linux/linux-5.18.11/drivers/regulator/ti-abb-regulator.c

884 lines
24 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
/*
* Texas Instruments SoC Adaptive Body Bias(ABB) Regulator
*
* Copyright (C) 2011 Texas Instruments, Inc.
* Mike Turquette <mturquette@ti.com>
*
* Copyright (C) 2012-2013 Texas Instruments, Inc.
* Andrii Tseglytskyi <andrii.tseglytskyi@ti.com>
* Nishanth Menon <nm@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
/*
* ABB LDO operating states:
* NOMINAL_OPP: bypasses the ABB LDO
* FAST_OPP: sets ABB LDO to Forward Body-Bias
* SLOW_OPP: sets ABB LDO to Reverse Body-Bias
*/
#define TI_ABB_NOMINAL_OPP 0
#define TI_ABB_FAST_OPP 1
#define TI_ABB_SLOW_OPP 3
/**
* struct ti_abb_info - ABB information per voltage setting
* @opp_sel: one of TI_ABB macro
* @vset: (optional) vset value that LDOVBB needs to be overridden with.
*
* Array of per voltage entries organized in the same order as regulator_desc's
* volt_table list. (selector is used to index from this array)
*/
struct ti_abb_info {
u32 opp_sel;
u32 vset;
};
/**
* struct ti_abb_reg - Register description for ABB block
* @setup_off: setup register offset from base
* @control_off: control register offset from base
* @sr2_wtcnt_value_mask: setup register- sr2_wtcnt_value mask
* @fbb_sel_mask: setup register- FBB sel mask
* @rbb_sel_mask: setup register- RBB sel mask
* @sr2_en_mask: setup register- enable mask
* @opp_change_mask: control register - mask to trigger LDOVBB change
* @opp_sel_mask: control register - mask for mode to operate
*/
struct ti_abb_reg {
u32 setup_off;
u32 control_off;
/* Setup register fields */
u32 sr2_wtcnt_value_mask;
u32 fbb_sel_mask;
u32 rbb_sel_mask;
u32 sr2_en_mask;
/* Control register fields */
u32 opp_change_mask;
u32 opp_sel_mask;
};
/**
* struct ti_abb - ABB instance data
* @rdesc: regulator descriptor
* @clk: clock(usually sysclk) supplying ABB block
* @base: base address of ABB block
* @setup_reg: setup register of ABB block
* @control_reg: control register of ABB block
* @int_base: interrupt register base address
* @efuse_base: (optional) efuse base address for ABB modes
* @ldo_base: (optional) LDOVBB vset override base address
* @regs: pointer to struct ti_abb_reg for ABB block
* @txdone_mask: mask on int_base for tranxdone interrupt
* @ldovbb_override_mask: mask to ldo_base for overriding default LDO VBB
* vset with value from efuse
* @ldovbb_vset_mask: mask to ldo_base for providing the VSET override
* @info: array to per voltage ABB configuration
* @current_info_idx: current index to info
* @settling_time: SoC specific settling time for LDO VBB
*/
struct ti_abb {
struct regulator_desc rdesc;
struct clk *clk;
void __iomem *base;
void __iomem *setup_reg;
void __iomem *control_reg;
void __iomem *int_base;
void __iomem *efuse_base;
void __iomem *ldo_base;
const struct ti_abb_reg *regs;
u32 txdone_mask;
u32 ldovbb_override_mask;
u32 ldovbb_vset_mask;
struct ti_abb_info *info;
int current_info_idx;
u32 settling_time;
};
/**
* ti_abb_rmw() - handy wrapper to set specific register bits
* @mask: mask for register field
* @value: value shifted to mask location and written
* @reg: register address
*
* Return: final register value (may be unused)
*/
static inline u32 ti_abb_rmw(u32 mask, u32 value, void __iomem *reg)
{
u32 val;
val = readl(reg);
val &= ~mask;
val |= (value << __ffs(mask)) & mask;
writel(val, reg);
return val;
}
/**
* ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status
* @abb: pointer to the abb instance
*
* Return: true or false
*/
static inline bool ti_abb_check_txdone(const struct ti_abb *abb)
{
return !!(readl(abb->int_base) & abb->txdone_mask);
}
/**
* ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status
* @abb: pointer to the abb instance
*/
static inline void ti_abb_clear_txdone(const struct ti_abb *abb)
{
writel(abb->txdone_mask, abb->int_base);
};
/**
* ti_abb_wait_tranx() - waits for ABB tranxdone event
* @dev: device
* @abb: pointer to the abb instance
*
* Return: 0 on success or -ETIMEDOUT if the event is not cleared on time.
