1397 lines
38 KiB
C
1397 lines
38 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/****************************************************************************
|
||
|
* Driver for Solarflare network controllers and boards
|
||
|
* Copyright 2018 Solarflare Communications Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 as published
|
||
|
* by the Free Software Foundation, incorporated herein by reference.
|
||
|
*/
|
||
|
|
||
|
#include "net_driver.h"
|
||
|
#include <linux/filter.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/netdevice.h>
|
||
|
#include <net/gre.h>
|
||
|
#include "efx_common.h"
|
||
|
#include "efx_channels.h"
|
||
|
#include "efx.h"
|
||
|
#include "mcdi.h"
|
||
|
#include "selftest.h"
|
||
|
#include "rx_common.h"
|
||
|
#include "tx_common.h"
|
||
|
#include "nic.h"
|
||
|
#include "mcdi_port_common.h"
|
||
|
#include "io.h"
|
||
|
#include "mcdi_pcol.h"
|
||
|
|
||
|
static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
|
||
|
NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
|
||
|
NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
|
||
|
NETIF_MSG_TX_ERR | NETIF_MSG_HW);
|
||
|
module_param(debug, uint, 0);
|
||
|
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
|
||
|
|
||
|
/* This is the time (in jiffies) between invocations of the hardware
|
||
|
* monitor.
|
||
|
* On Falcon-based NICs, this will:
|
||
|
* - Check the on-board hardware monitor;
|
||
|
* - Poll the link state and reconfigure the hardware as necessary.
|
||
|
* On Siena-based NICs for power systems with EEH support, this will give EEH a
|
||
|
* chance to start.
|
||
|
*/
|
||
|
static unsigned int efx_monitor_interval = 1 * HZ;
|
||
|
|
||
|
/* How often and how many times to poll for a reset while waiting for a
|
||
|
* BIST that another function started to complete.
|
||
|
*/
|
||
|
#define BIST_WAIT_DELAY_MS 100
|
||
|
#define BIST_WAIT_DELAY_COUNT 100
|
||
|
|
||
|
/* Default stats update time */
|
||
|
#define STATS_PERIOD_MS_DEFAULT 1000
|
||
|
|
||
|
const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
|
||
|
const char *const efx_reset_type_names[] = {
|
||
|
[RESET_TYPE_INVISIBLE] = "INVISIBLE",
|
||
|
[RESET_TYPE_ALL] = "ALL",
|
||
|
[RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
|
||
|
[RESET_TYPE_WORLD] = "WORLD",
|
||
|
[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
|
||
|
[RESET_TYPE_DATAPATH] = "DATAPATH",
|
||
|
[RESET_TYPE_MC_BIST] = "MC_BIST",
|
||
|
[RESET_TYPE_DISABLE] = "DISABLE",
|
||
|
[RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
|
||
|
[RESET_TYPE_INT_ERROR] = "INT_ERROR",
|
||
|
[RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
|
||
|
[RESET_TYPE_TX_SKIP] = "TX_SKIP",
|
||
|
[RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
|
||
|
[RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
|
||
|
};
|
||
|
|
||
|
#define RESET_TYPE(type) \
|
||
|
STRING_TABLE_LOOKUP(type, efx_reset_type)
|
||
|
|
||
|
/* Loopback mode names (see LOOPBACK_MODE()) */
|
||
|
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
|
||
|
const char *const efx_loopback_mode_names[] = {
|
||
|
[LOOPBACK_NONE] = "NONE",
|
||
|
[LOOPBACK_DATA] = "DATAPATH",
|
||
|
[LOOPBACK_GMAC] = "GMAC",
|
||
|
[LOOPBACK_XGMII] = "XGMII",
|
||
|
[LOOPBACK_XGXS] = "XGXS",
|
||
|
[LOOPBACK_XAUI] = "XAUI",
|
||
|
[LOOPBACK_GMII] = "GMII",
|
||
|
[LOOPBACK_SGMII] = "SGMII",
|
||
|
[LOOPBACK_XGBR] = "XGBR",
|
||
|
[LOOPBACK_XFI] = "XFI",
|
||
|
[LOOPBACK_XAUI_FAR] = "XAUI_FAR",
|
||
|
[LOOPBACK_GMII_FAR] = "GMII_FAR",
|
||
|
[LOOPBACK_SGMII_FAR] = "SGMII_FAR",
|
||
|
[LOOPBACK_XFI_FAR] = "XFI_FAR",
|
||
|
[LOOPBACK_GPHY] = "GPHY",
|
||
|
[LOOPBACK_PHYXS] = "PHYXS",
|
||
|
[LOOPBACK_PCS] = "PCS",
|
||
|
[LOOPBACK_PMAPMD] = "PMA/PMD",
|
||
|
[LOOPBACK_XPORT] = "XPORT",
|
||
|
[LOOPBACK_XGMII_WS] = "XGMII_WS",
|
||
|
[LOOPBACK_XAUI_WS] = "XAUI_WS",
|
||
|
[LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
|
||
|
[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
|
||
|
[LOOPBACK_GMII_WS] = "GMII_WS",
|
||
|
[LOOPBACK_XFI_WS] = "XFI_WS",
|
||
|
[LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
|
||
|
[LOOPBACK_PHYXS_WS] = "PHYXS_WS",
|
||
|
};
|
||
|
|
||
|
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
|
||
|
* queued onto this work queue. This is not a per-nic work queue, because
|
||
|
* efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
|
||
|
*/
|
||
|
static struct workqueue_struct *reset_workqueue;
|
||
|
|
||
|
int efx_create_reset_workqueue(void)
|
||
|
{
|
||
|
reset_workqueue = create_singlethread_workqueue("sfc_reset");
|
||
|
if (!reset_workqueue) {
|
||
|
printk(KERN_ERR "Failed to create reset workqueue\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void efx_queue_reset_work(struct efx_nic *efx)
|
||
|
{
|
||
|
queue_work(reset_workqueue, &efx->reset_work);
|
||
|
}
|
||
|
|
||
|
void efx_flush_reset_workqueue(struct efx_nic *efx)
|
||
|
{
|
||
|
cancel_work_sync(&efx->reset_work);
|
||
|
}
|
||
|
|
||
|
void efx_destroy_reset_workqueue(void)
|
||
|
{
|
||
|
if (reset_workqueue) {
|
||
|
destroy_workqueue(reset_workqueue);
|
||
|
reset_workqueue = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* We assume that efx->type->reconfigure_mac will always try to sync RX
|
||
|
* filters and therefore needs to read-lock the filter table against freeing
|
||
|
*/
|
||
|
void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
|
||
|
{
|
||
|
if (efx->type->reconfigure_mac) {
|
||
|
down_read(&efx->filter_sem);
|
||
|
efx->type->reconfigure_mac(efx, mtu_only);
|
||
|
up_read(&efx->filter_sem);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Asynchronous work item for changing MAC promiscuity and multicast
|
||
|
* hash. Avoid a drain/rx_ingress enable by reconfiguring the current
|
||
|
* MAC directly.
