754 lines
21 KiB
C
754 lines
21 KiB
C
|
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
|
||
|
/* Google virtual Ethernet (gve) driver
|
||
|
*
|
||
|
* Copyright (C) 2015-2021 Google, Inc.
|
||
|
*/
|
||
|
|
||
|
#include "gve.h"
|
||
|
#include "gve_adminq.h"
|
||
|
#include "gve_utils.h"
|
||
|
#include <linux/ip.h>
|
||
|
#include <linux/tcp.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/skbuff.h>
|
||
|
|
||
|
static inline void gve_tx_put_doorbell(struct gve_priv *priv,
|
||
|
struct gve_queue_resources *q_resources,
|
||
|
u32 val)
|
||
|
{
|
||
|
iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
|
||
|
}
|
||
|
|
||
|
/* gvnic can only transmit from a Registered Segment.
|
||
|
* We copy skb payloads into the registered segment before writing Tx
|
||
|
* descriptors and ringing the Tx doorbell.
|
||
|
*
|
||
|
* gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
|
||
|
* free allocations in the order they were allocated.
|
||
|
*/
|
||
|
|
||
|
static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
|
||
|
{
|
||
|
fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
|
||
|
PAGE_KERNEL);
|
||
|
if (unlikely(!fifo->base)) {
|
||
|
netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
|
||
|
fifo->qpl->id);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
|
||
|
atomic_set(&fifo->available, fifo->size);
|
||
|
fifo->head = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
|
||
|
{
|
||
|
WARN(atomic_read(&fifo->available) != fifo->size,
|
||
|
"Releasing non-empty fifo");
|
||
|
|
||
|
vunmap(fifo->base);
|
||
|
}
|
||
|
|
||
|
static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
|
||
|
size_t bytes)
|
||
|
{
|
||
|
return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
|
||
|
}
|
||
|
|
||
|
static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
|
||
|
{
|
||
|
return (atomic_read(&fifo->available) <= bytes) ? false : true;
|
||
|
}
|
||
|
|
||
|
/* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
|
||
|
* @fifo: FIFO to allocate from
|
||
|
* @bytes: Allocation size
|
||
|
* @iov: Scatter-gather elements to fill with allocation fragment base/len
|
||
|
*
|
||
|
* Returns number of valid elements in iov[] or negative on error.
|
||
|
*
|
||
|
* Allocations from a given FIFO must be externally synchronized but concurrent
|
||
|
* allocation and frees are allowed.
|
||
|
*/
|
||
|
static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
|
||
|
struct gve_tx_iovec iov[2])
|
||
|
{
|
||
|
size_t overflow, padding;
|
||
|
u32 aligned_head;
|
||
|
int nfrags = 0;
|
||
|
|
||
|
if (!bytes)
|
||
|
return 0;
|
||
|
|
||
|
/* This check happens before we know how much padding is needed to
|
||
|
* align to a cacheline boundary for the payload, but that is fine,
|
||
|
* because the FIFO head always start aligned, and the FIFO's boundaries
|
||
|
* are aligned, so if there is space for the data, there is space for
|
||
|
* the padding to the next alignment.
|
||
|
*/
|
||
|
WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
|
||
|
"Reached %s when there's not enough space in the fifo", __func__);
|
||
|
|
||
|
nfrags++;
|
||
|
|
||
|
iov[0].iov_offset = fifo->head;
|
||
|
iov[0].iov_len = bytes;
|
||
|
fifo->head += bytes;
|
||
|
|
||
|
if (fifo->head > fifo->size) {
|
||
|
/* If the allocation did not fit in the tail fragment of the
|
||
|
* FIFO, also use the head fragment.