*/
static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb)
{
int timeout = 0;
bool status;
while (timeout++ <= abb->settling_time) {
status = ti_abb_check_txdone(abb);
if (status)
return 0;
udelay(1);
}
dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n",
__func__, timeout, readl(abb->int_base));
return -ETIMEDOUT;
}
/**
* ti_abb_clear_all_txdone() - clears ABB tranxdone event
* @dev: device
* @abb: pointer to the abb instance
*
* Return: 0 on success or -ETIMEDOUT if the event is not cleared on time.
*/
static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb)
{
int timeout = 0;
bool status;
while (timeout++ <= abb->settling_time) {
ti_abb_clear_txdone(abb);
status = ti_abb_check_txdone(abb);
if (!status)
return 0;
udelay(1);
}
dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n",
__func__, timeout, readl(abb->int_base));
return -ETIMEDOUT;
}
/**
* ti_abb_program_ldovbb() - program LDOVBB register for override value
* @dev: device
* @abb: pointer to the abb instance
* @info: ABB info to program
*/
static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb,
struct ti_abb_info *info)
{
u32 val;
val = readl(abb->ldo_base);
/* clear up previous values */
val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask);
switch (info->opp_sel) {
case TI_ABB_SLOW_OPP:
case TI_ABB_FAST_OPP:
val |= abb->ldovbb_override_mask;
val |= info->vset << __ffs(abb->ldovbb_vset_mask);
break;
}
writel(val, abb->ldo_base);
}
/**
* ti_abb_set_opp() - Setup ABB and LDO VBB for required bias
* @rdev: regulator device
* @abb: pointer to the abb instance
* @info: ABB info to program
*
* Return: 0 on success or appropriate error value when fails
*/
static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb,
struct ti_abb_info *info)
{
const struct ti_abb_reg *regs = abb->regs;
struct device *dev = &rdev->dev;
int ret;
ret = ti_abb_clear_all_txdone(dev, abb);
if (ret)
goto out;
ti_abb_rmw(regs->fbb_sel_mask | regs->rbb_sel_mask, 0, abb->setup_reg);
switch (info->opp_sel) {
case TI_ABB_SLOW_OPP:
ti_abb_rmw(regs->rbb_sel_mask, 1, abb->setup_reg);
break;
case TI_ABB_FAST_OPP:
ti_abb_rmw(regs->fbb_sel_mask, 1, abb->setup_reg);
break;
}
/* program next state of ABB ldo */
ti_abb_rmw(regs->opp_sel_mask, info->opp_sel, abb->control_reg);
/*
* program LDO VBB vset override if needed for !bypass mode
* XXX: Do not switch sequence - for !bypass, LDO override reset *must*
* be performed *before* switch to bias mode else VBB glitches.
*/
if (abb->ldo_base && info->opp_sel != TI_ABB_NOMINAL_OPP)
ti_abb_program_ldovbb(dev, abb, info);
/* Initiate ABB ldo change */
ti_abb_rmw(regs->opp_change_mask, 1, abb->control_reg);
/* Wait for ABB LDO to complete transition to new Bias setting */
ret = ti_abb_wait_txdone(dev, abb);
if (ret)
goto out;
ret = ti_abb_clear_all_txdone(dev, abb);
if (ret)
goto out;
/*
* Reset LDO VBB vset override bypass mode
* XXX: Do not switch sequence - for bypass, LDO override reset *must*
* be performed *after* switch to bypass else VBB glitches.
