linux/linux-5.18.11/drivers/pci/controller/pci-aardvark.c

1918 lines
56 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the Aardvark PCIe controller, used on Marvell Armada
* 3700.
*
* Copyright (C) 2016 Marvell
*
* Author: Hezi Shahmoon <hezi.shahmoon@marvell.com>
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pci-ecam.h>
#include <linux/init.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/msi.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/of_pci.h>
#include "../pci.h"
#include "../pci-bridge-emul.h"
/* PCIe core registers */
#define PCIE_CORE_DEV_ID_REG 0x0
#define PCIE_CORE_CMD_STATUS_REG 0x4
#define PCIE_CORE_DEV_REV_REG 0x8
#define PCIE_CORE_PCIEXP_CAP 0xc0
#define PCIE_CORE_ERR_CAPCTL_REG 0x118
#define PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX BIT(5)
#define PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX_EN BIT(6)
#define PCIE_CORE_ERR_CAPCTL_ECRC_CHCK BIT(7)
#define PCIE_CORE_ERR_CAPCTL_ECRC_CHCK_RCV BIT(8)
/* PIO registers base address and register offsets */
#define PIO_BASE_ADDR 0x4000
#define PIO_CTRL (PIO_BASE_ADDR + 0x0)
#define PIO_CTRL_TYPE_MASK GENMASK(3, 0)
#define PIO_CTRL_ADDR_WIN_DISABLE BIT(24)
#define PIO_STAT (PIO_BASE_ADDR + 0x4)
#define PIO_COMPLETION_STATUS_SHIFT 7
#define PIO_COMPLETION_STATUS_MASK GENMASK(9, 7)
#define PIO_COMPLETION_STATUS_OK 0
#define PIO_COMPLETION_STATUS_UR 1
#define PIO_COMPLETION_STATUS_CRS 2
#define PIO_COMPLETION_STATUS_CA 4
#define PIO_NON_POSTED_REQ BIT(10)
#define PIO_ERR_STATUS BIT(11)
#define PIO_ADDR_LS (PIO_BASE_ADDR + 0x8)
#define PIO_ADDR_MS (PIO_BASE_ADDR + 0xc)
#define PIO_WR_DATA (PIO_BASE_ADDR + 0x10)
#define PIO_WR_DATA_STRB (PIO_BASE_ADDR + 0x14)
#define PIO_RD_DATA (PIO_BASE_ADDR + 0x18)
#define PIO_START (PIO_BASE_ADDR + 0x1c)
#define PIO_ISR (PIO_BASE_ADDR + 0x20)
#define PIO_ISRM (PIO_BASE_ADDR + 0x24)
/* Aardvark Control registers */
#define CONTROL_BASE_ADDR 0x4800
#define PCIE_CORE_CTRL0_REG (CONTROL_BASE_ADDR + 0x0)
#define PCIE_GEN_SEL_MSK 0x3
#define PCIE_GEN_SEL_SHIFT 0x0
#define SPEED_GEN_1 0
#define SPEED_GEN_2 1
#define SPEED_GEN_3 2
#define IS_RC_MSK 1
#define IS_RC_SHIFT 2
#define LANE_CNT_MSK 0x18
#define LANE_CNT_SHIFT 0x3
#define LANE_COUNT_1 (0 << LANE_CNT_SHIFT)
#define LANE_COUNT_2 (1 << LANE_CNT_SHIFT)
#define LANE_COUNT_4 (2 << LANE_CNT_SHIFT)
#define LANE_COUNT_8 (3 << LANE_CNT_SHIFT)
#define LINK_TRAINING_EN BIT(6)
#define LEGACY_INTA BIT(28)
#define LEGACY_INTB BIT(29)
#define LEGACY_INTC BIT(30)
#define LEGACY_INTD BIT(31)
#define PCIE_CORE_CTRL1_REG (CONTROL_BASE_ADDR + 0x4)
#define HOT_RESET_GEN BIT(0)
#define PCIE_CORE_CTRL2_REG (CONTROL_BASE_ADDR + 0x8)
#define PCIE_CORE_CTRL2_RESERVED 0x7
#define PCIE_CORE_CTRL2_TD_ENABLE BIT(4)
#define PCIE_CORE_CTRL2_STRICT_ORDER_ENABLE BIT(5)
#define PCIE_CORE_CTRL2_OB_WIN_ENABLE BIT(6)
#define PCIE_CORE_CTRL2_MSI_ENABLE BIT(10)
#define PCIE_CORE_REF_CLK_REG (CONTROL_BASE_ADDR + 0x14)
#define PCIE_CORE_REF_CLK_TX_ENABLE BIT(1)
#define PCIE_CORE_REF_CLK_RX_ENABLE BIT(2)
#define PCIE_MSG_LOG_REG (CONTROL_BASE_ADDR + 0x30)
#define PCIE_ISR0_REG (CONTROL_BASE_ADDR + 0x40)
#define PCIE_MSG_PM_PME_MASK BIT(7)
#define PCIE_ISR0_MASK_REG (CONTROL_BASE_ADDR + 0x44)
#define PCIE_ISR0_MSI_INT_PENDING BIT(24)
#define PCIE_ISR0_CORR_ERR BIT(11)
#define PCIE_ISR0_NFAT_ERR BIT(12)
#define PCIE_ISR0_FAT_ERR BIT(13)
#define PCIE_ISR0_ERR_MASK GENMASK(13, 11)
#define PCIE_ISR0_INTX_ASSERT(val) BIT(16 + (val))
#define PCIE_ISR0_INTX_DEASSERT(val) BIT(20 + (val))
#define PCIE_ISR0_ALL_MASK GENMASK(31, 0)
#define PCIE_ISR1_REG (CONTROL_BASE_ADDR + 0x48)
#define PCIE_ISR1_MASK_REG (CONTROL_BASE_ADDR + 0x4C)
#define PCIE_ISR1_POWER_STATE_CHANGE BIT(4)
#define PCIE_ISR1_FLUSH BIT(5)
#define PCIE_ISR1_INTX_ASSERT(val) BIT(8 + (val))
#define PCIE_ISR1_ALL_MASK GENMASK(31, 0)
#define PCIE_MSI_ADDR_LOW_REG (CONTROL_BASE_ADDR + 0x50)
#define PCIE_MSI_ADDR_HIGH_REG (CONTROL_BASE_ADDR + 0x54)
#define PCIE_MSI_STATUS_REG (CONTROL_BASE_ADDR + 0x58)
#define PCIE_MSI_MASK_REG (CONTROL_BASE_ADDR + 0x5C)
#define PCIE_MSI_ALL_MASK GENMASK(31, 0)
#define PCIE_MSI_PAYLOAD_REG (CONTROL_BASE_ADDR + 0x9C)
#define PCIE_MSI_DATA_MASK GENMASK(15, 0)
/* PCIe window configuration */
#define OB_WIN_BASE_ADDR 0x4c00
#define OB_WIN_BLOCK_SIZE 0x20
#define OB_WIN_COUNT 8
#define OB_WIN_REG_ADDR(win, offset) (OB_WIN_BASE_ADDR + \
OB_WIN_BLOCK_SIZE * (win) + \
(offset))
#define OB_WIN_MATCH_LS(win) OB_WIN_REG_ADDR(win, 0x00)
#define OB_WIN_ENABLE BIT(0)
#define OB_WIN_MATCH_MS(win) OB_WIN_REG_ADDR(win, 0x04)
#define OB_WIN_REMAP_LS(win) OB_WIN_REG_ADDR(win, 0x08)
#define OB_WIN_REMAP_MS(win) OB_WIN_REG_ADDR(win, 0x0c)
#define OB_WIN_MASK_LS(win) OB_WIN_REG_ADDR(win, 0x10)
#define OB_WIN_MASK_MS(win) OB_WIN_REG_ADDR(win, 0x14)
#define OB_WIN_ACTIONS(win) OB_WIN_REG_ADDR(win, 0x18)
#define OB_WIN_DEFAULT_ACTIONS (OB_WIN_ACTIONS(OB_WIN_COUNT-1) + 0x4)
#define OB_WIN_FUNC_NUM_MASK GENMASK(31, 24)
#define OB_WIN_FUNC_NUM_SHIFT 24
#define OB_WIN_FUNC_NUM_ENABLE BIT(23)
#define OB_WIN_BUS_NUM_BITS_MASK GENMASK(22, 20)
#define OB_WIN_BUS_NUM_BITS_SHIFT 20
#define OB_WIN_MSG_CODE_ENABLE BIT(22)
#define OB_WIN_MSG_CODE_MASK GENMASK(21, 14)
#define OB_WIN_MSG_CODE_SHIFT 14
#define OB_WIN_MSG_PAYLOAD_LEN BIT(12)
#define OB_WIN_ATTR_ENABLE BIT(11)
#define OB_WIN_ATTR_TC_MASK GENMASK(10, 8)
#define OB_WIN_ATTR_TC_SHIFT 8
#define OB_WIN_ATTR_RELAXED BIT(7)