|
||
|
*/
|
||
|
nfrags++;
|
||
|
overflow = fifo->head - fifo->size;
|
||
|
iov[0].iov_len -= overflow;
|
||
|
iov[1].iov_offset = 0; /* Start of fifo*/
|
||
|
iov[1].iov_len = overflow;
|
||
|
|
||
|
fifo->head = overflow;
|
||
|
}
|
||
|
|
||
|
/* Re-align to a cacheline boundary */
|
||
|
aligned_head = L1_CACHE_ALIGN(fifo->head);
|
||
|
padding = aligned_head - fifo->head;
|
||
|
iov[nfrags - 1].iov_padding = padding;
|
||
|
atomic_sub(bytes + padding, &fifo->available);
|
||
|
fifo->head = aligned_head;
|
||
|
|
||
|
if (fifo->head == fifo->size)
|
||
|
fifo->head = 0;
|
||
|
|
||
|
return nfrags;
|
||
|
}
|
||
|
|
||
|
/* gve_tx_free_fifo - Return space to Tx FIFO
|
||
|
* @fifo: FIFO to return fragments to
|
||
|
* @bytes: Bytes to free
|
||
|
*/
|
||
|
static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
|
||
|
{
|
||
|
atomic_add(bytes, &fifo->available);
|
||
|
}
|
||
|
|
||
|
static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
|
||
|
u32 to_do, bool try_to_wake);
|
||
|
|
||
|
static void gve_tx_free_ring(struct gve_priv *priv, int idx)
|
||
|
{
|
||
|
struct gve_tx_ring *tx = &priv->tx[idx];
|
||
|
struct device *hdev = &priv->pdev->dev;
|
||
|
size_t bytes;
|
||
|
u32 slots;
|
||
|
|
||
|
gve_tx_remove_from_block(priv, idx);
|
||
|
slots = tx->mask + 1;
|
||
|
gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false);
|
||
|
netdev_tx_reset_queue(tx->netdev_txq);
|
||
|
|
||
|
dma_free_coherent(hdev, sizeof(*tx->q_resources),
|
||
|
tx->q_resources, tx->q_resources_bus);
|
||
|
tx->q_resources = NULL;
|
||
|
|
||
|
if (!tx->raw_addressing) {
|
||
|
gve_tx_fifo_release(priv, &tx->tx_fifo);
|
||
|
gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
|
||
|
tx->tx_fifo.qpl = NULL;
|
||
|
}
|
||
|
|
||
|
bytes = sizeof(*tx->desc) * slots;
|
||
|
dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
|
||
|
tx->desc = NULL;
|
||
|
|
||
|
vfree(tx->info);
|
||
|
tx->info = NULL;
|
||
|
|
||
|
netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
|
||
|
}
|
||
|
|
||
|
static int gve_tx_alloc_ring(struct gve_priv *priv, int idx)
|
||
|
{
|
||
|
struct gve_tx_ring *tx = &priv->tx[idx];
|
||
|
struct device *hdev = &priv->pdev->dev;
|
||
|
u32 slots = priv->tx_desc_cnt;
|
||
|
size_t bytes;
|
||
|
|
||
|
/* Make sure everything is zeroed to start */
|
||
|
memset(tx, 0, sizeof(*tx));
|
||
|
spin_lock_init(&tx->clean_lock);
|
||
|
tx->q_num = idx;
|
||
|
|
||
|
tx->mask = slots - 1;
|
||
|
|
||
|
/* alloc metadata */
|
||
|
tx->info = vzalloc(sizeof(*tx->info) * slots);
|
||
|
if (!tx->info)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* alloc tx queue */
|
||
|
bytes = sizeof(*tx->desc) * slots;
|
||
|
tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
|
||
|
if (!tx->desc)
|
||
|
goto abort_with_info;
|
||
|
|
||
|
tx->raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT;
|
||
|
tx->dev = &priv->pdev->dev;
|
||
|
if (!tx->raw_addressing) {
|
||
|
tx->tx_fifo.qpl = gve_assign_tx_qpl(priv);
|
||
|
if (!tx->tx_fifo.qpl)
|
||
|
goto abort_with_desc;
|
||
|
/* map Tx FIFO */
|
||
|
if (gve_tx_fifo_init(priv, &tx->tx_fifo))
|
||
|
goto abort_with_qpl;
|
||
|
}
|
||
|
|
||
|
tx->q_resources =
|
||
|
dma_alloc_coherent(hdev,
|
||
|
sizeof(*tx->q_resources),
|
||
|
&tx->q_resources_bus,
|
||
|
GFP_KERNEL);
|
||
|
if (!tx->q_resources)
|
||
|
goto abort_with_fifo;
|
||
|
|
||
|
netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx,
|
||
|
(unsigned long)tx->bus);
|
||
|
tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
|
||
|
gve_tx_add_to_block(priv, idx);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
abort_with_fifo:
|
||
|
if (!tx->raw_addressing)
|
||
|
gve_tx_fifo_release(priv, &tx->tx_fifo);
|
||
|
abort_with_qpl:
|
||
|
if (!tx->raw_addressing)
|
||
|
gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
|
||
|
abort_with_desc:
|
||
|
dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
|
||
|
tx->desc = NULL;
|
||
|
abort_with_info:
|
||
|
vfree(tx->info);
|
||
|
tx->info = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
int gve_tx_alloc_rings(struct gve_priv *priv)
|
||
|
{
|
||
|
int err = 0;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < priv->tx_cfg.num_queues; i++) {
|
||
|
err = gve_tx_alloc_ring(priv, i);
|
||
|
if (err) {
|
||
|
netif_err(priv, drv, priv->dev,
|
||
|
"Failed to alloc tx ring=%d: err=%d\n",
|
||
|
i, err);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
/* Unallocate if there was an error */
|
||
|
if (err) {
|
||
|
int j;
|
||
|
|
||
|
for (j = 0; j < i; j++)
|
||
|
gve_tx_free_ring(priv, j);
|
||
|
}
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
void gve_tx_free_rings_gqi(struct gve_priv *priv)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < priv->tx_cfg.num_queues; i++)
|
||
|
gve_tx_free_ring(priv, i);
|
||
|
}
|
||
|
|
||
|
/* gve_tx_avail - Calculates the number of slots available in the ring
|
||
|
* @tx: tx ring to check
|
||
|
*
|
||
|
* Returns the number of slots available
|
||
|
*
|
||
|
* The capacity of the queue is mask + 1. We don't need to reserve an entry.
|
||
|
**/
|
||
|
static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
|
||
|
{
|
||
|
return tx->mask + 1 - (tx->req - tx->done);
|
||
|
}
|
||
|
|
||
|
static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
int pad_bytes, align_hdr_pad;
|
||
|
int bytes;
|
||
|
int hlen;
|
||
|
|
||
|
hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) +
|
||
|
tcp_hdrlen(skb) : skb_headlen(skb);
|
||
|
|
||
|
pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
|
||
|
hlen);
|
||
|
/* We need to take into account the header alignment padding. */
|
||
|
align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
|
||
|
bytes = align_hdr_pad + pad_bytes + skb->len;
|
||
|
|
||
|
return bytes;
|
||
|
}
|
||
|
|
||
|
/* The most descriptors we could need is MAX_SKB_FRAGS + 4 :
|
||
|
* 1 for each skb frag
|
||
|
* 1 for the skb linear portion
|
||
|
* 1 for when tcp hdr needs to be in separate descriptor
|
||
|
* 1 if the payload wraps to the beginning of the FIFO
|
||
|
* 1 for metadata descriptor
|
||
|
*/
|
||
|
#define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 4)
|
||
|
static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
|
||
|
{
|
||
|
if (info->skb) {
|
||
|
dma_unmap_single(dev, dma_unmap_addr(info, dma),
|
||
|
dma_unmap_len(info, len),
|
||
|
DMA_TO_DEVICE);
|
||
|
dma_unmap_len_set(info, len, 0);
|
||
|
} else {
|
||
|
dma_unmap_page(dev, dma_unmap_addr(info, dma),
|
||
|
dma_unmap_len(info, len),
|
||
|
DMA_TO_DEVICE);
|
||
|
dma_unmap_len_set(info, len, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Check if sufficient resources (descriptor ring space, FIFO space) are
|
||
|
* available to transmit the given number of bytes.