*/
if (abb->ldo_base && info->opp_sel == TI_ABB_NOMINAL_OPP)
ti_abb_program_ldovbb(dev, abb, info);
out:
return ret;
}
/**
* ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO
* @rdev: regulator device
* @sel: selector to index into required ABB LDO settings (maps to
* regulator descriptor's volt_table)
*
* Return: 0 on success or appropriate error value when fails
*/
static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned sel)
{
const struct regulator_desc *desc = rdev->desc;
struct ti_abb *abb = rdev_get_drvdata(rdev);
struct device *dev = &rdev->dev;
struct ti_abb_info *info, *oinfo;
int ret = 0;
if (!abb) {
dev_err_ratelimited(dev, "%s: No regulator drvdata\n",
__func__);
return -ENODEV;
}
if (!desc->n_voltages || !abb->info) {
dev_err_ratelimited(dev,
"%s: No valid voltage table entries?\n",
__func__);
return -EINVAL;
}
if (sel >= desc->n_voltages) {
dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__,
sel, desc->n_voltages);
return -EINVAL;
}
/* If we are in the same index as we were, nothing to do here! */
if (sel == abb->current_info_idx) {
dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel);
return ret;
}
info = &abb->info[sel];
/*
* When Linux kernel is starting up, we are'nt sure of the
* Bias configuration that bootloader has configured.
* So, we get to know the actual setting the first time
* we are asked to transition.
*/
if (abb->current_info_idx == -EINVAL)
goto just_set_abb;
/* If data is exactly the same, then just update index, no change */
oinfo = &abb->info[abb->current_info_idx];
if (!memcmp(info, oinfo, sizeof(*info))) {
dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__,
sel, abb->current_info_idx);
goto out;
}
just_set_abb:
ret = ti_abb_set_opp(rdev, abb, info);
out:
if (!ret)
abb->current_info_idx = sel;
else
dev_err_ratelimited(dev,
"%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n",
__func__, desc->volt_table[sel], sel,
info->opp_sel, ret);
return ret;
}
/**
* ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting
* @rdev: regulator device
*
* Return: 0 on success or appropriate error value when fails
*/
static int ti_abb_get_voltage_sel(struct regulator_dev *rdev)
{
const struct regulator_desc *desc = rdev->desc;
struct ti_abb *abb = rdev_get_drvdata(rdev);
struct device *dev = &rdev->dev;
if (!abb) {
dev_err_ratelimited(dev, "%s: No regulator drvdata\n",
__func__);
return -ENODEV;
}
if (!desc->n_voltages || !abb->info) {
dev_err_ratelimited(dev,
"%s: No valid voltage table entries?\n",
__func__);
return -EINVAL;
}
if (abb->current_info_idx >= (int)desc->n_voltages) {
dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n",
__func__, abb->current_info_idx, desc->n_voltages);
return -EINVAL;
}
return abb->current_info_idx;
}
/**
* ti_abb_init_timings() - setup ABB clock timing for the current platform
* @dev: device
* @abb: pointer to the abb instance
*
* Return: 0 if timing is updated, else returns error result.
*/
static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb)
{
u32 clock_cycles;
u32 clk_rate, sr2_wt_cnt_val, cycle_rate;
const struct ti_abb_reg *regs = abb->regs;
int ret;
char *pname = "ti,settling-time";
/* read device tree properties */
ret = of_property_read_u32(dev->of_node, pname, &abb->settling_time);
if (ret) {
dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret);
return ret;
}
/* ABB LDO cannot be settle in 0 time */
if (!abb->settling_time) {
dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
return -EINVAL;
}
pname = "ti,clock-cycles";
ret = of_property_read_u32(dev->of_node, pname, &clock_cycles);
if (ret) {
dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret);
return ret;
}
/* ABB LDO cannot be settle in 0 clock cycles */
if (!clock_cycles) {
dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
return -EINVAL;
}
abb->clk = devm_clk_get(dev, NULL);
if (IS_ERR(abb->clk)) {
ret = PTR_ERR(abb->clk);
dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret);
return ret;
}
/*
* SR2_WTCNT_VALUE is the settling time for the ABB ldo after a
* transition and must be programmed with the correct time at boot.
* The value programmed into the register is the number of SYS_CLK
* clock cycles that match a given wall time profiled for the ldo.