#define OB_WIN_ATTR_NOSNOOP BIT(6)
#define OB_WIN_ATTR_POISON BIT(5)
#define OB_WIN_ATTR_IDO BIT(4)
#define OB_WIN_TYPE_MASK GENMASK(3, 0)
#define OB_WIN_TYPE_SHIFT 0
#define OB_WIN_TYPE_MEM 0x0
#define OB_WIN_TYPE_IO 0x4
#define OB_WIN_TYPE_CONFIG_TYPE0 0x8
#define OB_WIN_TYPE_CONFIG_TYPE1 0x9
#define OB_WIN_TYPE_MSG 0xc
/* LMI registers base address and register offsets */
#define LMI_BASE_ADDR 0x6000
#define CFG_REG (LMI_BASE_ADDR + 0x0)
#define LTSSM_SHIFT 24
#define LTSSM_MASK 0x3f
#define RC_BAR_CONFIG 0x300
/* LTSSM values in CFG_REG */
enum {
LTSSM_DETECT_QUIET = 0x0,
LTSSM_DETECT_ACTIVE = 0x1,
LTSSM_POLLING_ACTIVE = 0x2,
LTSSM_POLLING_COMPLIANCE = 0x3,
LTSSM_POLLING_CONFIGURATION = 0x4,
LTSSM_CONFIG_LINKWIDTH_START = 0x5,
LTSSM_CONFIG_LINKWIDTH_ACCEPT = 0x6,
LTSSM_CONFIG_LANENUM_ACCEPT = 0x7,
LTSSM_CONFIG_LANENUM_WAIT = 0x8,
LTSSM_CONFIG_COMPLETE = 0x9,
LTSSM_CONFIG_IDLE = 0xa,
LTSSM_RECOVERY_RCVR_LOCK = 0xb,
LTSSM_RECOVERY_SPEED = 0xc,
LTSSM_RECOVERY_RCVR_CFG = 0xd,
LTSSM_RECOVERY_IDLE = 0xe,
LTSSM_L0 = 0x10,
LTSSM_RX_L0S_ENTRY = 0x11,
LTSSM_RX_L0S_IDLE = 0x12,
LTSSM_RX_L0S_FTS = 0x13,
LTSSM_TX_L0S_ENTRY = 0x14,
LTSSM_TX_L0S_IDLE = 0x15,
LTSSM_TX_L0S_FTS = 0x16,
LTSSM_L1_ENTRY = 0x17,
LTSSM_L1_IDLE = 0x18,
LTSSM_L2_IDLE = 0x19,
LTSSM_L2_TRANSMIT_WAKE = 0x1a,
LTSSM_DISABLED = 0x20,
LTSSM_LOOPBACK_ENTRY_MASTER = 0x21,
LTSSM_LOOPBACK_ACTIVE_MASTER = 0x22,
LTSSM_LOOPBACK_EXIT_MASTER = 0x23,
LTSSM_LOOPBACK_ENTRY_SLAVE = 0x24,
LTSSM_LOOPBACK_ACTIVE_SLAVE = 0x25,
LTSSM_LOOPBACK_EXIT_SLAVE = 0x26,
LTSSM_HOT_RESET = 0x27,
LTSSM_RECOVERY_EQUALIZATION_PHASE0 = 0x28,
LTSSM_RECOVERY_EQUALIZATION_PHASE1 = 0x29,
LTSSM_RECOVERY_EQUALIZATION_PHASE2 = 0x2a,
LTSSM_RECOVERY_EQUALIZATION_PHASE3 = 0x2b,
};
#define VENDOR_ID_REG (LMI_BASE_ADDR + 0x44)
/* PCIe core controller registers */
#define CTRL_CORE_BASE_ADDR 0x18000
#define CTRL_CONFIG_REG (CTRL_CORE_BASE_ADDR + 0x0)
#define CTRL_MODE_SHIFT 0x0
#define CTRL_MODE_MASK 0x1
#define PCIE_CORE_MODE_DIRECT 0x0
#define PCIE_CORE_MODE_COMMAND 0x1
/* PCIe Central Interrupts Registers */
#define CENTRAL_INT_BASE_ADDR 0x1b000
#define HOST_CTRL_INT_STATUS_REG (CENTRAL_INT_BASE_ADDR + 0x0)
#define HOST_CTRL_INT_MASK_REG (CENTRAL_INT_BASE_ADDR + 0x4)
#define PCIE_IRQ_CMDQ_INT BIT(0)
#define PCIE_IRQ_MSI_STATUS_INT BIT(1)
#define PCIE_IRQ_CMD_SENT_DONE BIT(3)
#define PCIE_IRQ_DMA_INT BIT(4)
#define PCIE_IRQ_IB_DXFERDONE BIT(5)
#define PCIE_IRQ_OB_DXFERDONE BIT(6)
#define PCIE_IRQ_OB_RXFERDONE BIT(7)
#define PCIE_IRQ_COMPQ_INT BIT(12)
#define PCIE_IRQ_DIR_RD_DDR_DET BIT(13)
#define PCIE_IRQ_DIR_WR_DDR_DET BIT(14)
#define PCIE_IRQ_CORE_INT BIT(16)
#define PCIE_IRQ_CORE_INT_PIO BIT(17)
#define PCIE_IRQ_DPMU_INT BIT(18)
#define PCIE_IRQ_PCIE_MIS_INT BIT(19)
#define PCIE_IRQ_MSI_INT1_DET BIT(20)
#define PCIE_IRQ_MSI_INT2_DET BIT(21)
#define PCIE_IRQ_RC_DBELL_DET BIT(22)
#define PCIE_IRQ_EP_STATUS BIT(23)
#define PCIE_IRQ_ALL_MASK GENMASK(31, 0)
#define PCIE_IRQ_ENABLE_INTS_MASK PCIE_IRQ_CORE_INT
/* Transaction types */
#define PCIE_CONFIG_RD_TYPE0 0x8
#define PCIE_CONFIG_RD_TYPE1 0x9
#define PCIE_CONFIG_WR_TYPE0 0xa
#define PCIE_CONFIG_WR_TYPE1 0xb
#define PIO_RETRY_CNT 750000 /* 1.5 s */
#define PIO_RETRY_DELAY 2 /* 2 us*/
#define LINK_WAIT_MAX_RETRIES 10
#define LINK_WAIT_USLEEP_MIN 90000
#define LINK_WAIT_USLEEP_MAX 100000
#define RETRAIN_WAIT_MAX_RETRIES 10
#define RETRAIN_WAIT_USLEEP_US 2000
#define MSI_IRQ_NUM 32
#define CFG_RD_CRS_VAL 0xffff0001
struct advk_pcie {
struct platform_device *pdev;
void __iomem *base;
struct {
phys_addr_t match;
phys_addr_t remap;
phys_addr_t mask;
u32 actions;
} wins[OB_WIN_COUNT];
u8 wins_count;
struct irq_domain *rp_irq_domain;
struct irq_domain *irq_domain;
struct irq_chip irq_chip;
raw_spinlock_t irq_lock;
struct irq_domain *msi_domain;
struct irq_domain *msi_inner_domain;
raw_spinlock_t msi_irq_lock;
DECLARE_BITMAP(msi_used, MSI_IRQ_NUM);
struct mutex msi_used_lock;
int link_gen;
struct pci_bridge_emul bridge;
struct gpio_desc *reset_gpio;
struct phy *phy;
};
static inline void advk_writel(struct advk_pcie *pcie, u32 val, u64 reg)
{
writel(val, pcie->base + reg);
}
static inline u32 advk_readl(struct advk_pcie *pcie, u64 reg)
{
return readl(pcie->base + reg);
}
static u8 advk_pcie_ltssm_state(struct advk_pcie *pcie)
{
u32 val;
u8 ltssm_state;
val = advk_readl(pcie, CFG_REG);
ltssm_state = (val >> LTSSM_SHIFT) & LTSSM_MASK;
return ltssm_state;
}
static inline bool advk_pcie_link_up(struct advk_pcie *pcie)
{
/* check if LTSSM is in normal operation - some L* state */
u8 ltssm_state = advk_pcie_ltssm_state(pcie);
return ltssm_state >= LTSSM_L0 && ltssm_state < LTSSM_DISABLED;
}
static inline bool advk_pcie_link_active(struct advk_pcie *pcie)
{
/*
* According to PCIe Base specification 3.0, Table 4-14: Link
* Status Mapped to the LTSSM, and 4.2.6.3.6 Configuration.Idle
* is Link Up mapped to LTSSM Configuration.Idle, Recovery, L0,
* L0s, L1 and L2 states. And according to 3.2.1. Data Link
* Control and Management State Machine Rules is DL Up status
* reported in DL Active state.
*/
u8 ltssm_state = advk_pcie_ltssm_state(pcie);
return ltssm_state >= LTSSM_CONFIG_IDLE && ltssm_state < LTSSM_DISABLED;
}
static inline bool advk_pcie_link_training(struct advk_pcie *pcie)
{
/*
* According to PCIe Base specification 3.0, Table 4-14: Link
* Status Mapped to the LTSSM is Link Training mapped to LTSSM
* Configuration and Recovery states.