|
||
|
*/
|
||
|
static void efx_mac_work(struct work_struct *data)
|
||
|
{
|
||
|
struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
if (efx->port_enabled)
|
||
|
efx_mac_reconfigure(efx, false);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
}
|
||
|
|
||
|
int efx_set_mac_address(struct net_device *net_dev, void *data)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
struct sockaddr *addr = data;
|
||
|
u8 *new_addr = addr->sa_data;
|
||
|
u8 old_addr[6];
|
||
|
int rc;
|
||
|
|
||
|
if (!is_valid_ether_addr(new_addr)) {
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"invalid ethernet MAC address requested: %pM\n",
|
||
|
new_addr);
|
||
|
return -EADDRNOTAVAIL;
|
||
|
}
|
||
|
|
||
|
/* save old address */
|
||
|
ether_addr_copy(old_addr, net_dev->dev_addr);
|
||
|
eth_hw_addr_set(net_dev, new_addr);
|
||
|
if (efx->type->set_mac_address) {
|
||
|
rc = efx->type->set_mac_address(efx);
|
||
|
if (rc) {
|
||
|
eth_hw_addr_set(net_dev, old_addr);
|
||
|
return rc;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Reconfigure the MAC */
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
efx_mac_reconfigure(efx, false);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Context: netif_addr_lock held, BHs disabled. */
|
||
|
void efx_set_rx_mode(struct net_device *net_dev)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
|
||
|
if (efx->port_enabled)
|
||
|
queue_work(efx->workqueue, &efx->mac_work);
|
||
|
/* Otherwise efx_start_port() will do this */
|
||
|
}
|
||
|
|
||
|
int efx_set_features(struct net_device *net_dev, netdev_features_t data)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
int rc;
|
||
|
|
||
|
/* If disabling RX n-tuple filtering, clear existing filters */
|
||
|
if (net_dev->features & ~data & NETIF_F_NTUPLE) {
|
||
|
rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
|
||
|
* If rx-fcs is changed, mac_reconfigure updates that too.
|
||
|
*/
|
||
|
if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
|
||
|
NETIF_F_RXFCS)) {
|
||
|
/* efx_set_rx_mode() will schedule MAC work to update filters
|
||
|
* when a new features are finally set in net_dev.
|
||
|
*/
|
||
|
efx_set_rx_mode(net_dev);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* This ensures that the kernel is kept informed (via
|
||
|
* netif_carrier_on/off) of the link status, and also maintains the
|
||
|
* link status's stop on the port's TX queue.
|
||
|
*/
|
||
|
void efx_link_status_changed(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_link_state *link_state = &efx->link_state;
|
||
|
|
||
|
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
|
||
|
* that no events are triggered between unregister_netdev() and the
|
||
|
* driver unloading. A more general condition is that NETDEV_CHANGE
|
||
|
* can only be generated between NETDEV_UP and NETDEV_DOWN
|
||
|
*/
|
||
|
if (!netif_running(efx->net_dev))
|
||
|
return;
|
||
|
|
||
|
if (link_state->up != netif_carrier_ok(efx->net_dev)) {
|
||
|
efx->n_link_state_changes++;
|
||
|
|
||
|
if (link_state->up)
|
||
|
netif_carrier_on(efx->net_dev);
|
||
|
else
|
||
|
netif_carrier_off(efx->net_dev);
|
||
|
}
|
||
|
|
||
|
/* Status message for kernel log */
|
||
|
if (link_state->up)
|
||
|
netif_info(efx, link, efx->net_dev,
|
||
|
"link up at %uMbps %s-duplex (MTU %d)\n",
|
||
|
link_state->speed, link_state->fd ? "full" : "half",
|
||
|
efx->net_dev->mtu);
|
||
|
else
|
||
|
netif_info(efx, link, efx->net_dev, "link down\n");
|
||
|
}
|
||
|
|
||
|
unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
|
||
|
{
|
||
|
/* The maximum MTU that we can fit in a single page, allowing for
|
||
|
* framing, overhead and XDP headroom + tailroom.
|
||
|
*/
|
||
|
int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
|
||
|
efx->rx_prefix_size + efx->type->rx_buffer_padding +
|
||
|
efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
|
||
|
|
||
|
return PAGE_SIZE - overhead;
|
||
|
}
|
||
|
|
||
|
/* Context: process, rtnl_lock() held. */
|
||
|
int efx_change_mtu(struct net_device *net_dev, int new_mtu)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
int rc;
|
||
|
|
||
|
rc = efx_check_disabled(efx);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
if (rtnl_dereference(efx->xdp_prog) &&
|
||
|
new_mtu > efx_xdp_max_mtu(efx)) {
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"Requested MTU of %d too big for XDP (max: %d)\n",
|
||
|
new_mtu, efx_xdp_max_mtu(efx));
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
|
||
|
|
||
|
efx_device_detach_sync(efx);
|
||
|
efx_stop_all(efx);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
net_dev->mtu = new_mtu;
|
||
|
efx_mac_reconfigure(efx, true);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
efx_start_all(efx);
|
||
|
efx_device_attach_if_not_resetting(efx);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Hardware monitor
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* Run periodically off the general workqueue */
|
||
|
static void efx_monitor(struct work_struct *data)
|
||
|
{
|
||
|
struct efx_nic *efx = container_of(data, struct efx_nic,
|
||
|
monitor_work.work);
|
||
|
|
||
|
netif_vdbg(efx, timer, efx->net_dev,
|
||
|
"hardware monitor executing on CPU %d\n",
|
||
|
raw_smp_processor_id());
|
||
|
BUG_ON(efx->type->monitor == NULL);
|
||
|
|
||
|
/* If the mac_lock is already held then it is likely a port
|
||
|
* reconfiguration is already in place, which will likely do
|
||
|
* most of the work of monitor() anyway.