* This value depends on:
* settling time of ldo in micro-seconds (varies per OMAP family)
* # of clock cycles per SYS_CLK period (varies per OMAP family)
* the SYS_CLK frequency in MHz (varies per board)
* The formula is:
*
* ldo settling time (in micro-seconds)
* SR2_WTCNT_VALUE = ------------------------------------------
* (# system clock cycles) * (sys_clk period)
*
* Put another way:
*
* SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate))
*
* To avoid dividing by zero multiply both "# clock cycles" and
* "settling time" by 10 such that the final result is the one we want.
*/
/* Convert SYS_CLK rate to MHz & prevent divide by zero */
clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000);
/* Calculate cycle rate */
cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate);
/* Calculate SR2_WTCNT_VALUE */
sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate);
dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__,
clk_get_rate(abb->clk), sr2_wt_cnt_val);
ti_abb_rmw(regs->sr2_wtcnt_value_mask, sr2_wt_cnt_val, abb->setup_reg);
return 0;
}
/**
* ti_abb_init_table() - Initialize ABB table from device tree
* @dev: device
* @abb: pointer to the abb instance
* @rinit_data: regulator initdata
*
* Return: 0 on success or appropriate error value when fails
*/
static int ti_abb_init_table(struct device *dev, struct ti_abb *abb,
struct regulator_init_data *rinit_data)
{
struct ti_abb_info *info;
const u32 num_values = 6;
char *pname = "ti,abb_info";
u32 i;
unsigned int *volt_table;
int num_entries, min_uV = INT_MAX, max_uV = 0;
struct regulation_constraints *c = &rinit_data->constraints;
/*
* Each abb_info is a set of n-tuple, where n is num_values, consisting
* of voltage and a set of detection logic for ABB information for that
* voltage to apply.
*/
num_entries = of_property_count_u32_elems(dev->of_node, pname);
if (num_entries < 0) {
dev_err(dev, "No '%s' property?\n", pname);
return num_entries;
}
if (!num_entries || (num_entries % num_values)) {
dev_err(dev, "All '%s' list entries need %d vals\n", pname,
num_values);
return -EINVAL;
}
num_entries /= num_values;
info = devm_kcalloc(dev, num_entries, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
abb->info = info;
volt_table = devm_kcalloc(dev, num_entries, sizeof(unsigned int),
GFP_KERNEL);
if (!volt_table)
return -ENOMEM;
abb->rdesc.n_voltages = num_entries;
abb->rdesc.volt_table = volt_table;
/* We do not know where the OPP voltage is at the moment */
abb->current_info_idx = -EINVAL;
for (i = 0; i < num_entries; i++, info++, volt_table++) {
u32 efuse_offset, rbb_mask, fbb_mask, vset_mask;
u32 efuse_val;
/* NOTE: num_values should equal to entries picked up here */
of_property_read_u32_index(dev->of_node, pname, i * num_values,
volt_table);
of_property_read_u32_index(dev->of_node, pname,
i * num_values + 1, &info->opp_sel);
of_property_read_u32_index(dev->of_node, pname,
i * num_values + 2, &efuse_offset);
of_property_read_u32_index(dev->of_node, pname,
i * num_values + 3, &rbb_mask);
of_property_read_u32_index(dev->of_node, pname,
i * num_values + 4, &fbb_mask);
of_property_read_u32_index(dev->of_node, pname,
i * num_values + 5, &vset_mask);
dev_dbg(dev,
