linux/linux-5.18.11/drivers/net/ethernet/marvell/mvpp2/mvpp2_cls.c

1743 lines
49 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* RSS and Classifier helpers for Marvell PPv2 Network Controller
*
* Copyright (C) 2014 Marvell
*
* Marcin Wojtas <mw@semihalf.com>
*/
#include "mvpp2.h"
#include "mvpp2_cls.h"
#include "mvpp2_prs.h"
#define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask) \
{ \
.flow_type = _type, \
.flow_id = _id, \
.supported_hash_opts = _opts, \
.prs_ri = { \
.ri = _ri, \
.ri_mask = _ri_mask \
} \
}
static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = {
/* TCP over IPv4 flows, Not fragmented, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
MVPP22_CLS_HEK_IP4_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
MVPP22_CLS_HEK_IP4_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
MVPP22_CLS_HEK_IP4_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
/* TCP over IPv4 flows, Not fragmented, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
/* TCP over IPv4 flows, fragmented, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP4_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP4_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP4_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
/* TCP over IPv4 flows, fragmented, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
/* UDP over IPv4 flows, Not fragmented, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
MVPP22_CLS_HEK_IP4_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
MVPP22_CLS_HEK_IP4_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
MVPP22_CLS_HEK_IP4_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
/* UDP over IPv4 flows, Not fragmented, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
/* UDP over IPv4 flows, fragmented, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP4_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP4_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP4_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
/* UDP over IPv4 flows, fragmented, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
/* TCP over IPv6 flows, not fragmented, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
MVPP22_CLS_HEK_IP6_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
MVPP22_CLS_HEK_IP6_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
/* TCP over IPv6 flows, not fragmented, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
/* TCP over IPv6 flows, fragmented, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP6_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP6_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
/* TCP over IPv6 flows, fragmented, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_IP_MASK),
/* UDP over IPv6 flows, not fragmented, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
MVPP22_CLS_HEK_IP6_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
MVPP22_CLS_HEK_IP6_5T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
/* UDP over IPv6 flows, not fragmented, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
/* UDP over IPv6 flows, fragmented, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP6_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
MVPP22_CLS_HEK_IP6_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
/* UDP over IPv6 flows, fragmented, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_IP_MASK),
/* IPv4 flows, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
MVPP22_CLS_HEK_IP4_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4,
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
MVPP22_CLS_HEK_IP4_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT,
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
MVPP22_CLS_HEK_IP4_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER,
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
/* IPv4 flows, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4,
MVPP2_PRS_RI_L3_PROTO_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OPT,
MVPP2_PRS_RI_L3_PROTO_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP4_OTHER,
MVPP2_PRS_RI_L3_PROTO_MASK),
/* IPv6 flows, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
MVPP22_CLS_HEK_IP6_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
MVPP22_CLS_HEK_IP6_2T,
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
/* IPv6 flows, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_L3_PROTO_MASK),
MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_L3_PROTO_MASK),
/* Non IP flow, no vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG,
0,
MVPP2_PRS_RI_VLAN_NONE,
MVPP2_PRS_RI_VLAN_MASK),
/* Non IP flow, with vlan tag */
MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG,
MVPP22_CLS_HEK_OPT_VLAN,
0, 0),
};
u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index)
{
mvpp2_write(priv, MVPP2_CTRS_IDX, index);
return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR);
}
void mvpp2_cls_flow_read(struct mvpp2 *priv, int index,
struct mvpp2_cls_flow_entry *fe)
{
fe->index = index;
mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index);
fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG);
fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG);
fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG);
}
/* Update classification flow table registers */
static void mvpp2_cls_flow_write(struct mvpp2 *priv,
struct mvpp2_cls_flow_entry *fe)
{
mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
}
u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index)
{
mvpp2_write(priv, MVPP2_CTRS_IDX, index);
return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR);
}
void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way,
struct mvpp2_cls_lookup_entry *le)
{
u32 val;
val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid;
mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
le->way = way;
le->lkpid = lkpid;
le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG);
}
/* Update classification lookup table register */
static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
struct mvpp2_cls_lookup_entry *le)
{
u32 val;
val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
}
/* Operations on flow entry */
static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe)
{
return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
}
static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe,
int num_of_fields)
{
fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields);
}
static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe,
int field_index)
{
return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) &
MVPP2_CLS_FLOW_TBL2_FLD_MASK;
}
static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe,
int field_index, int field_id)
{
fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index,
MVPP2_CLS_FLOW_TBL2_FLD_MASK);
fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id);
}
static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe,
int engine)
{
fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK);
fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine);
}
int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe)
{
return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) &
MVPP2_CLS_FLOW_TBL0_ENG_MASK;
}
static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe,
bool from_packet)
{
if (from_packet)
fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
else
fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
}
static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe,
bool is_last)
{
fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST;
fe->data[0] |= !!is_last;
}
static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio)
{
fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK);
fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio);
}
static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe,
u32 port)
{
fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
}
static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe,
u32 port)
{
fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
}
static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe,
u8 lu_type)
{
fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK);
fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type);
}
/* Initialize the parser entry for the given flow */
static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv,
const struct mvpp2_cls_flow *flow)
{
mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri,
flow->prs_ri.ri_mask);
}
/* Initialize the Lookup Id table entry for the given flow */
static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv,
const struct mvpp2_cls_flow *flow)
{
struct mvpp2_cls_lookup_entry le;
le.way = 0;
le.lkpid = flow->flow_id;
/* The default RxQ for this port is set in the C2 lookup */
le.data = 0;
/* We point on the first lookup in the sequence for the flow, that is
* the C2 lookup.
*/
le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id));
/* CLS is always enabled, RSS is enabled/disabled in C2 lookup */
le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
mvpp2_cls_lookup_write(priv, &le);
}
static void mvpp2_cls_c2_write(struct mvpp2 *priv,
struct mvpp2_cls_c2_entry *c2)
{
u32 val;
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index);
val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
if (c2->valid)
val &= ~MVPP22_CLS_C2_TCAM_INV_BIT;
else
val |= MVPP22_CLS_C2_TCAM_INV_BIT;
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val);
mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act);
mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]);
mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]);
mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]);
mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]);
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]);
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]);
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]);
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]);
/* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]);
}
void mvpp2_cls_c2_read(struct mvpp2 *priv, int index,
struct mvpp2_cls_c2_entry *c2)
{
u32 val;
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index);