*/
u8 ltssm_state = advk_pcie_ltssm_state(pcie);
return ((ltssm_state >= LTSSM_CONFIG_LINKWIDTH_START &&
ltssm_state < LTSSM_L0) ||
(ltssm_state >= LTSSM_RECOVERY_EQUALIZATION_PHASE0 &&
ltssm_state <= LTSSM_RECOVERY_EQUALIZATION_PHASE3));
}
static int advk_pcie_wait_for_link(struct advk_pcie *pcie)
{
int retries;
/* check if the link is up or not */
for (retries = 0; retries < LINK_WAIT_MAX_RETRIES; retries++) {
if (advk_pcie_link_up(pcie))
return 0;
usleep_range(LINK_WAIT_USLEEP_MIN, LINK_WAIT_USLEEP_MAX);
}
return -ETIMEDOUT;
}
static void advk_pcie_wait_for_retrain(struct advk_pcie *pcie)
{
size_t retries;
for (retries = 0; retries < RETRAIN_WAIT_MAX_RETRIES; ++retries) {
if (advk_pcie_link_training(pcie))
break;
udelay(RETRAIN_WAIT_USLEEP_US);
}
}
static void advk_pcie_issue_perst(struct advk_pcie *pcie)
{
if (!pcie->reset_gpio)
return;
/* 10ms delay is needed for some cards */
dev_info(&pcie->pdev->dev, "issuing PERST via reset GPIO for 10ms\n");
gpiod_set_value_cansleep(pcie->reset_gpio, 1);
usleep_range(10000, 11000);
gpiod_set_value_cansleep(pcie->reset_gpio, 0);
}
static void advk_pcie_train_link(struct advk_pcie *pcie)
{
struct device *dev = &pcie->pdev->dev;
u32 reg;
int ret;
/*
* Setup PCIe rev / gen compliance based on device tree property
* 'max-link-speed' which also forces maximal link speed.
*/
reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
reg &= ~PCIE_GEN_SEL_MSK;
if (pcie->link_gen == 3)
reg |= SPEED_GEN_3;
else if (pcie->link_gen == 2)
reg |= SPEED_GEN_2;
else
reg |= SPEED_GEN_1;
advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG);
/*
* Set maximal link speed value also into PCIe Link Control 2 register.
* Armada 3700 Functional Specification says that default value is based
* on SPEED_GEN but tests showed that default value is always 8.0 GT/s.
*/
reg = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + PCI_EXP_LNKCTL2);
reg &= ~PCI_EXP_LNKCTL2_TLS;
if (pcie->link_gen == 3)
reg |= PCI_EXP_LNKCTL2_TLS_8_0GT;
else if (pcie->link_gen == 2)
reg |= PCI_EXP_LNKCTL2_TLS_5_0GT;
else
reg |= PCI_EXP_LNKCTL2_TLS_2_5GT;
advk_writel(pcie, reg, PCIE_CORE_PCIEXP_CAP + PCI_EXP_LNKCTL2);
/* Enable link training after selecting PCIe generation */
reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
reg |= LINK_TRAINING_EN;
advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG);
/*
* Reset PCIe card via PERST# signal. Some cards are not detected
* during link training when they are in some non-initial state.
*/
advk_pcie_issue_perst(pcie);
/*
* PERST# signal could have been asserted by pinctrl subsystem before
* probe() callback has been called or issued explicitly by reset gpio
* function advk_pcie_issue_perst(), making the endpoint going into
* fundamental reset. As required by PCI Express spec (PCI Express
* Base Specification, REV. 4.0 PCI Express, February 19 2014, 6.6.1
* Conventional Reset) a delay for at least 100ms after such a reset
* before sending a Configuration Request to the device is needed.
* So wait until PCIe link is up. Function advk_pcie_wait_for_link()
* waits for link at least 900ms.
*/
ret = advk_pcie_wait_for_link(pcie);
if (ret < 0)
dev_err(dev, "link never came up\n");
else
dev_info(dev, "link up\n");
}
/*
* Set PCIe address window register which could be used for memory
* mapping.
*/
static void advk_pcie_set_ob_win(struct advk_pcie *pcie, u8 win_num,
phys_addr_t match, phys_addr_t remap,
phys_addr_t mask, u32 actions)
{
advk_writel(pcie, OB_WIN_ENABLE |
lower_32_bits(match), OB_WIN_MATCH_LS(win_num));
advk_writel(pcie, upper_32_bits(match), OB_WIN_MATCH_MS(win_num));
advk_writel(pcie, lower_32_bits(remap), OB_WIN_REMAP_LS(win_num));
advk_writel(pcie, upper_32_bits(remap), OB_WIN_REMAP_MS(win_num));
advk_writel(pcie, lower_32_bits(mask), OB_WIN_MASK_LS(win_num));
advk_writel(pcie, upper_32_bits(mask), OB_WIN_MASK_MS(win_num));
advk_writel(pcie, actions, OB_WIN_ACTIONS(win_num));
}
static void advk_pcie_disable_ob_win(struct advk_pcie *pcie, u8 win_num)
{
advk_writel(pcie, 0, OB_WIN_MATCH_LS(win_num));
advk_writel(pcie, 0, OB_WIN_MATCH_MS(win_num));
advk_writel(pcie, 0, OB_WIN_REMAP_LS(win_num));
advk_writel(pcie, 0, OB_WIN_REMAP_MS(win_num));
advk_writel(pcie, 0, OB_WIN_MASK_LS(win_num));
advk_writel(pcie, 0, OB_WIN_MASK_MS(win_num));
advk_writel(pcie, 0, OB_WIN_ACTIONS(win_num));
}
static void advk_pcie_setup_hw(struct advk_pcie *pcie)
{
phys_addr_t msi_addr;
u32 reg;
int i;
/*
* Configure PCIe Reference clock. Direction is from the PCIe
* controller to the endpoint card, so enable transmitting of
* Reference clock differential signal off-chip and disable
* receiving off-chip differential signal.
*/
reg = advk_readl(pcie, PCIE_CORE_REF_CLK_REG);
reg |= PCIE_CORE_REF_CLK_TX_ENABLE;
reg &= ~PCIE_CORE_REF_CLK_RX_ENABLE;
advk_writel(pcie, reg, PCIE_CORE_REF_CLK_REG);
/* Set to Direct mode */
reg = advk_readl(pcie, CTRL_CONFIG_REG);
reg &= ~(CTRL_MODE_MASK << CTRL_MODE_SHIFT);
reg |= ((PCIE_CORE_MODE_DIRECT & CTRL_MODE_MASK) << CTRL_MODE_SHIFT);
advk_writel(pcie, reg, CTRL_CONFIG_REG);
/* Set PCI global control register to RC mode */
reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
reg |= (IS_RC_MSK << IS_RC_SHIFT);
advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG);
/*
* Replace incorrect PCI vendor id value 0x1b4b by correct value 0x11ab.
* VENDOR_ID_REG contains vendor id in low 16 bits and subsystem vendor
* id in high 16 bits. Updating this register changes readback value of
* read-only vendor id bits in PCIE_CORE_DEV_ID_REG register. Workaround
* for erratum 4.1: "The value of device and vendor ID is incorrect".
*/
reg = (PCI_VENDOR_ID_MARVELL << 16) | PCI_VENDOR_ID_MARVELL;
advk_writel(pcie, reg, VENDOR_ID_REG);
/*
* Change Class Code of PCI Bridge device to PCI Bridge (0x600400),
* because the default value is Mass storage controller (0x010400).
*
* Note that this Aardvark PCI Bridge does not have compliant Type 1
* Configuration Space and it even cannot be accessed via Aardvark's
* PCI config space access method. Something like config space is
* available in internal Aardvark registers starting at offset 0x0
* and is reported as Type 0. In range 0x10 - 0x34 it has totally
* different registers.
*
* Therefore driver uses emulation of PCI Bridge which emulates
* access to configuration space via internal Aardvark registers or
* emulated configuration buffer.
*/
reg = advk_readl(pcie, PCIE_CORE_DEV_REV_REG);
reg &= ~0xffffff00;
reg |= PCI_CLASS_BRIDGE_PCI_NORMAL << 8;
advk_writel(pcie, reg, PCIE_CORE_DEV_REV_REG);
/* Disable Root Bridge I/O space, memory space and bus mastering */
reg = advk_readl(pcie, PCIE_CORE_CMD_STATUS_REG);
reg &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
advk_writel(pcie, reg, PCIE_CORE_CMD_STATUS_REG);
/* Set Advanced Error Capabilities and Control PF0 register */
reg = PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX |
PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX_EN |
PCIE_CORE_ERR_CAPCTL_ECRC_CHCK |
PCIE_CORE_ERR_CAPCTL_ECRC_CHCK_RCV;
advk_writel(pcie, reg, PCIE_CORE_ERR_CAPCTL_REG);
/* Set PCIe Device Control register */
reg = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + PCI_EXP_DEVCTL);
reg &= ~PCI_EXP_DEVCTL_RELAX_EN;
reg &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
reg &= ~PCI_EXP_DEVCTL_PAYLOAD;
reg &= ~PCI_EXP_DEVCTL_READRQ;
reg |= PCI_EXP_DEVCTL_PAYLOAD_512B;
reg |= PCI_EXP_DEVCTL_READRQ_512B;
advk_writel(pcie, reg, PCIE_CORE_PCIEXP_CAP + PCI_EXP_DEVCTL);
/* Program PCIe Control 2 to disable strict ordering */
reg = PCIE_CORE_CTRL2_RESERVED |
PCIE_CORE_CTRL2_TD_ENABLE;
advk_writel(pcie, reg, PCIE_CORE_CTRL2_REG);
/* Set lane X1 */
reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
reg &= ~LANE_CNT_MSK;
reg |= LANE_COUNT_1;
advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG);
/* Set MSI address */
msi_addr = virt_to_phys(pcie);
advk_writel(pcie, lower_32_bits(msi_addr), PCIE_MSI_ADDR_LOW_REG);
advk_writel(pcie, upper_32_bits(msi_addr), PCIE_MSI_ADDR_HIGH_REG);
/* Enable MSI */
reg = advk_readl(pcie, PCIE_CORE_CTRL2_REG);
reg |= PCIE_CORE_CTRL2_MSI_ENABLE;
advk_writel(pcie, reg, PCIE_CORE_CTRL2_REG);
/* Clear all interrupts */
advk_writel(pcie, PCIE_MSI_ALL_MASK, PCIE_MSI_STATUS_REG);
advk_writel(pcie, PCIE_ISR0_ALL_MASK, PCIE_ISR0_REG);
advk_writel(pcie, PCIE_ISR1_ALL_MASK, PCIE_ISR1_REG);
advk_writel(pcie, PCIE_IRQ_ALL_MASK, HOST_CTRL_INT_STATUS_REG);
/* Disable All ISR0/1 and MSI Sources */
advk_writel(pcie, PCIE_ISR0_ALL_MASK, PCIE_ISR0_MASK_REG);
advk_writel(pcie, PCIE_ISR1_ALL_MASK, PCIE_ISR1_MASK_REG);
advk_writel(pcie, PCIE_MSI_ALL_MASK, PCIE_MSI_MASK_REG);
/* Unmask summary MSI interrupt */
reg = advk_readl(pcie, PCIE_ISR0_MASK_REG);
reg &= ~PCIE_ISR0_MSI_INT_PENDING;
advk_writel(pcie, reg, PCIE_ISR0_MASK_REG);
/* Unmask PME interrupt for processing of PME requester */
reg = advk_readl(pcie, PCIE_ISR0_MASK_REG);
reg &= ~PCIE_MSG_PM_PME_MASK;
advk_writel(pcie, reg, PCIE_ISR0_MASK_REG);
/* Enable summary interrupt for GIC SPI source */
reg = PCIE_IRQ_ALL_MASK & (~PCIE_IRQ_ENABLE_INTS_MASK);
advk_writel(pcie, reg, HOST_CTRL_INT_MASK_REG);
/*
* Enable AXI address window location generation:
* When it is enabled, the default outbound window
* configurations (Default User Field: 0xD0074CFC)
* are used to transparent address translation for
* the outbound transactions. Thus, PCIe address
* windows are not required for transparent memory
* access when default outbound window configuration
* is set for memory access.