"[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n",
i, *volt_table, info->opp_sel, efuse_offset, rbb_mask,
fbb_mask, vset_mask);
/* Find min/max for voltage set */
if (min_uV > *volt_table)
min_uV = *volt_table;
if (max_uV < *volt_table)
max_uV = *volt_table;
if (!abb->efuse_base) {
/* Ignore invalid data, but warn to help cleanup */
if (efuse_offset || rbb_mask || fbb_mask || vset_mask)
dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n",
pname, *volt_table);
goto check_abb;
}
efuse_val = readl(abb->efuse_base + efuse_offset);
/* Use ABB recommendation from Efuse */
if (efuse_val & rbb_mask)
info->opp_sel = TI_ABB_SLOW_OPP;
else if (efuse_val & fbb_mask)
info->opp_sel = TI_ABB_FAST_OPP;
else if (rbb_mask || fbb_mask)
info->opp_sel = TI_ABB_NOMINAL_OPP;
dev_dbg(dev,
"[%d]v=%d efusev=0x%x final ABB=%d\n",
i, *volt_table, efuse_val, info->opp_sel);
/* Use recommended Vset bits from Efuse */
if (!abb->ldo_base) {
if (vset_mask)
dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n",
pname, *volt_table, vset_mask);
continue;
}
info->vset = (efuse_val & vset_mask) >> __ffs(vset_mask);
dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset);
check_abb:
switch (info->opp_sel) {
case TI_ABB_NOMINAL_OPP:
case TI_ABB_FAST_OPP:
case TI_ABB_SLOW_OPP:
/* Valid values */
break;
default:
dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n",
__func__, i, *volt_table, info->opp_sel);
return -EINVAL;
}
}
/* Setup the min/max voltage constraints from the supported list */
c->min_uV = min_uV;
c->max_uV = max_uV;
return 0;
}
static const struct regulator_ops ti_abb_reg_ops = {
.list_voltage = regulator_list_voltage_table,
.set_voltage_sel = ti_abb_set_voltage_sel,
.get_voltage_sel = ti_abb_get_voltage_sel,
};
/* Default ABB block offsets, IF this changes in future, create new one */
static const struct ti_abb_reg abb_regs_v1 = {
/* WARNING: registers are wrongly documented in TRM */
.setup_off = 0x04,
.control_off = 0x00,
.sr2_wtcnt_value_mask = (0xff << 8),
.fbb_sel_mask = (0x01 << 2),
.rbb_sel_mask = (0x01 << 1),
.sr2_en_mask = (0x01 << 0),
.opp_change_mask = (0x01 << 2),
.opp_sel_mask = (0x03 << 0),
};
static const struct ti_abb_reg abb_regs_v2 = {
.setup_off = 0x00,
.control_off = 0x04,
.sr2_wtcnt_value_mask = (0xff << 8),
.fbb_sel_mask = (0x01 << 2),
.rbb_sel_mask = (0x01 << 1),
.sr2_en_mask = (0x01 << 0),
.opp_change_mask = (0x01 << 2),
.opp_sel_mask = (0x03 << 0),
};
static const struct ti_abb_reg abb_regs_generic = {
.sr2_wtcnt_value_mask = (0xff << 8),
.fbb_sel_mask = (0x01 << 2),
.rbb_sel_mask = (0x01 << 1),
.sr2_en_mask = (0x01 << 0),
.opp_change_mask = (0x01 << 2),
.opp_sel_mask = (0x03 << 0),
};
static const struct of_device_id ti_abb_of_match[] = {
{.compatible = "ti,abb-v1", .data = &abb_regs_v1},
{.compatible = "ti,abb-v2", .data = &abb_regs_v2},
{.compatible = "ti,abb-v3", .data = &abb_regs_generic},
{ },
};
MODULE_DEVICE_TABLE(of, ti_abb_of_match);
/**
* ti_abb_probe() - Initialize an ABB ldo instance
* @pdev: ABB platform device
*
* Initializes an individual ABB LDO for required Body-Bias. ABB is used to
* additional bias supply to SoC modules for power savings or mandatory stability
* configuration at certain Operating Performance Points(OPPs).