c2->index = index;
c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0);
c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1);
c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2);
c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3);
c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4);
c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT);
c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0);
c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1);
c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2);
c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3);
val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT);
}
static int mvpp2_cls_ethtool_flow_to_type(int flow_type)
{
switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
case ETHER_FLOW:
return MVPP22_FLOW_ETHERNET;
case TCP_V4_FLOW:
return MVPP22_FLOW_TCP4;
case TCP_V6_FLOW:
return MVPP22_FLOW_TCP6;
case UDP_V4_FLOW:
return MVPP22_FLOW_UDP4;
case UDP_V6_FLOW:
return MVPP22_FLOW_UDP6;
case IPV4_FLOW:
return MVPP22_FLOW_IP4;
case IPV6_FLOW:
return MVPP22_FLOW_IP6;
default:
return -EOPNOTSUPP;
}
}
static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc)
{
return MVPP22_CLS_C2_RFS_LOC(port->id, loc);
}
/* Initialize the flow table entries for the given flow */
static void mvpp2_cls_flow_init(struct mvpp2 *priv,
const struct mvpp2_cls_flow *flow)
{
struct mvpp2_cls_flow_entry fe;
int i, pri = 0;
/* Assign default values to all entries in the flow */
for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id);
i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) {
memset(&fe, 0, sizeof(fe));
fe.index = i;
mvpp2_cls_flow_pri_set(&fe, pri++);
if (i == MVPP2_CLS_FLT_LAST(flow->flow_id))
mvpp2_cls_flow_last_set(&fe, 1);
mvpp2_cls_flow_write(priv, &fe);
}
/* RSS config C2 lookup */
mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id),
&fe);
mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2);
mvpp2_cls_flow_port_id_sel(&fe, true);
mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL);
/* Add all ports */
for (i = 0; i < MVPP2_MAX_PORTS; i++)
mvpp2_cls_flow_port_add(&fe, BIT(i));
mvpp2_cls_flow_write(priv, &fe);
/* C3Hx lookups */
for (i = 0; i < MVPP2_MAX_PORTS; i++) {
mvpp2_cls_flow_read(priv,
MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id),
&fe);
/* Set a default engine. Will be overwritten when setting the
* real HEK parameters
*/
mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA);
mvpp2_cls_flow_port_id_sel(&fe, true);
mvpp2_cls_flow_port_add(&fe, BIT(i));
mvpp2_cls_flow_write(priv, &fe);
}
}
/* Adds a field to the Header Extracted Key generation parameters*/
static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe,
u32 field_id)
{
int nb_fields = mvpp2_cls_flow_hek_num_get(fe);
if (nb_fields == MVPP2_FLOW_N_FIELDS)
return -EINVAL;
mvpp2_cls_flow_hek_set(fe, nb_fields, field_id);
mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1);
return 0;
}
static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe,
unsigned long hash_opts)
{
u32 field_id;
int i;
/* Clear old fields */
mvpp2_cls_flow_hek_num_set(fe, 0);
fe->data[2] = 0;
for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
switch (BIT(i)) {
case MVPP22_CLS_HEK_OPT_MAC_DA:
field_id = MVPP22_CLS_FIELD_MAC_DA;
break;
case MVPP22_CLS_HEK_OPT_VLAN:
field_id = MVPP22_CLS_FIELD_VLAN;
break;
case MVPP22_CLS_HEK_OPT_VLAN_PRI:
field_id = MVPP22_CLS_FIELD_VLAN_PRI;
break;
case MVPP22_CLS_HEK_OPT_IP4SA:
field_id = MVPP22_CLS_FIELD_IP4SA;
break;
case MVPP22_CLS_HEK_OPT_IP4DA:
field_id = MVPP22_CLS_FIELD_IP4DA;
break;
case MVPP22_CLS_HEK_OPT_IP6SA:
field_id = MVPP22_CLS_FIELD_IP6SA;
break;
case MVPP22_CLS_HEK_OPT_IP6DA:
field_id = MVPP22_CLS_FIELD_IP6DA;
break;
case MVPP22_CLS_HEK_OPT_L4SIP:
field_id = MVPP22_CLS_FIELD_L4SIP;
break;
case MVPP22_CLS_HEK_OPT_L4DIP:
field_id = MVPP22_CLS_FIELD_L4DIP;
break;
default:
return -EINVAL;
}
if (mvpp2_flow_add_hek_field(fe, field_id))
return -EINVAL;
}
return 0;
}
/* Returns the size, in bits, of the corresponding HEK field */
static int mvpp2_cls_hek_field_size(u32 field)
{
switch (field) {
case MVPP22_CLS_HEK_OPT_MAC_DA:
return 48;
case MVPP22_CLS_HEK_OPT_VLAN:
return 12;
case MVPP22_CLS_HEK_OPT_VLAN_PRI:
return 3;
case MVPP22_CLS_HEK_OPT_IP4SA:
case MVPP22_CLS_HEK_OPT_IP4DA:
return 32;
case MVPP22_CLS_HEK_OPT_IP6SA:
case MVPP22_CLS_HEK_OPT_IP6DA:
return 128;
case MVPP22_CLS_HEK_OPT_L4SIP:
case MVPP22_CLS_HEK_OPT_L4DIP:
return 16;
default:
return -1;
}
}
const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow)
{
if (flow >= MVPP2_N_PRS_FLOWS)
return NULL;
return &cls_flows[flow];
}
/* Set the hash generation options for the given traffic flow.
* One traffic flow (in the ethtool sense) has multiple classification flows,
* to handle specific cases such as fragmentation, or the presence of a
* VLAN / DSA Tag.
*
* Each of these individual flows has different constraints, for example we
* can't hash fragmented packets on L4 data (else we would risk having packet
* re-ordering), so each classification flows masks the options with their
* supported ones.