|
||
|
*/
|
||
|
static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
|
||
|
{
|
||
|
bool can_alloc = true;
|
||
|
|
||
|
if (!tx->raw_addressing)
|
||
|
can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
|
||
|
|
||
|
return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
|
||
|
}
|
||
|
|
||
|
static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED);
|
||
|
|
||
|
/* Stops the queue if the skb cannot be transmitted. */
|
||
|
static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
int bytes_required = 0;
|
||
|
u32 nic_done;
|
||
|
u32 to_do;
|
||
|
int ret;
|
||
|
|
||
|
if (!tx->raw_addressing)
|
||
|
bytes_required = gve_skb_fifo_bytes_required(tx, skb);
|
||
|
|
||
|
if (likely(gve_can_tx(tx, bytes_required)))
|
||
|
return 0;
|
||
|
|
||
|
ret = -EBUSY;
|
||
|
spin_lock(&tx->clean_lock);
|
||
|
nic_done = gve_tx_load_event_counter(priv, tx);
|
||
|
to_do = nic_done - tx->done;
|
||
|
|
||
|
/* Only try to clean if there is hope for TX */
|
||
|
if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) {
|
||
|
if (to_do > 0) {
|
||
|
to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT);
|
||
|
gve_clean_tx_done(priv, tx, to_do, false);
|
||
|
}
|
||
|
if (likely(gve_can_tx(tx, bytes_required)))
|
||
|
ret = 0;
|
||
|
}
|
||
|
if (ret) {
|
||
|
/* No space, so stop the queue */
|
||
|
tx->stop_queue++;
|
||
|
netif_tx_stop_queue(tx->netdev_txq);
|
||
|
}
|
||
|
spin_unlock(&tx->clean_lock);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
|
||
|
struct sk_buff *skb, bool is_gso,
|
||
|
int l4_hdr_offset, u32 desc_cnt,
|
||
|
u16 hlen, u64 addr)
|
||
|
{
|
||
|
/* l4_hdr_offset and csum_offset are in units of 16-bit words */
|
||
|
if (is_gso) {
|
||
|
pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
|
||
|
pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
|
||
|
pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
|
||
|
} else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
|
||
|
pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
|
||
|
pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
|
||
|
pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
|
||
|
} else {
|
||
|
pkt_desc->pkt.type_flags = GVE_TXD_STD;
|
||
|
pkt_desc->pkt.l4_csum_offset = 0;
|
||
|
pkt_desc->pkt.l4_hdr_offset = 0;
|
||
|
}
|
||
|
pkt_desc->pkt.desc_cnt = desc_cnt;
|
||
|
pkt_desc->pkt.len = cpu_to_be16(skb->len);
|
||
|
pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
|
||
|
pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
|
||
|
}
|
||
|
|
||
|
static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt));
|
||
|
|
||
|
mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH;
|
||
|
mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT |
|
||
|
GVE_MTD_PATH_HASH_L4;
|
||
|
mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash);
|
||
|
mtd_desc->mtd.reserved0 = 0;
|
||
|
mtd_desc->mtd.reserved1 = 0;
|
||
|
}
|
||
|
|
||
|
static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
|
||
|
struct sk_buff *skb, bool is_gso,
|
||
|
u16 len, u64 addr)
|
||
|
{
|
||
|
seg_desc->seg.type_flags = GVE_TXD_SEG;
|
||
|
if (is_gso) {
|
||
|
if (skb_is_gso_v6(skb))
|
||
|
seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
|
||
|
seg_desc->seg.l3_offset = skb_network_offset(skb) >> 1;
|
||
|
seg_desc->seg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
|
||
|
}
|
||
|
seg_desc->seg.seg_len = cpu_to_be16(len);
|
||
|
seg_desc->seg.seg_addr = cpu_to_be64(addr);
|
||
|
}
|
||
|
|
||
|
static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
|
||
|
u64 iov_offset, u64 iov_len)
|
||
|
{
|
||
|
u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
|
||
|
u64 first_page = iov_offset / PAGE_SIZE;
|
||
|
u64 page;
|
||
|
|
||
|
for (page = first_page; page <= last_page; page++)
|
||
|
dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
|
||
|
{
|
||
|
int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
|
||
|
union gve_tx_desc *pkt_desc, *seg_desc;
|
||
|
struct gve_tx_buffer_state *info;
|
||
|
int mtd_desc_nr = !!skb->l4_hash;
|
||
|
bool is_gso = skb_is_gso(skb);
|
||
|
u32 idx = tx->req & tx->mask;
|
||
|
int payload_iov = 2;
|
||
|
int copy_offset;
|
||
|
u32 next_idx;
|
||
|
int i;
|
||
|
|
||
|
info = &tx->info[idx];
|
||
|
pkt_desc = &tx->desc[idx];
|
||
|
|
||
|
l4_hdr_offset = skb_checksum_start_offset(skb);
|
||
|
/* If the skb is gso, then we want the tcp header in the first segment
|
||
|
* otherwise we want the linear portion of the skb (which will contain
|
||
|
* the checksum because skb->csum_start and skb->csum_offset are given
|
||
|
* relative to skb->head) in the first segment.
