handler(struct csio_hw *hw)
{
static struct intr_info pmrx_intr_info[] = {
{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
{ 0x3ffff0, "PMRX framing error", -1, 1 },
{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
1 },
{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
csio_hw_fatal_err(hw);
}
/*
* CPL switch interrupt handler.
*/
static void csio_cplsw_intr_handler(struct csio_hw *hw)
{
static struct intr_info cplsw_intr_info[] = {
{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
csio_hw_fatal_err(hw);
}
/*
* LE interrupt handler.
*/
static void csio_le_intr_handler(struct csio_hw *hw)
{
enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
static struct intr_info le_intr_info[] = {
{ LIPMISS_F, "LE LIP miss", -1, 0 },
{ LIP0_F, "LE 0 LIP error", -1, 0 },
{ PARITYERR_F, "LE parity error", -1, 1 },
{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info t6_le_intr_info[] = {
{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
{ TCAMINTPERR_F, "LE parity error", -1, 1 },
{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
(chip == CHELSIO_T5) ?
le_intr_info : t6_le_intr_info))
csio_hw_fatal_err(hw);
}
/*
* MPS interrupt handler.
*/
static void csio_mps_intr_handler(struct csio_hw *hw)
{
static struct intr_info mps_rx_intr_info[] = {
{ 0xffffff, "MPS Rx parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_tx_intr_info[] = {
{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
-1, 1 },
{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
-1, 1 },
{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
{ FRMERR_F, "MPS Tx framing error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_trc_intr_info[] = {
{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
-1, 1 },
{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_stat_sram_intr_info[] = {
{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_stat_tx_intr_info[] = {
{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_stat_rx_intr_info[] = {
{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_cls_intr_info[] = {
{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
int fat;
fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
mps_rx_intr_info) +
csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
mps_tx_intr_info) +
csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
mps_trc_intr_info) +
csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
mps_stat_sram_intr_info) +
csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
mps_stat_tx_intr_info) +
csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
mps_stat_rx_intr_info) +
csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
mps_cls_intr_info);
csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
csio_rd_reg32(hw, MPS_INT_CAUSE_A); /* flush */
if (fat)
csio_hw_fatal_err(hw);
}
#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
ECC_UE_INT_CAUSE_F)
/*
* EDC/MC interrupt handler.
*/
static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
{
static const char name[3][5] = { "EDC0", "EDC1", "MC" };
unsigned int addr, cnt_addr, v;
if (idx <= MEM_EDC1) {
addr = EDC_REG(EDC_INT_CAUSE_A, idx);
cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
} else {
addr = MC_INT_CAUSE_A;
cnt_addr = MC_ECC_STATUS_A;
}
v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
if (v & PERR_INT_CAUSE_F)
csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
if (v & ECC_CE_INT_CAUSE_F) {
uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
csio_warn(hw, "%u %s correctable ECC data error%s\n",
cnt, name[idx], cnt > 1 ? "s" : "");
}
if (v & ECC_UE_INT_CAUSE_F)
csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
csio_wr_reg32(hw, v, addr);
if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
csio_hw_fatal_err(hw);
}
/*
* MA interrupt handler.
*/
static void csio_ma_intr_handler(struct csio_hw *hw)
{
uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
if (status & MEM_PERR_INT_CAUSE_F)
csio_fatal(hw, "MA parity error, parity status %#x\n",
csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
if (status & MEM_WRAP_INT_CAUSE_F) {
v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
csio_fatal(hw,
"MA address wrap-around error by client %u to address %#x\n",
MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
}
csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
csio_hw_fatal_err(hw);
}
/*
* SMB interrupt handler.
*/
static void csio_smb_intr_handler(struct csio_hw *hw)
{
static struct intr_info smb_intr_info[] = {
{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
csio_hw_fatal_err(hw);
}
/*
* NC-SI interrupt handler.
*/
static void csio_ncsi_intr_handler(struct csio_hw *hw)
{
static struct intr_info ncsi_intr_info[] = {
{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
csio_hw_fatal_err(hw);
}
/*
* XGMAC interrupt handler.
*/
static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
{
uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
if (!v)
return;
if (v & TXFIFO_PRTY_ERR_F)
csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
if (v & RXFIFO_PRTY_ERR_F)
csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
csio_hw_fatal_err(hw);
}
/*
* PL interrupt handler.