*/
reg = advk_readl(pcie, PCIE_CORE_CTRL2_REG);
reg |= PCIE_CORE_CTRL2_OB_WIN_ENABLE;
advk_writel(pcie, reg, PCIE_CORE_CTRL2_REG);
/*
* Set memory access in Default User Field so it
* is not required to configure PCIe address for
* transparent memory access.
*/
advk_writel(pcie, OB_WIN_TYPE_MEM, OB_WIN_DEFAULT_ACTIONS);
/*
* Bypass the address window mapping for PIO:
* Since PIO access already contains all required
* info over AXI interface by PIO registers, the
* address window is not required.
*/
reg = advk_readl(pcie, PIO_CTRL);
reg |= PIO_CTRL_ADDR_WIN_DISABLE;
advk_writel(pcie, reg, PIO_CTRL);
/*
* Configure PCIe address windows for non-memory or
* non-transparent access as by default PCIe uses
* transparent memory access.
*/
for (i = 0; i < pcie->wins_count; i++)
advk_pcie_set_ob_win(pcie, i,
pcie->wins[i].match, pcie->wins[i].remap,
pcie->wins[i].mask, pcie->wins[i].actions);
/* Disable remaining PCIe outbound windows */
for (i = pcie->wins_count; i < OB_WIN_COUNT; i++)
advk_pcie_disable_ob_win(pcie, i);
advk_pcie_train_link(pcie);
}
static int advk_pcie_check_pio_status(struct advk_pcie *pcie, bool allow_crs, u32 *val)
{
struct device *dev = &pcie->pdev->dev;
u32 reg;
unsigned int status;
char *strcomp_status, *str_posted;
int ret;
reg = advk_readl(pcie, PIO_STAT);
status = (reg & PIO_COMPLETION_STATUS_MASK) >>
PIO_COMPLETION_STATUS_SHIFT;
/*
* According to HW spec, the PIO status check sequence as below:
* 1) even if COMPLETION_STATUS(bit9:7) indicates successful,
* it still needs to check Error Status(bit11), only when this bit
* indicates no error happen, the operation is successful.
* 2) value Unsupported Request(1) of COMPLETION_STATUS(bit9:7) only
* means a PIO write error, and for PIO read it is successful with
* a read value of 0xFFFFFFFF.
* 3) value Completion Retry Status(CRS) of COMPLETION_STATUS(bit9:7)
* only means a PIO write error, and for PIO read it is successful
* with a read value of 0xFFFF0001.
* 4) value Completer Abort (CA) of COMPLETION_STATUS(bit9:7) means
* error for both PIO read and PIO write operation.
* 5) other errors are indicated as 'unknown'.
*/
switch (status) {
case PIO_COMPLETION_STATUS_OK:
if (reg & PIO_ERR_STATUS) {
strcomp_status = "COMP_ERR";
ret = -EFAULT;
break;
}
/* Get the read result */
if (val)
*val = advk_readl(pcie, PIO_RD_DATA);
/* No error */
strcomp_status = NULL;
ret = 0;
break;
case PIO_COMPLETION_STATUS_UR:
strcomp_status = "UR";
ret = -EOPNOTSUPP;
break;
case PIO_COMPLETION_STATUS_CRS:
if (allow_crs && val) {
/* PCIe r4.0, sec 2.3.2, says:
* If CRS Software Visibility is enabled:
* For a Configuration Read Request that includes both
* bytes of the Vendor ID field of a device Function's
* Configuration Space Header, the Root Complex must
* complete the Request to the host by returning a
* read-data value of 0001h for the Vendor ID field and
* all '1's for any additional bytes included in the
* request.
*
* So CRS in this case is not an error status.
*/
*val = CFG_RD_CRS_VAL;
strcomp_status = NULL;
ret = 0;
break;
}
/* PCIe r4.0, sec 2.3.2, says:
* If CRS Software Visibility is not enabled, the Root Complex
* must re-issue the Configuration Request as a new Request.
* If CRS Software Visibility is enabled: For a Configuration
* Write Request or for any other Configuration Read Request,
* the Root Complex must re-issue the Configuration Request as
* a new Request.
* A Root Complex implementation may choose to limit the number
* of Configuration Request/CRS Completion Status loops before
* determining that something is wrong with the target of the
* Request and taking appropriate action, e.g., complete the
* Request to the host as a failed transaction.
*
* So return -EAGAIN and caller (pci-aardvark.c driver) will
* re-issue request again up to the PIO_RETRY_CNT retries.
*/
strcomp_status = "CRS";
ret = -EAGAIN;
break;
case PIO_COMPLETION_STATUS_CA:
strcomp_status = "CA";
ret = -ECANCELED;
break;
default:
strcomp_status = "Unknown";
ret = -EINVAL;
break;
}
if (!strcomp_status)
return ret;
if (reg & PIO_NON_POSTED_REQ)
str_posted = "Non-posted";
else
str_posted = "Posted";
dev_dbg(dev, "%s PIO Response Status: %s, %#x @ %#x\n",
str_posted, strcomp_status, reg, advk_readl(pcie, PIO_ADDR_LS));
return ret;
}
static int advk_pcie_wait_pio(struct advk_pcie *pcie)
{
struct device *dev = &pcie->pdev->dev;
int i;
for (i = 1; i <= PIO_RETRY_CNT; i++) {
u32 start, isr;
start = advk_readl(pcie, PIO_START);
isr = advk_readl(pcie, PIO_ISR);
if (!start && isr)
return i;
udelay(PIO_RETRY_DELAY);
}
dev_err(dev, "PIO read/write transfer time out\n");
return -ETIMEDOUT;
}
static pci_bridge_emul_read_status_t
advk_pci_bridge_emul_base_conf_read(struct pci_bridge_emul *bridge,
int reg, u32 *value)
{
struct advk_pcie *pcie = bridge->data;
switch (reg) {
case PCI_COMMAND:
*value = advk_readl(pcie, PCIE_CORE_CMD_STATUS_REG);
return PCI_BRIDGE_EMUL_HANDLED;
case PCI_INTERRUPT_LINE: {
/*
* From the whole 32bit register we support reading from HW only
* two bits: PCI_BRIDGE_CTL_BUS_RESET and PCI_BRIDGE_CTL_SERR.
* Other bits are retrieved only from emulated config buffer.