*
*/
static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type,
u16 requested_opts)
{
const struct mvpp2_cls_flow *flow;
struct mvpp2_cls_flow_entry fe;
int i, engine, flow_index;
u16 hash_opts;
for_each_cls_flow_id_with_type(i, flow_type) {
flow = mvpp2_cls_flow_get(i);
if (!flow)
return -EINVAL;
flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
mvpp2_cls_flow_read(port->priv, flow_index, &fe);
hash_opts = flow->supported_hash_opts & requested_opts;
/* Use C3HB engine to access L4 infos. This adds L4 infos to the
* hash parameters
*/
if (hash_opts & MVPP22_CLS_HEK_L4_OPTS)
engine = MVPP22_CLS_ENGINE_C3HB;
else
engine = MVPP22_CLS_ENGINE_C3HA;
if (mvpp2_flow_set_hek_fields(&fe, hash_opts))
return -EINVAL;
mvpp2_cls_flow_eng_set(&fe, engine);
mvpp2_cls_flow_write(port->priv, &fe);
}
return 0;
}
u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe)
{
u16 hash_opts = 0;
int n_fields, i, field;
n_fields = mvpp2_cls_flow_hek_num_get(fe);
for (i = 0; i < n_fields; i++) {
field = mvpp2_cls_flow_hek_get(fe, i);
switch (field) {
case MVPP22_CLS_FIELD_MAC_DA:
hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
break;
case MVPP22_CLS_FIELD_VLAN:
hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
break;
case MVPP22_CLS_FIELD_VLAN_PRI:
hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
break;
case MVPP22_CLS_FIELD_L3_PROTO:
hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
break;
case MVPP22_CLS_FIELD_IP4SA:
hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA;
break;
case MVPP22_CLS_FIELD_IP4DA:
hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA;
break;
case MVPP22_CLS_FIELD_IP6SA:
hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA;
break;
case MVPP22_CLS_FIELD_IP6DA:
hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA;
break;
case MVPP22_CLS_FIELD_L4SIP:
hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
break;
case MVPP22_CLS_FIELD_L4DIP:
hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
break;
default:
break;
}
}
return hash_opts;
}
/* Returns the hash opts for this flow. There are several classifier flows
* for one traffic flow, this returns an aggregation of all configurations.
*/
static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type)
{
const struct mvpp2_cls_flow *flow;
struct mvpp2_cls_flow_entry fe;
int i, flow_index;
u16 hash_opts = 0;
for_each_cls_flow_id_with_type(i, flow_type) {
flow = mvpp2_cls_flow_get(i);
if (!flow)
return 0;
flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
mvpp2_cls_flow_read(port->priv, flow_index, &fe);
hash_opts |= mvpp2_flow_get_hek_fields(&fe);
}
return hash_opts;
}
static void mvpp2_cls_port_init_flows(struct mvpp2 *priv)
{
const struct mvpp2_cls_flow *flow;
int i;
for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) {
flow = mvpp2_cls_flow_get(i);
if (!flow)
break;
mvpp2_cls_flow_prs_init(priv, flow);
mvpp2_cls_flow_lkp_init(priv, flow);
mvpp2_cls_flow_init(priv, flow);
}
}
static void mvpp2_port_c2_cls_init(struct mvpp2_port *port)
{
struct mvpp2_cls_c2_entry c2;
u8 qh, ql, pmap;
memset(&c2, 0, sizeof(c2));
c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id);
pmap = BIT(port->id);
c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
/* Match on Lookup Type */
c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL);
/* Update RSS status after matching this entry */
c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
/* Mark packet as "forwarded to software", needed for RSS */
c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
/* Configure the default rx queue : Update Queue Low and Queue High, but
* don't lock, since the rx queue selection might be overridden by RSS
*/
c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) |
MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD);
qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
MVPP22_CLS_C2_ATTR0_QLOW(ql);
c2.valid = true;
mvpp2_cls_c2_write(port->priv, &c2);
}
/* Classifier default initialization */
void mvpp2_cls_init(struct mvpp2 *priv)
{
struct mvpp2_cls_lookup_entry le;
struct mvpp2_cls_flow_entry fe;
struct mvpp2_cls_c2_entry c2;
int index;
/* Enable classifier */
mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
/* Clear classifier flow table */
memset(&fe.data, 0, sizeof(fe.data));
for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
fe.index = index;
mvpp2_cls_flow_write(priv, &fe);
}
/* Clear classifier lookup table */
le.data = 0;
for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
le.lkpid = index;
le.way = 0;
mvpp2_cls_lookup_write(priv, &le);
le.way = 1;
mvpp2_cls_lookup_write(priv, &le);
}
/* Clear C2 TCAM engine table */
memset(&c2, 0, sizeof(c2));
c2.valid = false;
for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) {
c2.index = index;
mvpp2_cls_c2_write(priv, &c2);
}
/* Disable the FIFO stages in C2 engine, which are only used in BIST
* mode
*/
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL,
MVPP22_CLS_C2_TCAM_BYPASS_FIFO);
mvpp2_cls_port_init_flows(priv);
}
void mvpp2_cls_port_config(struct mvpp2_port *port)
{
struct mvpp2_cls_lookup_entry le;
u32 val;
/* Set way for the port */
val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
/* Pick the entry to be accessed in lookup ID decoding table
* according to the way and lkpid.