*/
static void csio_pl_intr_handler(struct csio_hw *hw)
{
static struct intr_info pl_intr_info[] = {
{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
csio_hw_fatal_err(hw);
}
/*
* csio_hw_slow_intr_handler - control path interrupt handler
* @hw: HW module
*
* Interrupt handler for non-data global interrupt events, e.g., errors.
* The designation 'slow' is because it involves register reads, while
* data interrupts typically don't involve any MMIOs.
*/
int
csio_hw_slow_intr_handler(struct csio_hw *hw)
{
uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
if (!(cause & CSIO_GLBL_INTR_MASK)) {
CSIO_INC_STATS(hw, n_plint_unexp);
return 0;
}
csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
CSIO_INC_STATS(hw, n_plint_cnt);
if (cause & CIM_F)
csio_cim_intr_handler(hw);
if (cause & MPS_F)
csio_mps_intr_handler(hw);
if (cause & NCSI_F)
csio_ncsi_intr_handler(hw);
if (cause & PL_F)
csio_pl_intr_handler(hw);
if (cause & SMB_F)
csio_smb_intr_handler(hw);
if (cause & XGMAC0_F)
csio_xgmac_intr_handler(hw, 0);
if (cause & XGMAC1_F)
csio_xgmac_intr_handler(hw, 1);
if (cause & XGMAC_KR0_F)
csio_xgmac_intr_handler(hw, 2);
if (cause & XGMAC_KR1_F)
csio_xgmac_intr_handler(hw, 3);
if (cause & PCIE_F)
hw->chip_ops->chip_pcie_intr_handler(hw);
if (cause & MC_F)
csio_mem_intr_handler(hw, MEM_MC);
if (cause & EDC0_F)
csio_mem_intr_handler(hw, MEM_EDC0);
if (cause & EDC1_F)
csio_mem_intr_handler(hw, MEM_EDC1);
if (cause & LE_F)
csio_le_intr_handler(hw);
if (cause & TP_F)
csio_tp_intr_handler(hw);
if (cause & MA_F)
csio_ma_intr_handler(hw);
if (cause & PM_TX_F)
csio_pmtx_intr_handler(hw);
if (cause & PM_RX_F)
csio_pmrx_intr_handler(hw);
if (cause & ULP_RX_F)
csio_ulprx_intr_handler(hw);
if (cause & CPL_SWITCH_F)
csio_cplsw_intr_handler(hw);
if (cause & SGE_F)
csio_sge_intr_handler(hw);
if (cause & ULP_TX_F)
csio_ulptx_intr_handler(hw);
/* Clear the interrupts just processed for which we are the master. */
csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
return 1;
}
/*****************************************************************************
* HW <--> mailbox interfacing routines.
****************************************************************************/
/*
* csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
*
* @data: Private data pointer.
*
* Called from worker thread context.
*/
static void
csio_mberr_worker(void *data)
{
struct csio_hw *hw = (struct csio_hw *)data;
struct csio_mbm *mbm = &hw->mbm;
LIST_HEAD(cbfn_q);
struct csio_mb *mbp_next;
int rv;
del_timer_sync(&mbm->timer);
spin_lock_irq(&hw->lock);
if (list_empty(&mbm->cbfn_q)) {
spin_unlock_irq(&hw->lock);
return;
}
list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
mbm->stats.n_cbfnq = 0;
/* Try to start waiting mailboxes */
if (!list_empty(&mbm->req_q)) {
mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
list_del_init(&mbp_next->list);
rv = csio_mb_issue(hw, mbp_next);
if (rv != 0)
list_add_tail(&mbp_next->list, &mbm->req_q);
else
CSIO_DEC_STATS(mbm, n_activeq);
}
spin_unlock_irq(&hw->lock);
/* Now callback completions */
csio_mb_completions(hw, &cbfn_q);
}
/*
* csio_hw_mb_timer - Top-level Mailbox timeout handler.
*
* @data: private data pointer
*
**/
static void
csio_hw_mb_timer(struct timer_list *t)
{
struct csio_mbm *mbm = from_timer(mbm, t, timer);
struct csio_hw *hw = mbm->hw;
struct csio_mb *mbp = NULL;
spin_lock_irq(&hw->lock);
mbp = csio_mb_tmo_handler(hw);
spin_unlock_irq(&hw->lock);
/* Call back the function for the timed-out Mailbox */
if (mbp)
mbp->mb_cbfn(hw, mbp);
}
/*
* csio_hw_mbm_cleanup - Cleanup Mailbox module.