*/
__le32 *cfgspace = (__le32 *)&bridge->conf;
u32 val = le32_to_cpu(cfgspace[PCI_INTERRUPT_LINE / 4]);
if (advk_readl(pcie, PCIE_ISR0_MASK_REG) & PCIE_ISR0_ERR_MASK)
val &= ~(PCI_BRIDGE_CTL_SERR << 16);
else
val |= PCI_BRIDGE_CTL_SERR << 16;
if (advk_readl(pcie, PCIE_CORE_CTRL1_REG) & HOT_RESET_GEN)
val |= PCI_BRIDGE_CTL_BUS_RESET << 16;
else
val &= ~(PCI_BRIDGE_CTL_BUS_RESET << 16);
*value = val;
return PCI_BRIDGE_EMUL_HANDLED;
}
default:
return PCI_BRIDGE_EMUL_NOT_HANDLED;
}
}
static void
advk_pci_bridge_emul_base_conf_write(struct pci_bridge_emul *bridge,
int reg, u32 old, u32 new, u32 mask)
{
struct advk_pcie *pcie = bridge->data;
switch (reg) {
case PCI_COMMAND:
advk_writel(pcie, new, PCIE_CORE_CMD_STATUS_REG);
break;
case PCI_INTERRUPT_LINE:
/*
* According to Figure 6-3: Pseudo Logic Diagram for Error
* Message Controls in PCIe base specification, SERR# Enable bit
* in Bridge Control register enable receiving of ERR_* messages
*/
if (mask & (PCI_BRIDGE_CTL_SERR << 16)) {
u32 val = advk_readl(pcie, PCIE_ISR0_MASK_REG);
if (new & (PCI_BRIDGE_CTL_SERR << 16))
val &= ~PCIE_ISR0_ERR_MASK;
else
val |= PCIE_ISR0_ERR_MASK;
advk_writel(pcie, val, PCIE_ISR0_MASK_REG);
}
if (mask & (PCI_BRIDGE_CTL_BUS_RESET << 16)) {
u32 val = advk_readl(pcie, PCIE_CORE_CTRL1_REG);
if (new & (PCI_BRIDGE_CTL_BUS_RESET << 16))
val |= HOT_RESET_GEN;
else
val &= ~HOT_RESET_GEN;
advk_writel(pcie, val, PCIE_CORE_CTRL1_REG);
}
break;
default:
break;
}
}
static pci_bridge_emul_read_status_t
advk_pci_bridge_emul_pcie_conf_read(struct pci_bridge_emul *bridge,
int reg, u32 *value)
{
struct advk_pcie *pcie = bridge->data;
switch (reg) {
case PCI_EXP_SLTCTL:
*value = PCI_EXP_SLTSTA_PDS << 16;
return PCI_BRIDGE_EMUL_HANDLED;
/*
* PCI_EXP_RTCTL and PCI_EXP_RTSTA are also supported, but do not need
* to be handled here, because their values are stored in emulated
* config space buffer, and we read them from there when needed.
*/
case PCI_EXP_LNKCAP: {
u32 val = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + reg);
/*
* PCI_EXP_LNKCAP_DLLLARC bit is hardwired in aardvark HW to 0.
* But support for PCI_EXP_LNKSTA_DLLLA is emulated via ltssm
* state so explicitly enable PCI_EXP_LNKCAP_DLLLARC flag.
*/
val |= PCI_EXP_LNKCAP_DLLLARC;
*value = val;
return PCI_BRIDGE_EMUL_HANDLED;
}
case PCI_EXP_LNKCTL: {
/* u32 contains both PCI_EXP_LNKCTL and PCI_EXP_LNKSTA */
u32 val = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + reg) &
~(PCI_EXP_LNKSTA_LT << 16);
if (advk_pcie_link_training(pcie))
val |= (PCI_EXP_LNKSTA_LT << 16);
if (advk_pcie_link_active(pcie))
val |= (PCI_EXP_LNKSTA_DLLLA << 16);
*value = val;
return PCI_BRIDGE_EMUL_HANDLED;
}
case PCI_EXP_DEVCAP:
case PCI_EXP_DEVCTL:
case PCI_EXP_DEVCAP2:
case PCI_EXP_DEVCTL2:
case PCI_EXP_LNKCAP2:
case PCI_EXP_LNKCTL2:
*value = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + reg);
return PCI_BRIDGE_EMUL_HANDLED;
default:
return PCI_BRIDGE_EMUL_NOT_HANDLED;
}
}
static void
advk_pci_bridge_emul_pcie_conf_write(struct pci_bridge_emul *bridge,
int reg, u32 old, u32 new, u32 mask)
{
struct advk_pcie *pcie = bridge->data;
switch (reg) {
case PCI_EXP_LNKCTL:
advk_writel(pcie, new, PCIE_CORE_PCIEXP_CAP + reg);
if (new & PCI_EXP_LNKCTL_RL)
advk_pcie_wait_for_retrain(pcie);
break;
case PCI_EXP_RTCTL: {
u16 rootctl = le16_to_cpu(bridge->pcie_conf.rootctl);
/* Only emulation of PMEIE and CRSSVE bits is provided */
rootctl &= PCI_EXP_RTCTL_PMEIE | PCI_EXP_RTCTL_CRSSVE;
bridge->pcie_conf.rootctl = cpu_to_le16(rootctl);
break;
}
/*
* PCI_EXP_RTSTA is also supported, but does not need to be handled
* here, because its value is stored in emulated config space buffer,
* and we write it there when needed.
*/
case PCI_EXP_DEVCTL:
case PCI_EXP_DEVCTL2:
case PCI_EXP_LNKCTL2:
advk_writel(pcie, new, PCIE_CORE_PCIEXP_CAP + reg);
break;
default:
break;
}
}
static const struct pci_bridge_emul_ops advk_pci_bridge_emul_ops = {
.read_base = advk_pci_bridge_emul_base_conf_read,
.write_base = advk_pci_bridge_emul_base_conf_write,
.read_pcie = advk_pci_bridge_emul_pcie_conf_read,
.write_pcie = advk_pci_bridge_emul_pcie_conf_write,
};
/*
* Initialize the configuration space of the PCI-to-PCI bridge
* associated with the given PCIe interface.
*/
static int advk_sw_pci_bridge_init(struct advk_pcie *pcie)
{
struct pci_bridge_emul *bridge = &pcie->bridge;
bridge->conf.vendor =
cpu_to_le16(advk_readl(pcie, PCIE_CORE_DEV_ID_REG) & 0xffff);
bridge->conf.device =
cpu_to_le16(advk_readl(pcie, PCIE_CORE_DEV_ID_REG) >> 16);
bridge->conf.class_revision =
cpu_to_le32(advk_readl(pcie, PCIE_CORE_DEV_REV_REG) & 0xff);
/* Support 32 bits I/O addressing */
bridge->conf.iobase = PCI_IO_RANGE_TYPE_32;
bridge->conf.iolimit = PCI_IO_RANGE_TYPE_32;
/* Support 64 bits memory pref */
bridge->conf.pref_mem_base = cpu_to_le16(PCI_PREF_RANGE_TYPE_64);
bridge->conf.pref_mem_limit = cpu_to_le16(PCI_PREF_RANGE_TYPE_64);
/* Support interrupt A for MSI feature */
bridge->conf.intpin = PCI_INTERRUPT_INTA;
/* Aardvark HW provides PCIe Capability structure in version 2 */
bridge->pcie_conf.cap = cpu_to_le16(2);
/* Indicates supports for Completion Retry Status */
bridge->pcie_conf.rootcap = cpu_to_le16(PCI_EXP_RTCAP_CRSVIS);
bridge->has_pcie = true;
bridge->data = pcie;
bridge->ops = &advk_pci_bridge_emul_ops;
return pci_bridge_emul_init(bridge, 0);
}
static bool advk_pcie_valid_device(struct advk_pcie *pcie, struct pci_bus *bus,
int devfn)
{
if (pci_is_root_bus(bus) && PCI_SLOT(devfn) != 0)
return false;
/*
* If the link goes down after we check for link-up, we have a problem:
* if a PIO request is executed while link-down, the whole controller
* gets stuck in a non-functional state, and even after link comes up
* again, PIO requests won't work anymore, and a reset of the whole PCIe
* controller is needed. Therefore we need to prevent sending PIO
* requests while the link is down.
*/
if (!pci_is_root_bus(bus) && !advk_pcie_link_up(pcie))
return false;
return true;
}
static bool advk_pcie_pio_is_running(struct advk_pcie *pcie)
{
struct device *dev = &pcie->pdev->dev;
/*
* Trying to start a new PIO transfer when previous has not completed
* cause External Abort on CPU which results in kernel panic:
*
* SError Interrupt on CPU0, code 0xbf000002 -- SError
* Kernel panic - not syncing: Asynchronous SError Interrupt
*
* Functions advk_pcie_rd_conf() and advk_pcie_wr_conf() are protected
* by raw_spin_lock_irqsave() at pci_lock_config() level to prevent
* concurrent calls at the same time. But because PIO transfer may take
* about 1.5s when link is down or card is disconnected, it means that
* advk_pcie_wait_pio() does not always have to wait for completion.
*
* Some versions of ARM Trusted Firmware handles this External Abort at
* EL3 level and mask it to prevent kernel panic. Relevant TF-A commit:
* https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=3c7dcdac5c50
*/
if (advk_readl(pcie, PIO_START)) {
dev_err(dev, "Previous PIO read/write transfer is still running\n");
return true;
}
return false;
}
static int advk_pcie_rd_conf(struct pci_bus *bus, u32 devfn,
int where, int size, u32 *val)
{
struct advk_pcie *pcie = bus->sysdata;
int retry_count;
bool allow_crs;
u32 reg;
int ret;
if (!advk_pcie_valid_device(pcie, bus, devfn))
return PCIBIOS_DEVICE_NOT_FOUND;
if (pci_is_root_bus(bus))
return pci_bridge_emul_conf_read(&pcie->bridge, where,
size, val);
/*
* Completion Retry Status is possible to return only when reading all
* 4 bytes from PCI_VENDOR_ID and PCI_DEVICE_ID registers at once and
* CRSSVE flag on Root Bridge is enabled.