*/
le.lkpid = port->id;
le.way = 0;
le.data = 0;
/* Set initial CPU queue for receiving packets */
le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
le.data |= port->first_rxq;
/* Disable classification engines */
le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
/* Update lookup ID table entry */
mvpp2_cls_lookup_write(port->priv, &le);
mvpp2_port_c2_cls_init(port);
}
u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index)
{
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index);
return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR);
}
static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx)
{
struct mvpp2_cls_c2_entry c2;
u8 qh, ql;
mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
/* The RxQ number is used to select the RSS table. It that case, we set
* it to be the ctx number.
*/
qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
MVPP22_CLS_C2_ATTR0_QLOW(ql);
c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
mvpp2_cls_c2_write(port->priv, &c2);
}
static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port)
{
struct mvpp2_cls_c2_entry c2;
u8 qh, ql;
mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
/* Reset the default destination RxQ to the port's first rx queue. */
qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
MVPP22_CLS_C2_ATTR0_QLOW(ql);
c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN;
mvpp2_cls_c2_write(port->priv, &c2);
}
static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx)
{
return port->rss_ctx[port_rss_ctx];
}
int mvpp22_port_rss_enable(struct mvpp2_port *port)
{
if (mvpp22_rss_ctx(port, 0) < 0)
return -EINVAL;
mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0));
return 0;
}
int mvpp22_port_rss_disable(struct mvpp2_port *port)
{
if (mvpp22_rss_ctx(port, 0) < 0)
return -EINVAL;
mvpp2_rss_port_c2_disable(port);
return 0;
}
static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry)
{
struct mvpp2_cls_c2_entry c2;
mvpp2_cls_c2_read(port->priv, entry, &c2);
/* Clear the port map so that the entry doesn't match anymore */
c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id)));
mvpp2_cls_c2_write(port->priv, &c2);
}
/* Set CPU queue number for oversize packets */
void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
{
u32 val;
mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
(port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
val &= ~MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
}
static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port,
struct mvpp2_rfs_rule *rule)
{
struct flow_action_entry *act;
struct mvpp2_cls_c2_entry c2;
u8 qh, ql, pmap;
int index, ctx;
if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
return -EOPNOTSUPP;
memset(&c2, 0, sizeof(c2));
index = mvpp2_cls_c2_port_flow_index(port, rule->loc);
if (index < 0)
return -EINVAL;
c2.index = index;
act = &rule->flow->action.entries[0];
rule->c2_index = c2.index;
c2.tcam[3] = (rule->c2_tcam & 0xffff) |
((rule->c2_tcam_mask & 0xffff) << 16);
c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) |
(((rule->c2_tcam_mask >> 16) & 0xffff) << 16);
c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) |
(((rule->c2_tcam_mask >> 32) & 0xffff) << 16);
c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) |
(((rule->c2_tcam_mask >> 48) & 0xffff) << 16);
pmap = BIT(port->id);
c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
/* Match on Lookup Type */
c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc);
if (act->id == FLOW_ACTION_DROP) {
c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK);
} else {
/* We want to keep the default color derived from the Header
* Parser drop entries, for VLAN and MAC filtering. This will
* assign a default color of Green or Red, and we want matches
* with a non-drop action to keep that color.
*/
c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK);
/* Update RSS status after matching this entry */
if (act->queue.ctx)
c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
/* Always lock the RSS_EN decision. We might have high prio
* rules steering to an RXQ, and a lower one steering to RSS,
* we don't want the low prio RSS rule overwriting this flag.