* @hw: HW module
*
* Called with lock held, should exit with lock held.
* Cancels outstanding mailboxes (waiting, in-flight) and gathers them
* into a local queue. Drops lock and calls the completions. Holds
* lock and returns.
*/
static void
csio_hw_mbm_cleanup(struct csio_hw *hw)
{
LIST_HEAD(cbfn_q);
csio_mb_cancel_all(hw, &cbfn_q);
spin_unlock_irq(&hw->lock);
csio_mb_completions(hw, &cbfn_q);
spin_lock_irq(&hw->lock);
}
/*****************************************************************************
* Event handling
****************************************************************************/
int
csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
uint16_t len)
{
struct csio_evt_msg *evt_entry = NULL;
if (type >= CSIO_EVT_MAX)
return -EINVAL;
if (len > CSIO_EVT_MSG_SIZE)
return -EINVAL;
if (hw->flags & CSIO_HWF_FWEVT_STOP)
return -EINVAL;
if (list_empty(&hw->evt_free_q)) {
csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
type, len);
return -ENOMEM;
}
evt_entry = list_first_entry(&hw->evt_free_q,
struct csio_evt_msg, list);
list_del_init(&evt_entry->list);
/* copy event msg and queue the event */
evt_entry->type = type;
memcpy((void *)evt_entry->data, evt_msg, len);
list_add_tail(&evt_entry->list, &hw->evt_active_q);
CSIO_DEC_STATS(hw, n_evt_freeq);
CSIO_INC_STATS(hw, n_evt_activeq);
return 0;
}
static int
csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
uint16_t len, bool msg_sg)
{
struct csio_evt_msg *evt_entry = NULL;
struct csio_fl_dma_buf *fl_sg;
uint32_t off = 0;
unsigned long flags;
int n, ret = 0;
if (type >= CSIO_EVT_MAX)
return -EINVAL;
if (len > CSIO_EVT_MSG_SIZE)
return -EINVAL;
spin_lock_irqsave(&hw->lock, flags);
if (hw->flags & CSIO_HWF_FWEVT_STOP) {
ret = -EINVAL;
goto out;
}
if (list_empty(&hw->evt_free_q)) {
csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
type, len);
ret = -ENOMEM;
goto out;
}
evt_entry = list_first_entry(&hw->evt_free_q,
struct csio_evt_msg, list);
list_del_init(&evt_entry->list);
/* copy event msg and queue the event */
evt_entry->type = type;
/* If Payload in SG list*/
if (msg_sg) {
fl_sg = (struct csio_fl_dma_buf *) evt_msg;
for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
memcpy((void *)((uintptr_t)evt_entry->data + off),
fl_sg->flbufs[n].vaddr,
fl_sg->flbufs[n].len);
off += fl_sg->flbufs[n].len;
}
} else
memcpy((void *)evt_entry->data, evt_msg, len);
list_add_tail(&evt_entry->list, &hw->evt_active_q);
CSIO_DEC_STATS(hw, n_evt_freeq);
CSIO_INC_STATS(hw, n_evt_activeq);
out:
spin_unlock_irqrestore(&hw->lock, flags);
return ret;
}
static void
csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
{
if (evt_entry) {
spin_lock_irq(&hw->lock);
list_del_init(&evt_entry->list);
list_add_tail(&evt_entry->list, &hw->evt_free_q);
CSIO_DEC_STATS(hw, n_evt_activeq);
CSIO_INC_STATS(hw, n_evt_freeq);
spin_unlock_irq(&hw->lock);
}
}
void
csio_evtq_flush(struct csio_hw *hw)
{
uint32_t count;
count = 30;
while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
spin_unlock_irq(&hw->lock);
msleep(2000);
spin_lock_irq(&hw->lock);
}
CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
}
static void
csio_evtq_stop(struct csio_hw *hw)
{
hw->flags |= CSIO_HWF_FWEVT_STOP;
}
static void
csio_evtq_start(struct csio_hw *hw)
{
hw->flags &= ~CSIO_HWF_FWEVT_STOP;
}
static void
csio_evtq_cleanup(struct csio_hw *hw)
{
struct list_head *evt_entry, *next_entry;
/* Release outstanding events from activeq to freeq*/
if (!list_empty(&hw->evt_active_q))
list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
hw->stats.n_evt_activeq = 0;
hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