*/
allow_crs = (where == PCI_VENDOR_ID) && (size == 4) &&
(le16_to_cpu(pcie->bridge.pcie_conf.rootctl) &
PCI_EXP_RTCTL_CRSSVE);
if (advk_pcie_pio_is_running(pcie))
goto try_crs;
/* Program the control register */
reg = advk_readl(pcie, PIO_CTRL);
reg &= ~PIO_CTRL_TYPE_MASK;
if (pci_is_root_bus(bus->parent))
reg |= PCIE_CONFIG_RD_TYPE0;
else
reg |= PCIE_CONFIG_RD_TYPE1;
advk_writel(pcie, reg, PIO_CTRL);
/* Program the address registers */
reg = ALIGN_DOWN(PCIE_ECAM_OFFSET(bus->number, devfn, where), 4);
advk_writel(pcie, reg, PIO_ADDR_LS);
advk_writel(pcie, 0, PIO_ADDR_MS);
/* Program the data strobe */
advk_writel(pcie, 0xf, PIO_WR_DATA_STRB);
retry_count = 0;
do {
/* Clear PIO DONE ISR and start the transfer */
advk_writel(pcie, 1, PIO_ISR);
advk_writel(pcie, 1, PIO_START);
ret = advk_pcie_wait_pio(pcie);
if (ret < 0)
goto try_crs;
retry_count += ret;
/* Check PIO status and get the read result */
ret = advk_pcie_check_pio_status(pcie, allow_crs, val);
} while (ret == -EAGAIN && retry_count < PIO_RETRY_CNT);
if (ret < 0)
goto fail;
if (size == 1)
*val = (*val >> (8 * (where & 3))) & 0xff;
else if (size == 2)
*val = (*val >> (8 * (where & 3))) & 0xffff;
return PCIBIOS_SUCCESSFUL;
try_crs:
/*
* If it is possible, return Completion Retry Status so that caller
* tries to issue the request again instead of failing.
*/
if (allow_crs) {
*val = CFG_RD_CRS_VAL;
return PCIBIOS_SUCCESSFUL;
}
fail:
*val = 0xffffffff;
return PCIBIOS_SET_FAILED;
}
static int advk_pcie_wr_conf(struct pci_bus *bus, u32 devfn,
int where, int size, u32 val)
{
struct advk_pcie *pcie = bus->sysdata;
u32 reg;
u32 data_strobe = 0x0;
int retry_count;
int offset;
int ret;
if (!advk_pcie_valid_device(pcie, bus, devfn))
return PCIBIOS_DEVICE_NOT_FOUND;
if (pci_is_root_bus(bus))
return pci_bridge_emul_conf_write(&pcie->bridge, where,
size, val);
if (where % size)
return PCIBIOS_SET_FAILED;
if (advk_pcie_pio_is_running(pcie))
return PCIBIOS_SET_FAILED;
/* Program the control register */
reg = advk_readl(pcie, PIO_CTRL);
reg &= ~PIO_CTRL_TYPE_MASK;
if (pci_is_root_bus(bus->parent))
reg |= PCIE_CONFIG_WR_TYPE0;
else
reg |= PCIE_CONFIG_WR_TYPE1;
advk_writel(pcie, reg, PIO_CTRL);
/* Program the address registers */
reg = ALIGN_DOWN(PCIE_ECAM_OFFSET(bus->number, devfn, where), 4);
advk_writel(pcie, reg, PIO_ADDR_LS);
advk_writel(pcie, 0, PIO_ADDR_MS);
/* Calculate the write strobe */
offset = where & 0x3;
reg = val << (8 * offset);
data_strobe = GENMASK(size - 1, 0) << offset;
/* Program the data register */
advk_writel(pcie, reg, PIO_WR_DATA);
/* Program the data strobe */
advk_writel(pcie, data_strobe, PIO_WR_DATA_STRB);
retry_count = 0;
do {
/* Clear PIO DONE ISR and start the transfer */
advk_writel(pcie, 1, PIO_ISR);
advk_writel(pcie, 1, PIO_START);
ret = advk_pcie_wait_pio(pcie);
if (ret < 0)
return PCIBIOS_SET_FAILED;
retry_count += ret;
ret = advk_pcie_check_pio_status(pcie, false, NULL);
} while (ret == -EAGAIN && retry_count < PIO_RETRY_CNT);
return ret < 0 ? PCIBIOS_SET_FAILED : PCIBIOS_SUCCESSFUL;
}
static struct pci_ops advk_pcie_ops = {
.read = advk_pcie_rd_conf,
.write = advk_pcie_wr_conf,
};
static void advk_msi_irq_compose_msi_msg(struct irq_data *data,
struct msi_msg *msg)
{
struct advk_pcie *pcie = irq_data_get_irq_chip_data(data);
phys_addr_t msi_addr = virt_to_phys(pcie);
msg->address_lo = lower_32_bits(msi_addr);
msg->address_hi = upper_32_bits(msi_addr);
msg->data = data->hwirq;
}
static int advk_msi_set_affinity(struct irq_data *irq_data,
const struct cpumask *mask, bool force)
{
return -EINVAL;
}
static void advk_msi_irq_mask(struct irq_data *d)
{
struct advk_pcie *pcie = d->domain->host_data;
irq_hw_number_t hwirq = irqd_to_hwirq(d);
unsigned long flags;
u32 mask;
raw_spin_lock_irqsave(&pcie->msi_irq_lock, flags);
mask = advk_readl(pcie, PCIE_MSI_MASK_REG);
mask |= BIT(hwirq);
advk_writel(pcie, mask, PCIE_MSI_MASK_REG);
raw_spin_unlock_irqrestore(&pcie->msi_irq_lock, flags);
}
static void advk_msi_irq_unmask(struct irq_data *d)
{
struct advk_pcie *pcie = d->domain->host_data;
irq_hw_number_t hwirq = irqd_to_hwirq(d);
unsigned long flags;
u32 mask;
raw_spin_lock_irqsave(&pcie->msi_irq_lock, flags);
mask = advk_readl(pcie, PCIE_MSI_MASK_REG);
mask &= ~BIT(hwirq);
advk_writel(pcie, mask, PCIE_MSI_MASK_REG);
raw_spin_unlock_irqrestore(&pcie->msi_irq_lock, flags);
}
static void advk_msi_top_irq_mask(struct irq_data *d)
{
pci_msi_mask_irq(d);
irq_chip_mask_parent(d);
}
static void advk_msi_top_irq_unmask(struct irq_data *d)
{
pci_msi_unmask_irq(d);
irq_chip_unmask_parent(d);
}
static struct irq_chip advk_msi_bottom_irq_chip = {
.name = "MSI",
.irq_compose_msi_msg = advk_msi_irq_compose_msi_msg,
.irq_set_affinity = advk_msi_set_affinity,
.irq_mask = advk_msi_irq_mask,
.irq_unmask = advk_msi_irq_unmask,
};
static int advk_msi_irq_domain_alloc(struct irq_domain *domain,
unsigned int virq,
unsigned int nr_irqs, void *args)
{
struct advk_pcie *pcie = domain->host_data;
int hwirq, i;
mutex_lock(&pcie->msi_used_lock);
hwirq = bitmap_find_free_region(pcie->msi_used, MSI_IRQ_NUM,
order_base_2(nr_irqs));
mutex_unlock(&pcie->msi_used_lock);
if (hwirq < 0)
return -ENOSPC;
for (i = 0; i < nr_irqs; i++)
irq_domain_set_info(domain, virq + i, hwirq + i,
&advk_msi_bottom_irq_chip,
domain->host_data, handle_simple_irq,
NULL, NULL);
return 0;
}
static void advk_msi_irq_domain_free(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct advk_pcie *pcie = domain->host_data;
mutex_lock(&pcie->msi_used_lock);
bitmap_release_region(pcie->msi_used, d->hwirq, order_base_2(nr_irqs));
mutex_unlock(&pcie->msi_used_lock);
}
static const struct irq_domain_ops advk_msi_domain_ops = {
.alloc = advk_msi_irq_domain_alloc,
.free = advk_msi_irq_domain_free,
};
static void advk_pcie_irq_mask(struct irq_data *d)
{
struct advk_pcie *pcie = d->domain->host_data;
irq_hw_number_t hwirq = irqd_to_hwirq(d);
unsigned long flags;
u32 mask;
raw_spin_lock_irqsave(&pcie->irq_lock, flags);
mask = advk_readl(pcie, PCIE_ISR1_MASK_REG);
mask |= PCIE_ISR1_INTX_ASSERT(hwirq);
advk_writel(pcie, mask, PCIE_ISR1_MASK_REG);
raw_spin_unlock_irqrestore(&pcie->irq_lock, flags);
}
static void advk_pcie_irq_unmask(struct irq_data *d)
{
struct advk_pcie *pcie = d->domain->host_data;
irq_hw_number_t hwirq = irqd_to_hwirq(d);
unsigned long flags;
u32 mask;
raw_spin_lock_irqsave(&pcie->irq_lock, flags);
mask = advk_readl(pcie, PCIE_ISR1_MASK_REG);
mask &= ~PCIE_ISR1_INTX_ASSERT(hwirq);
advk_writel(pcie, mask, PCIE_ISR1_MASK_REG);
raw_spin_unlock_irqrestore(&pcie->irq_lock, flags);
}
static int advk_pcie_irq_map(struct irq_domain *h,
unsigned int virq, irq_hw_number_t hwirq)
{
struct advk_pcie *pcie = h->host_data;