*/
c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
/* Mark packet as "forwarded to software", needed for RSS */
c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) |
MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK);
if (act->queue.ctx) {
/* Get the global ctx number */
ctx = mvpp22_rss_ctx(port, act->queue.ctx);
if (ctx < 0)
return -EINVAL;
qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
} else {
qh = ((act->queue.index + port->first_rxq) >> 3) &
MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
ql = (act->queue.index + port->first_rxq) &
MVPP22_CLS_C2_ATTR0_QLOW_MASK;
}
c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
MVPP22_CLS_C2_ATTR0_QLOW(ql);
}
c2.valid = true;
mvpp2_cls_c2_write(port->priv, &c2);
return 0;
}
static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port,
struct mvpp2_rfs_rule *rule)
{
return mvpp2_port_c2_tcam_rule_add(port, rule);
}
static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port,
struct mvpp2_rfs_rule *rule)
{
const struct mvpp2_cls_flow *flow;
struct mvpp2_cls_flow_entry fe;
int index, i;
for_each_cls_flow_id_containing_type(i, rule->flow_type) {
flow = mvpp2_cls_flow_get(i);
if (!flow)
return 0;
index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
mvpp2_cls_flow_read(port->priv, index, &fe);
mvpp2_cls_flow_port_remove(&fe, BIT(port->id));
mvpp2_cls_flow_write(port->priv, &fe);
}
if (rule->c2_index >= 0)
mvpp22_port_c2_lookup_disable(port, rule->c2_index);
return 0;
}
static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port,
struct mvpp2_rfs_rule *rule)
{
const struct mvpp2_cls_flow *flow;
struct mvpp2 *priv = port->priv;
struct mvpp2_cls_flow_entry fe;
int index, ret, i;
if (rule->engine != MVPP22_CLS_ENGINE_C2)
return -EOPNOTSUPP;
ret = mvpp2_port_c2_rfs_rule_insert(port, rule);
if (ret)
return ret;
for_each_cls_flow_id_containing_type(i, rule->flow_type) {
flow = mvpp2_cls_flow_get(i);
if (!flow)
return 0;
if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields)
continue;
index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
mvpp2_cls_flow_read(priv, index, &fe);
mvpp2_cls_flow_eng_set(&fe, rule->engine);
mvpp2_cls_flow_port_id_sel(&fe, true);
mvpp2_flow_set_hek_fields(&fe, rule->hek_fields);
mvpp2_cls_flow_lu_type_set(&fe, rule->loc);
mvpp2_cls_flow_port_add(&fe, 0xf);
mvpp2_cls_flow_write(priv, &fe);
}
return 0;
}
static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule)
{
struct flow_rule *flow = rule->flow;
int offs = 0;
/* The order of insertion in C2 tcam must match the order in which
* the fields are found in the header
*/
if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(flow, &match);
if (match.mask->vlan_id) {
rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN;
rule->c2_tcam |= ((u64)match.key->vlan_id) << offs;
rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs;
/* Don't update the offset yet */
}
if (match.mask->vlan_priority) {
rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
/* VLAN pri is always at offset 13 relative to the
* current offset
*/
rule->c2_tcam |= ((u64)match.key->vlan_priority) <<
(offs + 13);
rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) <<
(offs + 13);
}
if (match.mask->vlan_dei)
return -EOPNOTSUPP;
/* vlan id and prio always seem to take a full 16-bit slot in
* the Header Extracted Key.
*/
offs += 16;
}
if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(flow, &match);
if (match.mask->src) {
rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP;
rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs;
rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs;
offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP);
}
if (match.mask->dst) {
rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP;
rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs;
rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs;
offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP);
}
}
if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS)
return -EOPNOTSUPP;
return 0;
}
static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule)
{
struct flow_rule *flow = rule->flow;
struct flow_action_entry *act;
if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
return -EOPNOTSUPP;
act = &flow->action.entries[0];
if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP)
return -EOPNOTSUPP;
/* When both an RSS context and an queue index are set, the index
* is considered as an offset to be added to the indirection table
* entries. We don't support this, so reject this rule.
*/
if (act->queue.ctx && act->queue.index)
return -EOPNOTSUPP;
/* For now, only use the C2 engine which has a HEK size limited to 64
* bits for TCAM matching.