|
||
|
*/
|
||
|
if (mutex_trylock(&efx->mac_lock)) {
|
||
|
if (efx->port_enabled && efx->type->monitor)
|
||
|
efx->type->monitor(efx);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
}
|
||
|
|
||
|
efx_start_monitor(efx);
|
||
|
}
|
||
|
|
||
|
void efx_start_monitor(struct efx_nic *efx)
|
||
|
{
|
||
|
if (efx->type->monitor)
|
||
|
queue_delayed_work(efx->workqueue, &efx->monitor_work,
|
||
|
efx_monitor_interval);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Event queue processing
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/* Channels are shutdown and reinitialised whilst the NIC is running
|
||
|
* to propagate configuration changes (mtu, checksum offload), or
|
||
|
* to clear hardware error conditions
|
||
|
*/
|
||
|
static void efx_start_datapath(struct efx_nic *efx)
|
||
|
{
|
||
|
netdev_features_t old_features = efx->net_dev->features;
|
||
|
bool old_rx_scatter = efx->rx_scatter;
|
||
|
size_t rx_buf_len;
|
||
|
|
||
|
/* Calculate the rx buffer allocation parameters required to
|
||
|
* support the current MTU, including padding for header
|
||
|
* alignment and overruns.
|
||
|
*/
|
||
|
efx->rx_dma_len = (efx->rx_prefix_size +
|
||
|
EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
|
||
|
efx->type->rx_buffer_padding);
|
||
|
rx_buf_len = (sizeof(struct efx_rx_page_state) + EFX_XDP_HEADROOM +
|
||
|
efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
|
||
|
|
||
|
if (rx_buf_len <= PAGE_SIZE) {
|
||
|
efx->rx_scatter = efx->type->always_rx_scatter;
|
||
|
efx->rx_buffer_order = 0;
|
||
|
} else if (efx->type->can_rx_scatter) {
|
||
|
BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
|
||
|
BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
|
||
|
2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
|
||
|
EFX_RX_BUF_ALIGNMENT) >
|
||
|
PAGE_SIZE);
|
||
|
efx->rx_scatter = true;
|
||
|
efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
|
||
|
efx->rx_buffer_order = 0;
|
||
|
} else {
|
||
|
efx->rx_scatter = false;
|
||
|
efx->rx_buffer_order = get_order(rx_buf_len);
|
||
|
}
|
||
|
|
||
|
efx_rx_config_page_split(efx);
|
||
|
if (efx->rx_buffer_order)
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"RX buf len=%u; page order=%u batch=%u\n",
|
||
|
efx->rx_dma_len, efx->rx_buffer_order,
|
||
|
efx->rx_pages_per_batch);
|
||
|
else
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"RX buf len=%u step=%u bpp=%u; page batch=%u\n",
|
||
|
efx->rx_dma_len, efx->rx_page_buf_step,
|
||
|
efx->rx_bufs_per_page, efx->rx_pages_per_batch);
|
||
|
|
||
|
/* Restore previously fixed features in hw_features and remove
|
||
|
* features which are fixed now
|
||
|
*/
|
||
|
efx->net_dev->hw_features |= efx->net_dev->features;
|
||
|
efx->net_dev->hw_features &= ~efx->fixed_features;
|
||
|
efx->net_dev->features |= efx->fixed_features;
|
||
|
if (efx->net_dev->features != old_features)
|
||
|
netdev_features_change(efx->net_dev);
|
||
|
|
||
|
/* RX filters may also have scatter-enabled flags */
|
||
|
if ((efx->rx_scatter != old_rx_scatter) &&
|
||
|
efx->type->filter_update_rx_scatter)
|
||
|
efx->type->filter_update_rx_scatter(efx);
|
||
|
|
||
|
/* We must keep at least one descriptor in a TX ring empty.
|
||
|
* We could avoid this when the queue size does not exactly
|
||
|
* match the hardware ring size, but it's not that important.
|
||
|
* Therefore we stop the queue when one more skb might fill
|
||
|
* the ring completely. We wake it when half way back to
|
||
|
* empty.
|
||
|
*/
|
||
|
efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
|
||
|
efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
|
||
|
|
||
|
/* Initialise the channels */
|
||
|
efx_start_channels(efx);
|
||
|
|
||
|
efx_ptp_start_datapath(efx);
|
||
|
|
||
|
if (netif_device_present(efx->net_dev))
|
||
|
netif_tx_wake_all_queues(efx->net_dev);
|
||
|
}
|
||
|
|
||
|
static void efx_stop_datapath(struct efx_nic *efx)
|
||
|
{
|
||
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
||
|
BUG_ON(efx->port_enabled);
|
||
|
|
||
|
efx_ptp_stop_datapath(efx);
|
||
|
|
||
|
efx_stop_channels(efx);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Port handling
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* Equivalent to efx_link_set_advertising with all-zeroes, except does not
|
||
|
* force the Autoneg bit on.
|
||
|
*/
|
||
|
void efx_link_clear_advertising(struct efx_nic *efx)
|
||
|
{
|
||
|
bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
|
||
|
efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
|
||
|
}
|
||
|
|
||
|
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
|
||
|
{
|
||
|
efx->wanted_fc = wanted_fc;
|
||
|
if (efx->link_advertising[0]) {
|
||
|
if (wanted_fc & EFX_FC_RX)
|
||
|
efx->link_advertising[0] |= (ADVERTISED_Pause |
|
||
|
ADVERTISED_Asym_Pause);
|
||
|
else
|
||
|
efx->link_advertising[0] &= ~(ADVERTISED_Pause |
|
||
|
ADVERTISED_Asym_Pause);
|
||
|
if (wanted_fc & EFX_FC_TX)
|
||
|
efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void efx_start_port(struct efx_nic *efx)
|
||
|
{
|
||
|
netif_dbg(efx, ifup, efx->net_dev, "start port\n");
|
||
|
BUG_ON(efx->port_enabled);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
efx->port_enabled = true;
|
||
|
|
||
|
/* Ensure MAC ingress/egress is enabled */
|
||
|
efx_mac_reconfigure(efx, false);
|
||
|
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
}
|
||
|
|
||
|
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
|
||
|
* and the async self-test, wait for them to finish and prevent them
|
||
|
* being scheduled again. This doesn't cover online resets, which
|
||
|
* should only be cancelled when removing the device.