/* Freeup event entry */
list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
kfree(evt_entry);
CSIO_DEC_STATS(hw, n_evt_freeq);
}
hw->stats.n_evt_freeq = 0;
}
static void
csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
struct csio_fl_dma_buf *flb, void *priv)
{
__u8 op;
void *msg = NULL;
uint32_t msg_len = 0;
bool msg_sg = 0;
op = ((struct rss_header *) wr)->opcode;
if (op == CPL_FW6_PLD) {
CSIO_INC_STATS(hw, n_cpl_fw6_pld);
if (!flb || !flb->totlen) {
CSIO_INC_STATS(hw, n_cpl_unexp);
return;
}
msg = (void *) flb;
msg_len = flb->totlen;
msg_sg = 1;
} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
CSIO_INC_STATS(hw, n_cpl_fw6_msg);
/* skip RSS header */
msg = (void *)((uintptr_t)wr + sizeof(__be64));
msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
sizeof(struct cpl_fw4_msg);
} else {
csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
CSIO_INC_STATS(hw, n_cpl_unexp);
return;
}
/*
* Enqueue event to EventQ. Events processing happens
* in Event worker thread context
*/
if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
(uint16_t)msg_len, msg_sg))
CSIO_INC_STATS(hw, n_evt_drop);
}
void
csio_evtq_worker(struct work_struct *work)
{
struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
struct list_head *evt_entry, *next_entry;
LIST_HEAD(evt_q);
struct csio_evt_msg *evt_msg;
struct cpl_fw6_msg *msg;
struct csio_rnode *rn;
int rv = 0;
uint8_t evtq_stop = 0;
csio_dbg(hw, "event worker thread active evts#%d\n",
hw->stats.n_evt_activeq);
spin_lock_irq(&hw->lock);
while (!list_empty(&hw->evt_active_q)) {
list_splice_tail_init(&hw->evt_active_q, &evt_q);
spin_unlock_irq(&hw->lock);
list_for_each_safe(evt_entry, next_entry, &evt_q) {
evt_msg = (struct csio_evt_msg *) evt_entry;
/* Drop events if queue is STOPPED */
spin_lock_irq(&hw->lock);
if (hw->flags & CSIO_HWF_FWEVT_STOP)
evtq_stop = 1;
spin_unlock_irq(&hw->lock);
if (evtq_stop) {
CSIO_INC_STATS(hw, n_evt_drop);
goto free_evt;
}
switch (evt_msg->type) {
case CSIO_EVT_FW:
msg = (struct cpl_fw6_msg *)(evt_msg->data);
if ((msg->opcode == CPL_FW6_MSG ||
msg->opcode == CPL_FW4_MSG) &&
!msg->type) {
rv = csio_mb_fwevt_handler(hw,
msg->data);
if (!rv)
break;
/* Handle any remaining fw events */
csio_fcoe_fwevt_handler(hw,
msg->opcode, msg->data);
} else if (msg->opcode == CPL_FW6_PLD) {
csio_fcoe_fwevt_handler(hw,
msg->opcode, msg->data);
} else {
csio_warn(hw,
"Unhandled FW msg op %x type %x\n",
msg->opcode, msg->type);
CSIO_INC_STATS(hw, n_evt_drop);
}
break;
case CSIO_EVT_MBX:
csio_mberr_worker(hw);
break;
case CSIO_EVT_DEV_LOSS:
memcpy(&rn, evt_msg->data, sizeof(rn));
csio_rnode_devloss_handler(rn);
break;
default:
csio_warn(hw, "Unhandled event %x on evtq\n",
evt_msg->type);
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
free_evt:
csio_free_evt(hw, evt_msg);
}
spin_lock_irq(&hw->lock);
}
hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
spin_unlock_irq(&hw->lock);
}
int
csio_fwevtq_handler(struct csio_hw *hw)
{
int rv;
if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
CSIO_INC_STATS(hw, n_int_stray);
return -EINVAL;
}
rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
csio_process_fwevtq_entry, NULL);
return rv;
}
/****************************************************************************
* Entry points
****************************************************************************/
/* Management module */
/*
* csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
* mgmt - mgmt module
* @io_req - io request
*
* Return - 0:if given IO Req exists in active Q.
* -EINVAL :if lookup fails.