irq_set_status_flags(virq, IRQ_LEVEL);
irq_set_chip_and_handler(virq, &pcie->irq_chip,
handle_level_irq);
irq_set_chip_data(virq, pcie);
return 0;
}
static const struct irq_domain_ops advk_pcie_irq_domain_ops = {
.map = advk_pcie_irq_map,
.xlate = irq_domain_xlate_onecell,
};
static struct irq_chip advk_msi_irq_chip = {
.name = "advk-MSI",
.irq_mask = advk_msi_top_irq_mask,
.irq_unmask = advk_msi_top_irq_unmask,
};
static struct msi_domain_info advk_msi_domain_info = {
.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
.chip = &advk_msi_irq_chip,
};
static int advk_pcie_init_msi_irq_domain(struct advk_pcie *pcie)
{
struct device *dev = &pcie->pdev->dev;
raw_spin_lock_init(&pcie->msi_irq_lock);
mutex_init(&pcie->msi_used_lock);
pcie->msi_inner_domain =
irq_domain_add_linear(NULL, MSI_IRQ_NUM,
&advk_msi_domain_ops, pcie);
if (!pcie->msi_inner_domain)
return -ENOMEM;
pcie->msi_domain =
pci_msi_create_irq_domain(dev_fwnode(dev),
&advk_msi_domain_info,
pcie->msi_inner_domain);
if (!pcie->msi_domain) {
irq_domain_remove(pcie->msi_inner_domain);
return -ENOMEM;
}
return 0;
}
static void advk_pcie_remove_msi_irq_domain(struct advk_pcie *pcie)
{
irq_domain_remove(pcie->msi_domain);
irq_domain_remove(pcie->msi_inner_domain);
}
static int advk_pcie_init_irq_domain(struct advk_pcie *pcie)
{
struct device *dev = &pcie->pdev->dev;
struct device_node *node = dev->of_node;
struct device_node *pcie_intc_node;
struct irq_chip *irq_chip;
int ret = 0;
raw_spin_lock_init(&pcie->irq_lock);
pcie_intc_node = of_get_next_child(node, NULL);
if (!pcie_intc_node) {
dev_err(dev, "No PCIe Intc node found\n");
return -ENODEV;
}
irq_chip = &pcie->irq_chip;
irq_chip->name = devm_kasprintf(dev, GFP_KERNEL, "%s-irq",
dev_name(dev));
if (!irq_chip->name) {
ret = -ENOMEM;
goto out_put_node;
}
irq_chip->irq_mask = advk_pcie_irq_mask;
irq_chip->irq_unmask = advk_pcie_irq_unmask;
pcie->irq_domain =
irq_domain_add_linear(pcie_intc_node, PCI_NUM_INTX,
&advk_pcie_irq_domain_ops, pcie);
if (!pcie->irq_domain) {
dev_err(dev, "Failed to get a INTx IRQ domain\n");
ret = -ENOMEM;
goto out_put_node;
}
out_put_node:
of_node_put(pcie_intc_node);
return ret;
}
static void advk_pcie_remove_irq_domain(struct advk_pcie *pcie)
{
irq_domain_remove(pcie->irq_domain);
}
static struct irq_chip advk_rp_irq_chip = {
.name = "advk-RP",
};
static int advk_pcie_rp_irq_map(struct irq_domain *h,
unsigned int virq, irq_hw_number_t hwirq)
{
struct advk_pcie *pcie = h->host_data;
irq_set_chip_and_handler(virq, &advk_rp_irq_chip, handle_simple_irq);
irq_set_chip_data(virq, pcie);
return 0;
}
static const struct irq_domain_ops advk_pcie_rp_irq_domain_ops = {
.map = advk_pcie_rp_irq_map,
.xlate = irq_domain_xlate_onecell,
};
static int advk_pcie_init_rp_irq_domain(struct advk_pcie *pcie)
{
pcie->rp_irq_domain = irq_domain_add_linear(NULL, 1,
&advk_pcie_rp_irq_domain_ops,
pcie);
if (!pcie->rp_irq_domain) {
dev_err(&pcie->pdev->dev, "Failed to add Root Port IRQ domain\n");
return -ENOMEM;
}
return 0;
}
static void advk_pcie_remove_rp_irq_domain(struct advk_pcie *pcie)
{
irq_domain_remove(pcie->rp_irq_domain);
}
static void advk_pcie_handle_pme(struct advk_pcie *pcie)
{
u32 requester = advk_readl(pcie, PCIE_MSG_LOG_REG) >> 16;
advk_writel(pcie, PCIE_MSG_PM_PME_MASK, PCIE_ISR0_REG);
/*
* PCIE_MSG_LOG_REG contains the last inbound message, so store
* the requester ID only when PME was not asserted yet.
* Also do not trigger PME interrupt when PME is still asserted.
*/
if (!(le32_to_cpu(pcie->bridge.pcie_conf.rootsta) & PCI_EXP_RTSTA_PME)) {
pcie->bridge.pcie_conf.rootsta = cpu_to_le32(requester | PCI_EXP_RTSTA_PME);
/*
* Trigger PME interrupt only if PMEIE bit in Root Control is set.
* Aardvark HW returns zero for PCI_EXP_FLAGS_IRQ, so use PCIe interrupt 0.
*/
if (!(le16_to_cpu(pcie->bridge.pcie_conf.rootctl) & PCI_EXP_RTCTL_PMEIE))
return;
if (generic_handle_domain_irq(pcie->rp_irq_domain, 0) == -EINVAL)
dev_err_ratelimited(&pcie->pdev->dev, "unhandled PME IRQ\n");
}
}
static void advk_pcie_handle_msi(struct advk_pcie *pcie)
{
u32 msi_val, msi_mask, msi_status, msi_idx;
msi_mask = advk_readl(pcie, PCIE_MSI_MASK_REG);
msi_val = advk_readl(pcie, PCIE_MSI_STATUS_REG);
msi_status = msi_val & ((~msi_mask) & PCIE_MSI_ALL_MASK);
for (msi_idx = 0; msi_idx < MSI_IRQ_NUM; msi_idx++) {
if (!(BIT(msi_idx) & msi_status))
continue;
advk_writel(pcie, BIT(msi_idx), PCIE_MSI_STATUS_REG);
if (generic_handle_domain_irq(pcie->msi_inner_domain, msi_idx) == -EINVAL)
dev_err_ratelimited(&pcie->pdev->dev, "unexpected MSI 0x%02x\n", msi_idx);
}
advk_writel(pcie, PCIE_ISR0_MSI_INT_PENDING,
PCIE_ISR0_REG);
}
static void advk_pcie_handle_int(struct advk_pcie *pcie)
{
u32 isr0_val, isr0_mask, isr0_status;
u32 isr1_val, isr1_mask, isr1_status;
int i;
isr0_val = advk_readl(pcie, PCIE_ISR0_REG);
isr0_mask = advk_readl(pcie, PCIE_ISR0_MASK_REG);
isr0_status = isr0_val & ((~isr0_mask) & PCIE_ISR0_ALL_MASK);
isr1_val = advk_readl(pcie, PCIE_ISR1_REG);
isr1_mask = advk_readl(pcie, PCIE_ISR1_MASK_REG);
isr1_status = isr1_val & ((~isr1_mask) & PCIE_ISR1_ALL_MASK);
/* Process PME interrupt as the first one to do not miss PME requester id */
if (isr0_status & PCIE_MSG_PM_PME_MASK)
advk_pcie_handle_pme(pcie);
/* Process ERR interrupt */
if (isr0_status & PCIE_ISR0_ERR_MASK) {
advk_writel(pcie, PCIE_ISR0_ERR_MASK, PCIE_ISR0_REG);
/*
* Aardvark HW returns zero for PCI_ERR_ROOT_AER_IRQ, so use
* PCIe interrupt 0
*/
if (generic_handle_domain_irq(pcie->rp_irq_domain, 0) == -EINVAL)
dev_err_ratelimited(&pcie->pdev->dev, "unhandled ERR IRQ\n");
}
/* Process MSI interrupts */
if (isr0_status & PCIE_ISR0_MSI_INT_PENDING)
advk_pcie_handle_msi(pcie);
/* Process legacy interrupts */
for (i = 0; i < PCI_NUM_INTX; i++) {
if (!(isr1_status & PCIE_ISR1_INTX_ASSERT(i)))
continue;
advk_writel(pcie, PCIE_ISR1_INTX_ASSERT(i),
PCIE_ISR1_REG);
if (generic_handle_domain_irq(pcie->irq_domain, i) == -EINVAL)
dev_err_ratelimited(&pcie->pdev->dev, "unexpected INT%c IRQ\n",
(char)i + 'A');
}
}
static irqreturn_t advk_pcie_irq_handler(int irq, void *arg)
{
struct advk_pcie *pcie = arg;
u32 status;
status = advk_readl(pcie, HOST_CTRL_INT_STATUS_REG);
if (!(status & PCIE_IRQ_CORE_INT))
return IRQ_NONE;
advk_pcie_handle_int(pcie);
/* Clear interrupt */
advk_writel(pcie, PCIE_IRQ_CORE_INT, HOST_CTRL_INT_STATUS_REG);
return IRQ_HANDLED;
}
static int advk_pcie_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
struct advk_pcie *pcie = dev->bus->sysdata;
/*
* Emulated root bridge has its own emulated irq chip and irq domain.
* Argument pin is the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) and
* hwirq for irq_create_mapping() is indexed from zero.