|
||
|
*/
|
||
|
static void efx_stop_port(struct efx_nic *efx)
|
||
|
{
|
||
|
netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
|
||
|
|
||
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
efx->port_enabled = false;
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
/* Serialise against efx_set_multicast_list() */
|
||
|
netif_addr_lock_bh(efx->net_dev);
|
||
|
netif_addr_unlock_bh(efx->net_dev);
|
||
|
|
||
|
cancel_delayed_work_sync(&efx->monitor_work);
|
||
|
efx_selftest_async_cancel(efx);
|
||
|
cancel_work_sync(&efx->mac_work);
|
||
|
}
|
||
|
|
||
|
/* If the interface is supposed to be running but is not, start
|
||
|
* the hardware and software data path, regular activity for the port
|
||
|
* (MAC statistics, link polling, etc.) and schedule the port to be
|
||
|
* reconfigured. Interrupts must already be enabled. This function
|
||
|
* is safe to call multiple times, so long as the NIC is not disabled.
|
||
|
* Requires the RTNL lock.
|
||
|
*/
|
||
|
void efx_start_all(struct efx_nic *efx)
|
||
|
{
|
||
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
||
|
BUG_ON(efx->state == STATE_DISABLED);
|
||
|
|
||
|
/* Check that it is appropriate to restart the interface. All
|
||
|
* of these flags are safe to read under just the rtnl lock
|
||
|
*/
|
||
|
if (efx->port_enabled || !netif_running(efx->net_dev) ||
|
||
|
efx->reset_pending)
|
||
|
return;
|
||
|
|
||
|
efx_start_port(efx);
|
||
|
efx_start_datapath(efx);
|
||
|
|
||
|
/* Start the hardware monitor if there is one */
|
||
|
efx_start_monitor(efx);
|
||
|
|
||
|
/* Link state detection is normally event-driven; we have
|
||
|
* to poll now because we could have missed a change
|
||
|
*/
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
if (efx_mcdi_phy_poll(efx))
|
||
|
efx_link_status_changed(efx);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
if (efx->type->start_stats) {
|
||
|
efx->type->start_stats(efx);
|
||
|
efx->type->pull_stats(efx);
|
||
|
spin_lock_bh(&efx->stats_lock);
|
||
|
efx->type->update_stats(efx, NULL, NULL);
|
||
|
spin_unlock_bh(&efx->stats_lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Quiesce the hardware and software data path, and regular activity
|
||
|
* for the port without bringing the link down. Safe to call multiple
|
||
|
* times with the NIC in almost any state, but interrupts should be
|
||
|
* enabled. Requires the RTNL lock.
|
||
|
*/
|
||
|
void efx_stop_all(struct efx_nic *efx)
|
||
|
{
|
||
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
/* port_enabled can be read safely under the rtnl lock */
|
||
|
if (!efx->port_enabled)
|
||
|
return;
|
||
|
|
||
|
if (efx->type->update_stats) {
|
||
|
/* update stats before we go down so we can accurately count
|
||
|
* rx_nodesc_drops
|
||
|
*/
|
||
|
efx->type->pull_stats(efx);
|
||
|
spin_lock_bh(&efx->stats_lock);
|
||
|
efx->type->update_stats(efx, NULL, NULL);
|
||
|
spin_unlock_bh(&efx->stats_lock);
|
||
|
efx->type->stop_stats(efx);
|
||
|
}
|
||
|
|
||
|
efx_stop_port(efx);
|
||
|
|
||
|
/* Stop the kernel transmit interface. This is only valid if
|
||
|
* the device is stopped or detached; otherwise the watchdog
|
||
|
* may fire immediately.
|
||
|
*/
|
||
|
WARN_ON(netif_running(efx->net_dev) &&
|
||
|
netif_device_present(efx->net_dev));
|
||
|
netif_tx_disable(efx->net_dev);
|
||
|
|
||
|
efx_stop_datapath(efx);
|
||
|
}
|
||
|
|
||
|
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
|
||
|
void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
|
||
|
spin_lock_bh(&efx->stats_lock);
|
||
|
efx_nic_update_stats_atomic(efx, NULL, stats);
|
||
|
spin_unlock_bh(&efx->stats_lock);
|
||
|
}
|
||
|
|
||
|
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
|
||
|
* the MAC appropriately. All other PHY configuration changes are pushed
|
||
|
* through phy_op->set_settings(), and pushed asynchronously to the MAC
|
||
|
* through efx_monitor().
|
||
|
*
|
||
|
* Callers must hold the mac_lock
|
||
|
*/
|
||
|
int __efx_reconfigure_port(struct efx_nic *efx)
|
||
|
{
|
||
|
enum efx_phy_mode phy_mode;
|
||
|
int rc = 0;
|
||
|
|
||
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
||
|
|
||
|
/* Disable PHY transmit in mac level loopbacks */
|
||
|
phy_mode = efx->phy_mode;
|
||
|
if (LOOPBACK_INTERNAL(efx))
|
||
|
efx->phy_mode |= PHY_MODE_TX_DISABLED;
|
||
|
else
|
||
|
efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
|
||
|
|
||
|
if (efx->type->reconfigure_port)
|
||
|
rc = efx->type->reconfigure_port(efx);
|
||
|
|
||
|
if (rc)
|
||
|
efx->phy_mode = phy_mode;
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
|
||
|
* disabled.
|
||
|
*/
|
||
|
int efx_reconfigure_port(struct efx_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
rc = __efx_reconfigure_port(efx);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Device reset and suspend
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
static void efx_wait_for_bist_end(struct efx_nic *efx)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
|
||
|
if (efx_mcdi_poll_reboot(efx))
|
||
|
goto out;
|
||
|
msleep(BIST_WAIT_DELAY_MS);
|
||
|
}
|
||
|
|
||
|
netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
|
||
|
out:
|
||
|
/* Either way unset the BIST flag. If we found no reboot we probably
|
||
|
* won't recover, but we should try.
|
||
|
*/
|
||
|
efx->mc_bist_for_other_fn = false;
|
||
|
}
|
||
|
|
||
|
/* Try recovery mechanisms.