*/
int
csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
{
struct list_head *tmp;
/* Lookup ioreq in the ACTIVEQ */
list_for_each(tmp, &mgmtm->active_q) {
if (io_req == (struct csio_ioreq *)tmp)
return 0;
}
return -EINVAL;
}
#define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
/*
* csio_mgmts_tmo_handler - MGMT IO Timeout handler.
* @data - Event data.
*
* Return - none.
*/
static void
csio_mgmt_tmo_handler(struct timer_list *t)
{
struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer);
struct list_head *tmp;
struct csio_ioreq *io_req;
csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
spin_lock_irq(&mgmtm->hw->lock);
list_for_each(tmp, &mgmtm->active_q) {
io_req = (struct csio_ioreq *) tmp;
io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
if (!io_req->tmo) {
/* Dequeue the request from retry Q. */
tmp = csio_list_prev(tmp);
list_del_init(&io_req->sm.sm_list);
if (io_req->io_cbfn) {
/* io_req will be freed by completion handler */
io_req->wr_status = -ETIMEDOUT;
io_req->io_cbfn(mgmtm->hw, io_req);
} else {
CSIO_DB_ASSERT(0);
}
}
}
/* If retry queue is not empty, re-arm timer */
if (!list_empty(&mgmtm->active_q))
mod_timer(&mgmtm->mgmt_timer,
jiffies + msecs_to_jiffies(ECM_MIN_TMO));
spin_unlock_irq(&mgmtm->hw->lock);
}
static void
csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
{
struct csio_hw *hw = mgmtm->hw;
struct csio_ioreq *io_req;
struct list_head *tmp;
uint32_t count;
count = 30;
/* Wait for all outstanding req to complete gracefully */
while ((!list_empty(&mgmtm->active_q)) && count--) {
spin_unlock_irq(&hw->lock);
msleep(2000);
spin_lock_irq(&hw->lock);
}
/* release outstanding req from ACTIVEQ */
list_for_each(tmp, &mgmtm->active_q) {
io_req = (struct csio_ioreq *) tmp;
tmp = csio_list_prev(tmp);
list_del_init(&io_req->sm.sm_list);
mgmtm->stats.n_active--;
if (io_req->io_cbfn) {
/* io_req will be freed by completion handler */
io_req->wr_status = -ETIMEDOUT;
io_req->io_cbfn(mgmtm->hw, io_req);
}
}
}
/*
* csio_mgmt_init - Mgmt module init entry point
* @mgmtsm - mgmt module
* @hw - HW module
*
* Initialize mgmt timer, resource wait queue, active queue,
* completion q. Allocate Egress and Ingress
* WR queues and save off the queue index returned by the WR
* module for future use. Allocate and save off mgmt reqs in the
* mgmt_req_freelist for future use. Make sure their SM is initialized
* to uninit state.
* Returns: 0 - on success
* -ENOMEM - on error.
*/
static int
csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
{
timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0);
INIT_LIST_HEAD(&mgmtm->active_q);
INIT_LIST_HEAD(&mgmtm->cbfn_q);
mgmtm->hw = hw;
/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
return 0;
}
/*
* csio_mgmtm_exit - MGMT module exit entry point
* @mgmtsm - mgmt module
*
* This function called during MGMT module uninit.
* Stop timers, free ioreqs allocated.
* Returns: None
*
*/
static void
csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
{
del_timer_sync(&mgmtm->mgmt_timer);
}
/**
* csio_hw_start - Kicks off the HW State machine
* @hw: Pointer to HW module.
*
* It is assumed that the initialization is a synchronous operation.
* So when we return after posting the event, the HW SM should be in
* the ready state, if there were no errors during init.
*/
int
csio_hw_start(struct csio_hw *hw)
{
spin_lock_irq(&hw->lock);
csio_post_event(&hw->sm, CSIO_HWE_CFG);
spin_unlock_irq(&hw->lock);
if (csio_is_hw_ready(hw))
return 0;
else if (csio_match_state(hw, csio_hws_uninit))
return -EINVAL;
else
return -ENODEV;
}
int
csio_hw_stop(struct csio_hw *hw)
{
csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
if (csio_is_hw_removing(hw))
return 0;
else
return -EINVAL;
}
/* Max reset retries */
#define CSIO_MAX_RESET_RETRIES 3
/**
* csio_hw_reset - Reset the hardware
* @hw: HW module.
*
* Caller should hold lock across this function.