|
||
|
*/
|
||
|
hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
|
||
|
skb_headlen(skb);
|
||
|
|
||
|
info->skb = skb;
|
||
|
/* We don't want to split the header, so if necessary, pad to the end
|
||
|
* of the fifo and then put the header at the beginning of the fifo.
|
||
|
*/
|
||
|
pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
|
||
|
hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
|
||
|
&info->iov[0]);
|
||
|
WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
|
||
|
payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
|
||
|
&info->iov[payload_iov]);
|
||
|
|
||
|
gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
|
||
|
1 + mtd_desc_nr + payload_nfrags, hlen,
|
||
|
info->iov[hdr_nfrags - 1].iov_offset);
|
||
|
|
||
|
skb_copy_bits(skb, 0,
|
||
|
tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
|
||
|
hlen);
|
||
|
gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
|
||
|
info->iov[hdr_nfrags - 1].iov_offset,
|
||
|
info->iov[hdr_nfrags - 1].iov_len);
|
||
|
copy_offset = hlen;
|
||
|
|
||
|
if (mtd_desc_nr) {
|
||
|
next_idx = (tx->req + 1) & tx->mask;
|
||
|
gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb);
|
||
|
}
|
||
|
|
||
|
for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
|
||
|
next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask;
|
||
|
seg_desc = &tx->desc[next_idx];
|
||
|
|
||
|
gve_tx_fill_seg_desc(seg_desc, skb, is_gso,
|
||
|
info->iov[i].iov_len,
|
||
|
info->iov[i].iov_offset);
|
||
|
|
||
|
skb_copy_bits(skb, copy_offset,
|
||
|
tx->tx_fifo.base + info->iov[i].iov_offset,
|
||
|
info->iov[i].iov_len);
|
||
|
gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
|
||
|
info->iov[i].iov_offset,
|
||
|
info->iov[i].iov_len);
|
||
|
copy_offset += info->iov[i].iov_len;
|
||
|
}
|
||
|
|
||
|
return 1 + mtd_desc_nr + payload_nfrags;
|
||
|
}
|
||
|
|
||
|
static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
const struct skb_shared_info *shinfo = skb_shinfo(skb);
|
||
|
int hlen, num_descriptors, l4_hdr_offset;
|
||
|
union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc;
|
||
|
struct gve_tx_buffer_state *info;
|
||
|
int mtd_desc_nr = !!skb->l4_hash;
|
||
|
bool is_gso = skb_is_gso(skb);
|
||
|
u32 idx = tx->req & tx->mask;
|
||
|
u64 addr;
|
||
|
u32 len;
|
||
|
int i;
|
||
|
|
||
|
info = &tx->info[idx];
|
||
|
pkt_desc = &tx->desc[idx];
|
||
|
|
||
|
l4_hdr_offset = skb_checksum_start_offset(skb);
|
||
|
/* If the skb is gso, then we want only up to the tcp header in the first segment
|
||
|
* to efficiently replicate on each segment otherwise we want the linear portion
|
||
|
* of the skb (which will contain the checksum because skb->csum_start and
|
||
|
* skb->csum_offset are given relative to skb->head) in the first segment.
|
||
|
*/
|
||
|
hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
|
||
|
len = skb_headlen(skb);
|
||
|
|
||
|
info->skb = skb;
|
||
|
|
||
|
addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(tx->dev, addr))) {
|
||
|
tx->dma_mapping_error++;
|
||
|
goto drop;
|
||
|
}
|
||
|
dma_unmap_len_set(info, len, len);
|
||
|
dma_unmap_addr_set(info, dma, addr);
|
||
|
|
||
|
num_descriptors = 1 + shinfo->nr_frags;
|
||
|
if (hlen < len)
|
||
|
num_descriptors++;
|
||
|
if (mtd_desc_nr)
|
||
|
num_descriptors++;
|
||
|
|
||
|
gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
|
||
|
num_descriptors, hlen, addr);
|
||
|
|
||
|
if (mtd_desc_nr) {
|
||
|
idx = (idx + 1) & tx->mask;
|
||
|
mtd_desc = &tx->desc[idx];
|
||
|
gve_tx_fill_mtd_desc(mtd_desc, skb);
|
||
|
}
|
||
|
|
||
|
if (hlen < len) {
|
||
|
/* For gso the rest of the linear portion of the skb needs to
|
||
|
* be in its own descriptor.