|
||
|
* For now only EEH is supported.
|
||
|
* Returns 0 if the recovery mechanisms are unsuccessful.
|
||
|
* Returns a non-zero value otherwise.
|
||
|
*/
|
||
|
int efx_try_recovery(struct efx_nic *efx)
|
||
|
{
|
||
|
#ifdef CONFIG_EEH
|
||
|
/* A PCI error can occur and not be seen by EEH because nothing
|
||
|
* happens on the PCI bus. In this case the driver may fail and
|
||
|
* schedule a 'recover or reset', leading to this recovery handler.
|
||
|
* Manually call the eeh failure check function.
|
||
|
*/
|
||
|
struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
|
||
|
if (eeh_dev_check_failure(eehdev)) {
|
||
|
/* The EEH mechanisms will handle the error and reset the
|
||
|
* device if necessary.
|
||
|
*/
|
||
|
return 1;
|
||
|
}
|
||
|
#endif
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Tears down the entire software state and most of the hardware state
|
||
|
* before reset.
|
||
|
*/
|
||
|
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
|
||
|
{
|
||
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
if (method == RESET_TYPE_MCDI_TIMEOUT)
|
||
|
efx->type->prepare_flr(efx);
|
||
|
|
||
|
efx_stop_all(efx);
|
||
|
efx_disable_interrupts(efx);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
down_write(&efx->filter_sem);
|
||
|
mutex_lock(&efx->rss_lock);
|
||
|
efx->type->fini(efx);
|
||
|
}
|
||
|
|
||
|
/* Context: netif_tx_lock held, BHs disabled. */
|
||
|
void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
|
||
|
netif_err(efx, tx_err, efx->net_dev,
|
||
|
"TX stuck with port_enabled=%d: resetting channels\n",
|
||
|
efx->port_enabled);
|
||
|
|
||
|
efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
|
||
|
}
|
||
|
|
||
|
/* This function will always ensure that the locks acquired in
|
||
|
* efx_reset_down() are released. A failure return code indicates
|
||
|
* that we were unable to reinitialise the hardware, and the
|
||
|
* driver should be disabled. If ok is false, then the rx and tx
|
||
|
* engines are not restarted, pending a RESET_DISABLE.
|
||
|
*/
|
||
|
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
if (method == RESET_TYPE_MCDI_TIMEOUT)
|
||
|
efx->type->finish_flr(efx);
|
||
|
|
||
|
/* Ensure that SRAM is initialised even if we're disabling the device */
|
||
|
rc = efx->type->init(efx);
|
||
|
if (rc) {
|
||
|
netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if (!ok)
|
||
|
goto fail;
|
||
|
|
||
|
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
|
||
|
method != RESET_TYPE_DATAPATH) {
|
||
|
rc = efx_mcdi_port_reconfigure(efx);
|
||
|
if (rc && rc != -EPERM)
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"could not restore PHY settings\n");
|
||
|
}
|
||
|
|
||
|
rc = efx_enable_interrupts(efx);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
#ifdef CONFIG_SFC_SRIOV
|
||
|
rc = efx->type->vswitching_restore(efx);
|
||
|
if (rc) /* not fatal; the PF will still work fine */
|
||
|
netif_warn(efx, probe, efx->net_dev,
|
||
|
"failed to restore vswitching rc=%d;"
|
||
|
" VFs may not function\n", rc);
|
||
|
#endif
|
||
|
|
||
|
if (efx->type->rx_restore_rss_contexts)
|
||
|
efx->type->rx_restore_rss_contexts(efx);
|
||
|
mutex_unlock(&efx->rss_lock);
|
||
|
efx->type->filter_table_restore(efx);
|
||
|
up_write(&efx->filter_sem);
|
||
|
if (efx->type->sriov_reset)
|
||
|
efx->type->sriov_reset(efx);
|
||
|
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
efx_start_all(efx);
|
||
|
|
||
|
if (efx->type->udp_tnl_push_ports)
|
||
|
efx->type->udp_tnl_push_ports(efx);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
efx->port_initialized = false;
|
||
|
|
||
|
mutex_unlock(&efx->rss_lock);
|
||
|
up_write(&efx->filter_sem);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Reset the NIC using the specified method. Note that the reset may
|
||
|
* fail, in which case the card will be left in an unusable state.
|
||
|
*
|
||
|
* Caller must hold the rtnl_lock.
|
||
|
*/
|
||
|
int efx_reset(struct efx_nic *efx, enum reset_type method)
|
||
|
{
|
||
|
int rc, rc2 = 0;
|
||
|
bool disabled;
|
||
|
|
||
|
netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
|
||
|
RESET_TYPE(method));
|
||
|
|
||
|
efx_device_detach_sync(efx);
|
||
|
/* efx_reset_down() grabs locks that prevent recovery on EF100.
|
||
|
* EF100 reset is handled in the efx_nic_type callback below.
|
||
|
*/
|
||
|
if (efx_nic_rev(efx) != EFX_REV_EF100)
|
||
|
efx_reset_down(efx, method);
|
||
|
|
||
|
rc = efx->type->reset(efx, method);
|
||
|
if (rc) {
|
||
|
netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Clear flags for the scopes we covered. We assume the NIC and
|
||
|
* driver are now quiescent so that there is no race here.
|
||
|
*/
|
||
|
if (method < RESET_TYPE_MAX_METHOD)
|
||
|
efx->reset_pending &= -(1 << (method + 1));
|
||
|
else /* it doesn't fit into the well-ordered scope hierarchy */
|
||
|
__clear_bit(method, &efx->reset_pending);
|
||
|
|
||
|
/* Reinitialise bus-mastering, which may have been turned off before
|
||
|
* the reset was scheduled. This is still appropriate, even in the
|
||
|
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
|
||
|
* can respond to requests.