*/
int
csio_hw_reset(struct csio_hw *hw)
{
if (!csio_is_hw_master(hw))
return -EPERM;
if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
csio_dbg(hw, "Max hw reset attempts reached..");
return -EINVAL;
}
hw->rst_retries++;
csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
if (csio_is_hw_ready(hw)) {
hw->rst_retries = 0;
hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
return 0;
} else
return -EINVAL;
}
/*
* csio_hw_get_device_id - Caches the Adapter's vendor & device id.
* @hw: HW module.
*/
static void
csio_hw_get_device_id(struct csio_hw *hw)
{
/* Is the adapter device id cached already ?*/
if (csio_is_dev_id_cached(hw))
return;
/* Get the PCI vendor & device id */
pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
&hw->params.pci.vendor_id);
pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
&hw->params.pci.device_id);
csio_dev_id_cached(hw);
hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
} /* csio_hw_get_device_id */
/*
* csio_hw_set_description - Set the model, description of the hw.
* @hw: HW module.
* @ven_id: PCI Vendor ID
* @dev_id: PCI Device ID
*/
static void
csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
{
uint32_t adap_type, prot_type;
if (ven_id == CSIO_VENDOR_ID) {
prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
if (prot_type == CSIO_T5_FCOE_ASIC) {
memcpy(hw->hw_ver,
csio_t5_fcoe_adapters[adap_type].model_no, 16);
memcpy(hw->model_desc,
csio_t5_fcoe_adapters[adap_type].description,
32);
} else {
char tempName[32] = "Chelsio FCoE Controller";
memcpy(hw->model_desc, tempName, 32);
}
}
} /* csio_hw_set_description */
/**
* csio_hw_init - Initialize HW module.
* @hw: Pointer to HW module.
*
* Initialize the members of the HW module.
*/
int
csio_hw_init(struct csio_hw *hw)
{
int rv = -EINVAL;
uint32_t i;
uint16_t ven_id, dev_id;
struct csio_evt_msg *evt_entry;
INIT_LIST_HEAD(&hw->sm.sm_list);
csio_init_state(&hw->sm, csio_hws_uninit);
spin_lock_init(&hw->lock);
INIT_LIST_HEAD(&hw->sln_head);
/* Get the PCI vendor & device id */
csio_hw_get_device_id(hw);
strcpy(hw->name, CSIO_HW_NAME);
/* Initialize the HW chip ops T5 specific ops */
hw->chip_ops = &t5_ops;
/* Set the model & its description */
ven_id = hw->params.pci.vendor_id;
dev_id = hw->params.pci.device_id;
csio_hw_set_description(hw, ven_id, dev_id);
/* Initialize default log level */
hw->params.log_level = (uint32_t) csio_dbg_level;
csio_set_fwevt_intr_idx(hw, -1);
csio_set_nondata_intr_idx(hw, -1);
/* Init all the modules: Mailbox, WorkRequest and Transport */
if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
goto err;
rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
if (rv)
goto err_mbm_exit;
rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
if (rv)
goto err_wrm_exit;
rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
if (rv)
goto err_scsim_exit;
/* Pre-allocate evtq and initialize them */
INIT_LIST_HEAD(&hw->evt_active_q);
INIT_LIST_HEAD(&hw->evt_free_q);
for (i = 0; i < csio_evtq_sz; i++) {
evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
if (!evt_entry) {
rv = -ENOMEM;
csio_err(hw, "Failed to initialize eventq");
goto err_evtq_cleanup;
}
list_add_tail(&evt_entry->list, &hw->evt_free_q);
CSIO_INC_STATS(hw, n_evt_freeq);
}
hw->dev_num = dev_num;
dev_num++;
return 0;
err_evtq_cleanup:
csio_evtq_cleanup(hw);
csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
err_scsim_exit:
csio_scsim_exit(csio_hw_to_scsim(hw));
err_wrm_exit:
csio_wrm_exit(csio_hw_to_wrm(hw), hw);
err_mbm_exit:
csio_mbm_exit(csio_hw_to_mbm(hw));
err:
return rv;
}
/**
* csio_hw_exit - Un-initialize HW module.
* @hw: Pointer to HW module.
*
*/
void
csio_hw_exit(struct csio_hw *hw)
{
csio_evtq_cleanup(hw);
csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
csio_scsim_exit(csio_hw_to_scsim(hw));
csio_wrm_exit(csio_hw_to_wrm(hw), hw);
csio_mbm_exit(csio_hw_to_mbm(hw));
}