*/
rule->engine = MVPP22_CLS_ENGINE_C2;
if (mvpp2_cls_c2_build_match(rule))
return -EINVAL;
return 0;
}
int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port,
struct ethtool_rxnfc *rxnfc)
{
struct mvpp2_ethtool_fs *efs;
if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
return -EINVAL;
efs = port->rfs_rules[rxnfc->fs.location];
if (!efs)
return -ENOENT;
memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc));
return 0;
}
int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port,
struct ethtool_rxnfc *info)
{
struct ethtool_rx_flow_spec_input input = {};
struct ethtool_rx_flow_rule *ethtool_rule;
struct mvpp2_ethtool_fs *efs, *old_efs;
int ret = 0;
if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
return -EINVAL;
efs = kzalloc(sizeof(*efs), GFP_KERNEL);
if (!efs)
return -ENOMEM;
input.fs = &info->fs;
/* We need to manually set the rss_ctx, since this info isn't present
* in info->fs
*/
if (info->fs.flow_type & FLOW_RSS)
input.rss_ctx = info->rss_context;
ethtool_rule = ethtool_rx_flow_rule_create(&input);
if (IS_ERR(ethtool_rule)) {
ret = PTR_ERR(ethtool_rule);
goto clean_rule;
}
efs->rule.flow = ethtool_rule->rule;
efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type);
if (efs->rule.flow_type < 0) {
ret = efs->rule.flow_type;
goto clean_rule;
}
ret = mvpp2_cls_rfs_parse_rule(&efs->rule);
if (ret)
goto clean_eth_rule;
efs->rule.loc = info->fs.location;
/* Replace an already existing rule */
if (port->rfs_rules[efs->rule.loc]) {
old_efs = port->rfs_rules[efs->rule.loc];
ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule);
if (ret)
goto clean_eth_rule;
kfree(old_efs);
port->n_rfs_rules--;
}
ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule);
if (ret)
goto clean_eth_rule;
ethtool_rx_flow_rule_destroy(ethtool_rule);
efs->rule.flow = NULL;
memcpy(&efs->rxnfc, info, sizeof(*info));
port->rfs_rules[efs->rule.loc] = efs;
port->n_rfs_rules++;
return ret;
clean_eth_rule:
ethtool_rx_flow_rule_destroy(ethtool_rule);
clean_rule:
kfree(efs);
return ret;
}
int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port,
struct ethtool_rxnfc *info)
{
struct mvpp2_ethtool_fs *efs;
int ret;
if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
return -EINVAL;
efs = port->rfs_rules[info->fs.location];
if (!efs)
return -EINVAL;
/* Remove the rule from the engines. */
ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule);
if (ret)
return ret;
port->n_rfs_rules--;
port->rfs_rules[info->fs.location] = NULL;
kfree(efs);
return 0;
}
static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq)
{
int nrxqs, cpu, cpus = num_possible_cpus();
/* Number of RXQs per CPU */
nrxqs = port->nrxqs / cpus;
/* CPU that will handle this rx queue */
cpu = rxq / nrxqs;
if (!cpu_online(cpu))
return port->first_rxq;
/* Indirection to better distribute the paquets on the CPUs when
* configuring the RSS queues.
*/
return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs);
}
static void mvpp22_rss_fill_table(struct mvpp2_port *port,
struct mvpp2_rss_table *table,
u32 rss_ctx)
{
struct mvpp2 *priv = port->priv;
int i;
for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) |
MVPP22_RSS_INDEX_TABLE_ENTRY(i);
mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY,
mvpp22_rxfh_indir(port, table->indir[i]));
}
}
static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx)
{
struct mvpp2 *priv = port->priv;
u32 ctx;
/* Find the first free RSS table */
for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) {
if (!priv->rss_tables[ctx])
break;
}
if (ctx == MVPP22_N_RSS_TABLES)
return -EINVAL;
priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]),
GFP_KERNEL);
if (!priv->rss_tables[ctx])
return -ENOMEM;
*rss_ctx = ctx;
/* Set the table width: replace the whole classifier Rx queue number
* with the ones configured in RSS table entries.
*/
mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx));
mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx));
mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx));
return 0;
}
int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 *port_ctx)
{
u32 rss_ctx;
int ret, i;
ret = mvpp22_rss_context_create(port, &rss_ctx);
if (ret)
return ret;
/* Find the first available context number in the port, starting from 1.
* Context 0 on each port is reserved for the default context.