|
||
|
*/
|
||
|
pci_set_master(efx->pci_dev);
|
||
|
|
||
|
out:
|
||
|
/* Leave device stopped if necessary */
|
||
|
disabled = rc ||
|
||
|
method == RESET_TYPE_DISABLE ||
|
||
|
method == RESET_TYPE_RECOVER_OR_DISABLE;
|
||
|
if (efx_nic_rev(efx) != EFX_REV_EF100)
|
||
|
rc2 = efx_reset_up(efx, method, !disabled);
|
||
|
if (rc2) {
|
||
|
disabled = true;
|
||
|
if (!rc)
|
||
|
rc = rc2;
|
||
|
}
|
||
|
|
||
|
if (disabled) {
|
||
|
dev_close(efx->net_dev);
|
||
|
netif_err(efx, drv, efx->net_dev, "has been disabled\n");
|
||
|
efx->state = STATE_DISABLED;
|
||
|
} else {
|
||
|
netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
|
||
|
efx_device_attach_if_not_resetting(efx);
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* The worker thread exists so that code that cannot sleep can
|
||
|
* schedule a reset for later.
|
||
|
*/
|
||
|
static void efx_reset_work(struct work_struct *data)
|
||
|
{
|
||
|
struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
|
||
|
unsigned long pending;
|
||
|
enum reset_type method;
|
||
|
|
||
|
pending = READ_ONCE(efx->reset_pending);
|
||
|
method = fls(pending) - 1;
|
||
|
|
||
|
if (method == RESET_TYPE_MC_BIST)
|
||
|
efx_wait_for_bist_end(efx);
|
||
|
|
||
|
if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
|
||
|
method == RESET_TYPE_RECOVER_OR_ALL) &&
|
||
|
efx_try_recovery(efx))
|
||
|
return;
|
||
|
|
||
|
if (!pending)
|
||
|
return;
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
/* We checked the state in efx_schedule_reset() but it may
|
||
|
* have changed by now. Now that we have the RTNL lock,
|
||
|
* it cannot change again.
|
||
|
*/
|
||
|
if (efx->state == STATE_READY)
|
||
|
(void)efx_reset(efx, method);
|
||
|
|
||
|
rtnl_unlock();
|
||
|
}
|
||
|
|
||
|
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
|
||
|
{
|
||
|
enum reset_type method;
|
||
|
|
||
|
if (efx->state == STATE_RECOVERY) {
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"recovering: skip scheduling %s reset\n",
|
||
|
RESET_TYPE(type));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (type) {
|
||
|
case RESET_TYPE_INVISIBLE:
|
||
|
case RESET_TYPE_ALL:
|
||
|
case RESET_TYPE_RECOVER_OR_ALL:
|
||
|
case RESET_TYPE_WORLD:
|
||
|
case RESET_TYPE_DISABLE:
|
||
|
case RESET_TYPE_RECOVER_OR_DISABLE:
|
||
|
case RESET_TYPE_DATAPATH:
|
||
|
case RESET_TYPE_MC_BIST:
|
||
|
case RESET_TYPE_MCDI_TIMEOUT:
|
||
|
method = type;
|
||
|
netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
|
||
|
RESET_TYPE(method));
|
||
|
break;
|
||
|
default:
|
||
|
method = efx->type->map_reset_reason(type);
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"scheduling %s reset for %s\n",
|
||
|
RESET_TYPE(method), RESET_TYPE(type));
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
set_bit(method, &efx->reset_pending);
|
||
|
smp_mb(); /* ensure we change reset_pending before checking state */
|
||
|
|
||
|
/* If we're not READY then just leave the flags set as the cue
|
||
|
* to abort probing or reschedule the reset later.
|
||
|
*/
|
||
|
if (READ_ONCE(efx->state) != STATE_READY)
|
||
|
return;
|
||
|
|
||
|
/* efx_process_channel() will no longer read events once a
|
||
|
* reset is scheduled. So switch back to poll'd MCDI completions.
|
||
|
*/
|
||
|
efx_mcdi_mode_poll(efx);
|
||
|
|
||
|
efx_queue_reset_work(efx);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Dummy NIC operations
|
||
|
*
|
||
|
* Can be used for some unimplemented operations
|
||
|
* Needed so all function pointers are valid and do not have to be tested
|
||
|
* before use
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
int efx_port_dummy_op_int(struct efx_nic *efx)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
void efx_port_dummy_op_void(struct efx_nic *efx) {}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Data housekeeping
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* This zeroes out and then fills in the invariants in a struct
|
||
|
* efx_nic (including all sub-structures).
|
||
|
*/
|
||
|
int efx_init_struct(struct efx_nic *efx,
|
||
|
struct pci_dev *pci_dev, struct net_device *net_dev)
|
||
|
{
|
||
|
int rc = -ENOMEM;
|
||
|
|
||
|
/* Initialise common structures */
|
||
|
INIT_LIST_HEAD(&efx->node);
|
||
|
INIT_LIST_HEAD(&efx->secondary_list);
|
||
|
spin_lock_init(&efx->biu_lock);
|
||
|
#ifdef CONFIG_SFC_MTD
|
||
|
INIT_LIST_HEAD(&efx->mtd_list);
|
||
|
#endif
|
||
|
INIT_WORK(&efx->reset_work, efx_reset_work);
|
||
|
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
|
||
|
efx_selftest_async_init(efx);
|
||
|
efx->pci_dev = pci_dev;
|
||
|
efx->msg_enable = debug;
|
||
|
efx->state = STATE_UNINIT;
|
||
|
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
|
||
|
|
||
|
efx->net_dev = net_dev;
|
||
|
efx->rx_prefix_size = efx->type->rx_prefix_size;
|
||
|
efx->rx_ip_align =
|
||
|
NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
|
||
|
efx->rx_packet_hash_offset =
|
||
|
efx->type->rx_hash_offset - efx->type->rx_prefix_size;
|
||
|
efx->rx_packet_ts_offset =
|
||
|
efx->type->rx_ts_offset - efx->type->rx_prefix_size;
|
||
|
INIT_LIST_HEAD(&efx->rss_context.list);
|
||
|
efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
|
||
|
mutex_init(&efx->rss_lock);
|
||
|
efx->vport_id = EVB_PORT_ID_ASSIGNED;
|
||
|
spin_lock_init(&efx->stats_lock);
|
||
|
efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
|
||
|
efx->num_mac_stats = MC_CMD_MAC_NSTATS;
|
||
|
BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
|
||
|
mutex_init(&efx->mac_lock);
|
||
|
init_rwsem(&efx->filter_sem);
|
||
|
#ifdef CONFIG_RFS_ACCEL
|
||
|
mutex_init(&efx->rps_mutex);
|
||
|
spin_lock_init(&efx->rps_hash_lock);
|
||
|
/* Failure to allocate is not fatal, but may degrade ARFS performance */
|
||
|
efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
|
||
|
sizeof(*efx->rps_hash_table), GFP_KERNEL);
|
||
|
#endif
|
||
|