*/
if (pci_is_root_bus(dev->bus))
return irq_create_mapping(pcie->rp_irq_domain, pin - 1);
else
return of_irq_parse_and_map_pci(dev, slot, pin);
}
static void advk_pcie_disable_phy(struct advk_pcie *pcie)
{
phy_power_off(pcie->phy);
phy_exit(pcie->phy);
}
static int advk_pcie_enable_phy(struct advk_pcie *pcie)
{
int ret;
if (!pcie->phy)
return 0;
ret = phy_init(pcie->phy);
if (ret)
return ret;
ret = phy_set_mode(pcie->phy, PHY_MODE_PCIE);
if (ret) {
phy_exit(pcie->phy);
return ret;
}
ret = phy_power_on(pcie->phy);
if (ret) {
phy_exit(pcie->phy);
return ret;
}
return 0;
}
static int advk_pcie_setup_phy(struct advk_pcie *pcie)
{
struct device *dev = &pcie->pdev->dev;
struct device_node *node = dev->of_node;
int ret = 0;
pcie->phy = devm_of_phy_get(dev, node, NULL);
if (IS_ERR(pcie->phy) && (PTR_ERR(pcie->phy) == -EPROBE_DEFER))
return PTR_ERR(pcie->phy);
/* Old bindings miss the PHY handle */
if (IS_ERR(pcie->phy)) {
dev_warn(dev, "PHY unavailable (%ld)\n", PTR_ERR(pcie->phy));
pcie->phy = NULL;
return 0;
}
ret = advk_pcie_enable_phy(pcie);
if (ret)
dev_err(dev, "Failed to initialize PHY (%d)\n", ret);
return ret;
}
static int advk_pcie_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct advk_pcie *pcie;
struct pci_host_bridge *bridge;
struct resource_entry *entry;
int ret, irq;
bridge = devm_pci_alloc_host_bridge(dev, sizeof(struct advk_pcie));
if (!bridge)
return -ENOMEM;
pcie = pci_host_bridge_priv(bridge);
pcie->pdev = pdev;
platform_set_drvdata(pdev, pcie);
resource_list_for_each_entry(entry, &bridge->windows) {
resource_size_t start = entry->res->start;
resource_size_t size = resource_size(entry->res);
unsigned long type = resource_type(entry->res);
u64 win_size;
/*
* Aardvark hardware allows to configure also PCIe window
* for config type 0 and type 1 mapping, but driver uses
* only PIO for issuing configuration transfers which does
* not use PCIe window configuration.
*/
if (type != IORESOURCE_MEM && type != IORESOURCE_IO)
continue;
/*
* Skip transparent memory resources. Default outbound access
* configuration is set to transparent memory access so it
* does not need window configuration.
*/
if (type == IORESOURCE_MEM && entry->offset == 0)
continue;
/*
* The n-th PCIe window is configured by tuple (match, remap, mask)
* and an access to address A uses this window if A matches the
* match with given mask.
* So every PCIe window size must be a power of two and every start
* address must be aligned to window size. Minimal size is 64 KiB
* because lower 16 bits of mask must be zero. Remapped address
* may have set only bits from the mask.
*/
while (pcie->wins_count < OB_WIN_COUNT && size > 0) {
/* Calculate the largest aligned window size */
win_size = (1ULL << (fls64(size)-1)) |
(start ? (1ULL << __ffs64(start)) : 0);
win_size = 1ULL << __ffs64(win_size);
if (win_size < 0x10000)
break;
dev_dbg(dev,
"Configuring PCIe window %d: [0x%llx-0x%llx] as %lu\n",
pcie->wins_count, (unsigned long long)start,
(unsigned long long)start + win_size, type);
if (type == IORESOURCE_IO) {
pcie->wins[pcie->wins_count].actions = OB_WIN_TYPE_IO;
pcie->wins[pcie->wins_count].match = pci_pio_to_address(start);
} else {
pcie->wins[pcie->wins_count].actions = OB_WIN_TYPE_MEM;
pcie->wins[pcie->wins_count].match = start;
}
pcie->wins[pcie->wins_count].remap = start - entry->offset;
pcie->wins[pcie->wins_count].mask = ~(win_size - 1);
if (pcie->wins[pcie->wins_count].remap & (win_size - 1))
break;
start += win_size;
size -= win_size;
pcie->wins_count++;
}
if (size > 0) {
dev_err(&pcie->pdev->dev,
"Invalid PCIe region [0x%llx-0x%llx]\n",
(unsigned long long)entry->res->start,
(unsigned long long)entry->res->end + 1);
return -EINVAL;
}
}
pcie->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(pcie->base))
return PTR_ERR(pcie->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(dev, irq, advk_pcie_irq_handler,
IRQF_SHARED | IRQF_NO_THREAD, "advk-pcie",
pcie);
if (ret) {
dev_err(dev, "Failed to register interrupt\n");
return ret;
}
pcie->reset_gpio = devm_gpiod_get_from_of_node(dev, dev->of_node,
"reset-gpios", 0,
GPIOD_OUT_LOW,
"pcie1-reset");
ret = PTR_ERR_OR_ZERO(pcie->reset_gpio);
if (ret) {
if (ret == -ENOENT) {
pcie->reset_gpio = NULL;
} else {
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get reset-gpio: %i\n",
ret);
return ret;
}
}
ret = of_pci_get_max_link_speed(dev->of_node);
if (ret <= 0 || ret > 3)
pcie->link_gen = 3;
else
pcie->link_gen = ret;
ret = advk_pcie_setup_phy(pcie);
if (ret)
return ret;
advk_pcie_setup_hw(pcie);
ret = advk_sw_pci_bridge_init(pcie);
if (ret) {
dev_err(dev, "Failed to register emulated root PCI bridge\n");
return ret;
}
ret = advk_pcie_init_irq_domain(pcie);
if (ret) {
dev_err(dev, "Failed to initialize irq\n");
return ret;
}
ret = advk_pcie_init_msi_irq_domain(pcie);
if (ret) {
dev_err(dev, "Failed to initialize irq\n");
advk_pcie_remove_irq_domain(pcie);
return ret;
}
ret = advk_pcie_init_rp_irq_domain(pcie);
if (ret) {
dev_err(dev, "Failed to initialize irq\n");
advk_pcie_remove_msi_irq_domain(pcie);
advk_pcie_remove_irq_domain(pcie);
return ret;
}
bridge->sysdata = pcie;
bridge->ops = &advk_pcie_ops;
bridge->map_irq = advk_pcie_map_irq;
ret = pci_host_probe(bridge);
if (ret < 0) {
advk_pcie_remove_rp_irq_domain(pcie);
advk_pcie_remove_msi_irq_domain(pcie);
advk_pcie_remove_irq_domain(pcie);
return ret;
}
return 0;
}
static int advk_pcie_remove(struct platform_device *pdev)
{
struct advk_pcie *pcie = platform_get_drvdata(pdev);
struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie);
u32 val;
int i;
/* Remove PCI bus with all devices */
pci_lock_rescan_remove();
pci_stop_root_bus(bridge->bus);
pci_remove_root_bus(bridge->bus);
pci_unlock_rescan_remove();
/* Disable Root Bridge I/O space, memory space and bus mastering */
val = advk_readl(pcie, PCIE_CORE_CMD_STATUS_REG);
val &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
advk_writel(pcie, val, PCIE_CORE_CMD_STATUS_REG);
/* Disable MSI */
val = advk_readl(pcie, PCIE_CORE_CTRL2_REG);
val &= ~PCIE_CORE_CTRL2_MSI_ENABLE;
advk_writel(pcie, val, PCIE_CORE_CTRL2_REG);
/* Clear MSI address */
advk_writel(pcie, 0, PCIE_MSI_ADDR_LOW_REG);
advk_writel(pcie, 0, PCIE_MSI_ADDR_HIGH_REG);
/* Mask all interrupts */
advk_writel(pcie, PCIE_MSI_ALL_MASK, PCIE_MSI_MASK_REG);
advk_writel(pcie, PCIE_ISR0_ALL_MASK, PCIE_ISR0_MASK_REG);
advk_writel(pcie, PCIE_ISR1_ALL_MASK, PCIE_ISR1_MASK_REG);
advk_writel(pcie, PCIE_IRQ_ALL_MASK, HOST_CTRL_INT_MASK_REG);
/* Clear all interrupts */
advk_writel(pcie, PCIE_MSI_ALL_MASK, PCIE_MSI_STATUS_REG);
advk_writel(pcie, PCIE_ISR0_ALL_MASK, PCIE_ISR0_REG);
advk_writel(pcie, PCIE_ISR1_ALL_MASK, PCIE_ISR1_REG);
advk_writel(pcie, PCIE_IRQ_ALL_MASK, HOST_CTRL_INT_STATUS_REG);
/* Remove IRQ domains */
advk_pcie_remove_rp_irq_domain(pcie);
advk_pcie_remove_msi_irq_domain(pcie);
advk_pcie_remove_irq_domain(pcie);
/* Free config space for emulated root bridge */
pci_bridge_emul_cleanup(&pcie->bridge);
/* Assert PERST# signal which prepares PCIe card for power down */
if (pcie->reset_gpio)
gpiod_set_value_cansleep(pcie->reset_gpio, 1);
/* Disable link training */
val = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
val &= ~LINK_TRAINING_EN;
advk_writel(pcie, val, PCIE_CORE_CTRL0_REG);
/* Disable outbound address windows mapping */
for (i = 0; i < OB_WIN_COUNT; i++)
advk_pcie_disable_ob_win(pcie, i);
/* Disable phy */
advk_pcie_disable_phy(pcie);
return 0;
}
static const struct of_device_id advk_pcie_of_match_table[] = {
{ .compatible = "marvell,armada-3700-pcie", },
{},
};
MODULE_DEVICE_TABLE(of, advk_pcie_of_match_table);
static struct platform_driver advk_pcie_driver = {
.driver = {
.name = "advk-pcie",
.of_match_table = advk_pcie_of_match_table,
},
.probe = advk_pcie_probe,
.remove = advk_pcie_remove,
};
module_platform_driver(advk_pcie_driver);
MODULE_DESCRIPTION("Aardvark PCIe controller");
MODULE_LICENSE("GPL v2");