*
* Return: 0 on success or appropriate error value when fails
*/
static int ti_abb_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct of_device_id *match;
struct resource *res;
struct ti_abb *abb;
struct regulator_init_data *initdata = NULL;
struct regulator_dev *rdev = NULL;
struct regulator_desc *desc;
struct regulation_constraints *c;
struct regulator_config config = { };
char *pname;
int ret = 0;
match = of_match_device(ti_abb_of_match, dev);
if (!match) {
/* We do not expect this to happen */
dev_err(dev, "%s: Unable to match device\n", __func__);
return -ENODEV;
}
if (!match->data) {
dev_err(dev, "%s: Bad data in match\n", __func__);
return -EINVAL;
}
abb = devm_kzalloc(dev, sizeof(struct ti_abb), GFP_KERNEL);
if (!abb)
return -ENOMEM;
abb->regs = match->data;
/* Map ABB resources */
if (abb->regs->setup_off || abb->regs->control_off) {
abb->base = devm_platform_ioremap_resource_byname(pdev, "base-address");
if (IS_ERR(abb->base))
return PTR_ERR(abb->base);
abb->setup_reg = abb->base + abb->regs->setup_off;
abb->control_reg = abb->base + abb->regs->control_off;
} else {
abb->control_reg = devm_platform_ioremap_resource_byname(pdev, "control-address");
if (IS_ERR(abb->control_reg))
return PTR_ERR(abb->control_reg);
abb->setup_reg = devm_platform_ioremap_resource_byname(pdev, "setup-address");
if (IS_ERR(abb->setup_reg))
return PTR_ERR(abb->setup_reg);
}
abb->int_base = devm_platform_ioremap_resource_byname(pdev, "int-address");
if (IS_ERR(abb->int_base))
return PTR_ERR(abb->int_base);
/* Map Optional resources */
pname = "efuse-address";
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
if (!res) {
dev_dbg(dev, "Missing '%s' IO resource\n", pname);
ret = -ENODEV;
goto skip_opt;
}
/*
* We may have shared efuse register offsets which are read-only
* between domains
*/
abb->efuse_base = devm_ioremap(dev, res->start,
resource_size(res));
if (!abb->efuse_base) {
dev_err(dev, "Unable to map '%s'\n", pname);
return -ENOMEM;
}
pname = "ldo-address";
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
if (!res) {
dev_dbg(dev, "Missing '%s' IO resource\n", pname);
ret = -ENODEV;
goto skip_opt;
}
abb->ldo_base = devm_ioremap_resource(dev, res);
if (IS_ERR(abb->ldo_base))
return PTR_ERR(abb->ldo_base);
/* IF ldo_base is set, the following are mandatory */
pname = "ti,ldovbb-override-mask";
ret =
of_property_read_u32(pdev->dev.of_node, pname,
&abb->ldovbb_override_mask);
if (ret) {
dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
return ret;
}
if (!abb->ldovbb_override_mask) {
dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
return -EINVAL;
}
pname = "ti,ldovbb-vset-mask";
ret =
of_property_read_u32(pdev->dev.of_node, pname,
&abb->ldovbb_vset_mask);
if (ret) {
dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
return ret;
}
if (!abb->ldovbb_vset_mask) {
dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
return -EINVAL;
}
skip_opt:
pname = "ti,tranxdone-status-mask";
ret =
of_property_read_u32(pdev->dev.of_node, pname,
&abb->txdone_mask);
if (ret) {
dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
return ret;
}
if (!abb->txdone_mask) {
dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
return -EINVAL;
}
initdata = of_get_regulator_init_data(dev, pdev->dev.of_node,
&abb->rdesc);
if (!initdata) {
dev_err(dev, "%s: Unable to alloc regulator init data\n",
__func__);
return -ENOMEM;
}
/* init ABB opp_sel table */
ret = ti_abb_init_table(dev, abb, initdata);
if (ret)
return ret;
/* init ABB timing */
ret = ti_abb_init_timings(dev, abb);
if (ret)
return ret;
desc = &abb->rdesc;
desc->name = dev_name(dev);
desc->owner = THIS_MODULE;
desc->type = REGULATOR_VOLTAGE;
desc->ops = &ti_abb_reg_ops;
c = &initdata->constraints;
if (desc->n_voltages > 1)
c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
c->always_on = true;
config.dev = dev;
config.init_data = initdata;
config.driver_data = abb;
config.of_node = pdev->dev.of_node;
rdev = devm_regulator_register(dev, desc, &config);
if (IS_ERR(rdev)) {
ret = PTR_ERR(rdev);
dev_err(dev, "%s: failed to register regulator(%d)\n",
__func__, ret);
return ret;
}
platform_set_drvdata(pdev, rdev);
/* Enable the ldo if not already done by bootloader */
ti_abb_rmw(abb->regs->sr2_en_mask, 1, abb->setup_reg);
return 0;
}
MODULE_ALIAS("platform:ti_abb");
static struct platform_driver ti_abb_driver = {
.probe = ti_abb_probe,
.driver = {
.name = "ti_abb",
.of_match_table = of_match_ptr(ti_abb_of_match),
},
};
module_platform_driver(ti_abb_driver);
MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver");
MODULE_AUTHOR("Texas Instruments Inc.");
MODULE_LICENSE("GPL v2");