efx->mdio.dev = net_dev;
|
||
|
INIT_WORK(&efx->mac_work, efx_mac_work);
|
||
|
init_waitqueue_head(&efx->flush_wq);
|
||
|
|
||
|
efx->tx_queues_per_channel = 1;
|
||
|
efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
|
||
|
efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
|
||
|
|
||
|
efx->mem_bar = UINT_MAX;
|
||
|
|
||
|
rc = efx_init_channels(efx);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
/* Would be good to use the net_dev name, but we're too early */
|
||
|
snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
|
||
|
pci_name(pci_dev));
|
||
|
efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
|
||
|
if (!efx->workqueue) {
|
||
|
rc = -ENOMEM;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
efx_fini_struct(efx);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
void efx_fini_struct(struct efx_nic *efx)
|
||
|
{
|
||
|
#ifdef CONFIG_RFS_ACCEL
|
||
|
kfree(efx->rps_hash_table);
|
||
|
#endif
|
||
|
|
||
|
efx_fini_channels(efx);
|
||
|
|
||
|
kfree(efx->vpd_sn);
|
||
|
|
||
|
if (efx->workqueue) {
|
||
|
destroy_workqueue(efx->workqueue);
|
||
|
efx->workqueue = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* This configures the PCI device to enable I/O and DMA. */
|
||
|
int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
|
||
|
unsigned int mem_map_size)
|
||
|
{
|
||
|
struct pci_dev *pci_dev = efx->pci_dev;
|
||
|
int rc;
|
||
|
|
||
|
efx->mem_bar = UINT_MAX;
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar);
|
||
|
|
||
|
rc = pci_enable_device(pci_dev);
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"failed to enable PCI device\n");
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
pci_set_master(pci_dev);
|
||
|
|
||
|
rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"could not find a suitable DMA mask\n");
|
||
|
goto fail2;
|
||
|
}
|
||
|
netif_dbg(efx, probe, efx->net_dev,
|
||
|
"using DMA mask %llx\n", (unsigned long long)dma_mask);
|
||
|
|
||
|
efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
|
||
|
if (!efx->membase_phys) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"ERROR: No BAR%d mapping from the BIOS. "
|
||
|
"Try pci=realloc on the kernel command line\n", bar);
|
||
|
rc = -ENODEV;
|
||
|
goto fail3;
|
||
|
}
|
||
|
|
||
|
rc = pci_request_region(pci_dev, bar, "sfc");
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"request for memory BAR[%d] failed\n", bar);
|
||
|
rc = -EIO;
|
||
|
goto fail3;
|
||
|
}
|
||
|
efx->mem_bar = bar;
|
||
|
efx->membase = ioremap(efx->membase_phys, mem_map_size);
|
||
|
if (!efx->membase) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"could not map memory BAR[%d] at %llx+%x\n", bar,
|
||
|
(unsigned long long)efx->membase_phys, mem_map_size);
|
||
|
rc = -ENOMEM;
|
||
|
goto fail4;
|
||
|
}
|
||
|
netif_dbg(efx, probe, efx->net_dev,
|
||
|
"memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
|
||
|
(unsigned long long)efx->membase_phys, mem_map_size,
|
||
|
efx->membase);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail4:
|
||
|
pci_release_region(efx->pci_dev, bar);
|
||
|
fail3:
|
||
|
efx->membase_phys = 0;
|
||
|
fail2:
|
||
|
pci_disable_device(efx->pci_dev);
|
||
|
fail1:
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
void efx_fini_io(struct efx_nic *efx)
|
||
|
{
|
||
|
netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
|
||
|
|
||
|
if (efx->membase) {
|
||
|
iounmap(efx->membase);
|
||
|
efx->membase = NULL;
|
||
|
}
|
||
|
|
||
|
if (efx->membase_phys) {
|
||
|
pci_release_region(efx->pci_dev, efx->mem_bar);
|
||
|
efx->membase_phys = 0;
|
||
|
efx->mem_bar = UINT_MAX;
|
||
|
}
|
||
|
|
||
|
/* Don't disable bus-mastering if VFs are assigned */
|
||
|
if (!pci_vfs_assigned(efx->pci_dev))
|
||
|
pci_disable_device(efx->pci_dev);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SFC_MCDI_LOGGING
|
||
|
static ssize_t mcdi_logging_show(struct device *dev,
|
||
|
struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct efx_nic *efx = dev_get_drvdata(dev);
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
|
||
|
return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
|
||
|
}
|
||
|
|
||
|
static ssize_t mcdi_logging_store(struct device *dev,
|
||
|
struct device_attribute *attr,
|
||
|
const char *buf, size_t count)
|
||
|
{
|
||
|
struct efx_nic *efx = dev_get_drvdata(dev);
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
bool enable = count > 0 && *buf != '0';
|
||
|
|
||
|
mcdi->logging_enabled = enable;
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static DEVICE_ATTR_RW(mcdi_logging);
|
||
|
|
||
|
void efx_init_mcdi_logging(struct efx_nic *efx)
|
||
|
{
|
||
|
int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
|
||
|
|
||
|
if (rc) {
|
||
|
netif_warn(efx, drv, efx->net_dev,
|
||
|
"failed to init net dev attributes\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void efx_fini_mcdi_logging(struct efx_nic *efx)
|
||
|
{
|
||
|
device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* A PCI error affecting this device was detected.
|
||
|
* At this point MMIO and DMA may be disabled.
|
||
|
* Stop the software path and request a slot reset.
|
||
|
*/
|
||
|
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
|
||
|
pci_channel_state_t state)
|
||
|
{
|
||
|
pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
|
||
|
struct efx_nic *efx = pci_get_drvdata(pdev);
|
||
|
|
||
|
if (state == pci_channel_io_perm_failure)
|
||
|
return PCI_ERS_RESULT_DISCONNECT;
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
if (efx->state != STATE_DISABLED) {
|
||
|
efx->state = STATE_RECOVERY;
|
||
|
efx->reset_pending = 0;
|
||
|
|
||
|
efx_device_detach_sync(efx);
|
||
|
|
||
|
efx_stop_all(efx);
|
||
|
efx_disable_interrupts(efx);
|
||
|
|
||
|
status = PCI_ERS_RESULT_NEED_RESET;
|
||
|
} else {
|
||
|
/* If the interface is disabled we don't want to do anything
|
||
|
* with it.