*/
for (i = 1; i < MVPP22_N_RSS_TABLES; i++) {
if (port->rss_ctx[i] < 0)
break;
}
if (i == MVPP22_N_RSS_TABLES)
return -EINVAL;
port->rss_ctx[i] = rss_ctx;
*port_ctx = i;
return 0;
}
static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv,
int rss_ctx)
{
if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
return NULL;
return priv->rss_tables[rss_ctx];
}
int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx)
{
struct mvpp2 *priv = port->priv;
struct ethtool_rxnfc *rxnfc;
int i, rss_ctx, ret;
rss_ctx = mvpp22_rss_ctx(port, port_ctx);
if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
return -EINVAL;
/* Invalidate any active classification rule that use this context */
for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
if (!port->rfs_rules[i])
continue;
rxnfc = &port->rfs_rules[i]->rxnfc;
if (!(rxnfc->fs.flow_type & FLOW_RSS) ||
rxnfc->rss_context != port_ctx)
continue;
ret = mvpp2_ethtool_cls_rule_del(port, rxnfc);
if (ret) {
netdev_warn(port->dev,
"couldn't remove classification rule %d associated to this context",
rxnfc->fs.location);
}
}
kfree(priv->rss_tables[rss_ctx]);
priv->rss_tables[rss_ctx] = NULL;
port->rss_ctx[port_ctx] = -1;
return 0;
}
int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx,
const u32 *indir)
{
int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
rss_ctx);
if (!rss_table)
return -EINVAL;
memcpy(rss_table->indir, indir,
MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
mvpp22_rss_fill_table(port, rss_table, rss_ctx);
return 0;
}
int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx,
u32 *indir)
{
int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
rss_ctx);
if (!rss_table)
return -EINVAL;
memcpy(indir, rss_table->indir,
MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
return 0;
}
int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info)
{
u16 hash_opts = 0;
u32 flow_type;
flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
switch (flow_type) {
case MVPP22_FLOW_TCP4:
case MVPP22_FLOW_UDP4:
case MVPP22_FLOW_TCP6:
case MVPP22_FLOW_UDP6:
if (info->data & RXH_L4_B_0_1)
hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
if (info->data & RXH_L4_B_2_3)
hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
fallthrough;
case MVPP22_FLOW_IP4:
case MVPP22_FLOW_IP6:
if (info->data & RXH_L2DA)
hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
if (info->data & RXH_VLAN)
hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
if (info->data & RXH_L3_PROTO)
hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
if (info->data & RXH_IP_SRC)
hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA |
MVPP22_CLS_HEK_OPT_IP6SA);
if (info->data & RXH_IP_DST)
hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA |
MVPP22_CLS_HEK_OPT_IP6DA);
break;
default: return -EOPNOTSUPP;
}
return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts);
}
int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info)
{
unsigned long hash_opts;
u32 flow_type;
int i;
flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type);
info->data = 0;
for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
switch (BIT(i)) {
case MVPP22_CLS_HEK_OPT_MAC_DA:
info->data |= RXH_L2DA;
break;
case MVPP22_CLS_HEK_OPT_VLAN:
info->data |= RXH_VLAN;
break;
case MVPP22_CLS_HEK_OPT_L3_PROTO:
info->data |= RXH_L3_PROTO;
break;
case MVPP22_CLS_HEK_OPT_IP4SA:
case MVPP22_CLS_HEK_OPT_IP6SA:
info->data |= RXH_IP_SRC;
break;
case MVPP22_CLS_HEK_OPT_IP4DA:
case MVPP22_CLS_HEK_OPT_IP6DA:
info->data |= RXH_IP_DST;
break;
case MVPP22_CLS_HEK_OPT_L4SIP:
info->data |= RXH_L4_B_0_1;
break;
case MVPP22_CLS_HEK_OPT_L4DIP:
info->data |= RXH_L4_B_2_3;
break;
default:
return -EINVAL;
}
}
return 0;
}
int mvpp22_port_rss_init(struct mvpp2_port *port)
{
struct mvpp2_rss_table *table;
u32 context = 0;
int i, ret;
for (i = 0; i < MVPP22_N_RSS_TABLES; i++)
port->rss_ctx[i] = -1;
ret = mvpp22_rss_context_create(port, &context);
if (ret)
return ret;
table = mvpp22_rss_table_get(port->priv, context);
if (!table)
return -EINVAL;
port->rss_ctx[0] = context;
/* Configure the first table to evenly distribute the packets across
* real Rx Queues. The table entries map a hash to a port Rx Queue.
*/
for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++)
table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs);
mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0));
/* Configure default flows */
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T);
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T);
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T);
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T);
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T);
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T);
return 0;
}