|
||
|
*/
|
||
|
status = PCI_ERS_RESULT_RECOVERED;
|
||
|
}
|
||
|
|
||
|
rtnl_unlock();
|
||
|
|
||
|
pci_disable_device(pdev);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* Fake a successful reset, which will be performed later in efx_io_resume. */
|
||
|
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct efx_nic *efx = pci_get_drvdata(pdev);
|
||
|
pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
|
||
|
|
||
|
if (pci_enable_device(pdev)) {
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"Cannot re-enable PCI device after reset.\n");
|
||
|
status = PCI_ERS_RESULT_DISCONNECT;
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* Perform the actual reset and resume I/O operations. */
|
||
|
static void efx_io_resume(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct efx_nic *efx = pci_get_drvdata(pdev);
|
||
|
int rc;
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
if (efx->state == STATE_DISABLED)
|
||
|
goto out;
|
||
|
|
||
|
rc = efx_reset(efx, RESET_TYPE_ALL);
|
||
|
if (rc) {
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"efx_reset failed after PCI error (%d)\n", rc);
|
||
|
} else {
|
||
|
efx->state = STATE_READY;
|
||
|
netif_dbg(efx, hw, efx->net_dev,
|
||
|
"Done resetting and resuming IO after PCI error.\n");
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
rtnl_unlock();
|
||
|
}
|
||
|
|
||
|
/* For simplicity and reliability, we always require a slot reset and try to
|
||
|
* reset the hardware when a pci error affecting the device is detected.
|
||
|
* We leave both the link_reset and mmio_enabled callback unimplemented:
|
||
|
* with our request for slot reset the mmio_enabled callback will never be
|
||
|
* called, and the link_reset callback is not used by AER or EEH mechanisms.
|
||
|
*/
|
||
|
const struct pci_error_handlers efx_err_handlers = {
|
||
|
.error_detected = efx_io_error_detected,
|
||
|
.slot_reset = efx_io_slot_reset,
|
||
|
.resume = efx_io_resume,
|
||
|
};
|
||
|
|
||
|
/* Determine whether the NIC will be able to handle TX offloads for a given
|
||
|
* encapsulated packet.
|
||
|
*/
|
||
|
static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
|
||
|
{
|
||
|
struct gre_base_hdr *greh;
|
||
|
__be16 dst_port;
|
||
|
u8 ipproto;
|
||
|
|
||
|
/* Does the NIC support encap offloads?
|
||
|
* If not, we should never get here, because we shouldn't have
|
||
|
* advertised encap offload feature flags in the first place.
|
||
|
*/
|
||
|
if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
|
||
|
return false;
|
||
|
|
||
|
/* Determine encapsulation protocol in use */
|
||
|
switch (skb->protocol) {
|
||
|
case htons(ETH_P_IP):
|
||
|
ipproto = ip_hdr(skb)->protocol;
|
||
|
break;
|
||
|
case htons(ETH_P_IPV6):
|
||
|
/* If there are extension headers, this will cause us to
|
||
|
* think we can't offload something that we maybe could have.
|
||
|
*/
|
||
|
ipproto = ipv6_hdr(skb)->nexthdr;
|
||
|
break;
|
||
|
default:
|
||
|
/* Not IP, so can't offload it */
|
||
|
return false;
|
||
|
}
|
||
|
switch (ipproto) {
|
||
|
case IPPROTO_GRE:
|
||
|
/* We support NVGRE but not IP over GRE or random gretaps.
|
||
|
* Specifically, the NIC will accept GRE as encapsulated if
|
||
|
* the inner protocol is Ethernet, but only handle it
|
||
|
* correctly if the GRE header is 8 bytes long. Moreover,
|
||
|
* it will not update the Checksum or Sequence Number fields
|
||
|
* if they are present. (The Routing Present flag,
|
||
|
* GRE_ROUTING, cannot be set else the header would be more
|
||
|
* than 8 bytes long; so we don't have to worry about it.)
|
||
|
*/
|
||
|
if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
|
||
|
return false;
|
||
|
if (ntohs(skb->inner_protocol) != ETH_P_TEB)
|
||
|
return false;
|
||
|
if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
|
||
|
return false;
|
||
|
greh = (struct gre_base_hdr *)skb_transport_header(skb);
|
||
|
return !(greh->flags & (GRE_CSUM | GRE_SEQ));
|
||
|
case IPPROTO_UDP:
|
||
|
/* If the port is registered for a UDP tunnel, we assume the
|
||
|
* packet is for that tunnel, and the NIC will handle it as
|
||
|
* such. If not, the NIC won't know what to do with it.
|
||
|
*/
|
||
|
dst_port = udp_hdr(skb)->dest;
|
||
|
return efx->type->udp_tnl_has_port(efx, dst_port);
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev,
|
||
|
netdev_features_t features)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(dev);
|
||
|
|
||
|
if (skb->encapsulation) {
|
||
|
if (features & NETIF_F_GSO_MASK)
|
||
|
/* Hardware can only do TSO with at most 208 bytes
|
||
|
* of headers.
|
||
|
*/
|
||
|
if (skb_inner_transport_offset(skb) >
|
||
|
EFX_TSO2_MAX_HDRLEN)
|
||
|
features &= ~(NETIF_F_GSO_MASK);
|
||
|
if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
|
||
|
if (!efx_can_encap_offloads(efx, skb))
|
||
|
features &= ~(NETIF_F_GSO_MASK |
|
||
|
NETIF_F_CSUM_MASK);
|
||
|
}
|
||
|
return features;
|
||
|
}
|
||
|
|
||
|
int efx_get_phys_port_id(struct net_device *net_dev,
|
||
|
struct netdev_phys_item_id *ppid)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
|
||
|
if (efx->type->get_phys_port_id)
|
||
|
return efx->type->get_phys_port_id(efx, ppid);
|
||
|
else
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
|
||
|
if (snprintf(name, len, "p%u", efx->port_num) >= len)
|
||
|
return -EINVAL;
|
||
|
return 0;
|
||
|
}
|