|
||
|
*/
|
||
|
len -= hlen;
|
||
|
addr += hlen;
|
||
|
idx = (idx + 1) & tx->mask;
|
||
|
seg_desc = &tx->desc[idx];
|
||
|
gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < shinfo->nr_frags; i++) {
|
||
|
const skb_frag_t *frag = &shinfo->frags[i];
|
||
|
|
||
|
idx = (idx + 1) & tx->mask;
|
||
|
seg_desc = &tx->desc[idx];
|
||
|
len = skb_frag_size(frag);
|
||
|
addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(tx->dev, addr))) {
|
||
|
tx->dma_mapping_error++;
|
||
|
goto unmap_drop;
|
||
|
}
|
||
|
tx->info[idx].skb = NULL;
|
||
|
dma_unmap_len_set(&tx->info[idx], len, len);
|
||
|
dma_unmap_addr_set(&tx->info[idx], dma, addr);
|
||
|
|
||
|
gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr);
|
||
|
}
|
||
|
|
||
|
return num_descriptors;
|
||
|
|
||
|
unmap_drop:
|
||
|
i += num_descriptors - shinfo->nr_frags;
|
||
|
while (i--) {
|
||
|
/* Skip metadata descriptor, if set */
|
||
|
if (i == 1 && mtd_desc_nr == 1)
|
||
|
continue;
|
||
|
idx--;
|
||
|
gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
|
||
|
}
|
||
|
drop:
|
||
|
tx->dropped_pkt++;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
|
||
|
{
|
||
|
struct gve_priv *priv = netdev_priv(dev);
|
||
|
struct gve_tx_ring *tx;
|
||
|
int nsegs;
|
||
|
|
||
|
WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
|
||
|
"skb queue index out of range");
|
||
|
tx = &priv->tx[skb_get_queue_mapping(skb)];
|
||
|
if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) {
|
||
|
/* We need to ring the txq doorbell -- we have stopped the Tx
|
||
|
* queue for want of resources, but prior calls to gve_tx()
|
||
|
* may have added descriptors without ringing the doorbell.
|
||
|
*/
|
||
|
|
||
|
gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
|
||
|
return NETDEV_TX_BUSY;
|
||
|
}
|
||
|
if (tx->raw_addressing)
|
||
|
nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
|
||
|
else
|
||
|
nsegs = gve_tx_add_skb_copy(priv, tx, skb);
|
||
|
|
||
|
/* If the packet is getting sent, we need to update the skb */
|
||
|
if (nsegs) {
|
||
|
netdev_tx_sent_queue(tx->netdev_txq, skb->len);
|
||
|
skb_tx_timestamp(skb);
|
||
|
tx->req += nsegs;
|
||
|
} else {
|
||
|
dev_kfree_skb_any(skb);
|
||
|
}
|
||
|
|
||
|
if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
|
||
|
return NETDEV_TX_OK;
|
||
|
|
||
|
/* Give packets to NIC. Even if this packet failed to send the doorbell
|
||
|
* might need to be rung because of xmit_more.
|
||
|
*/
|
||
|
gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
#define GVE_TX_START_THRESH PAGE_SIZE
|
||
|
|
||
|
static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
|
||
|
u32 to_do, bool try_to_wake)
|
||
|
{
|
||
|
struct gve_tx_buffer_state *info;
|
||
|
u64 pkts = 0, bytes = 0;
|
||
|
size_t space_freed = 0;
|
||
|
struct sk_buff *skb;
|
||
|
int i, j;
|
||
|
u32 idx;
|
||
|
|
||
|
for (j = 0; j < to_do; j++) {
|
||
|
idx = tx->done & tx->mask;
|
||
|
netif_info(priv, tx_done, priv->dev,
|
||
|
"[%d] %s: idx=%d (req=%u done=%u)\n",
|
||
|
tx->q_num, __func__, idx, tx->req, tx->done);
|
||
|
info = &tx->info[idx];
|
||
|
skb = info->skb;
|
||
|
|
||
|
/* Unmap the buffer */
|
||
|
if (tx->raw_addressing)
|
||
|
gve_tx_unmap_buf(tx->dev, info);
|
||
|
tx->done++;
|
||
|
/* Mark as free */
|
||
|
if (skb) {
|
||
|
info->skb = NULL;
|
||
|
bytes += skb->len;
|
||
|
pkts++;
|
||
|
dev_consume_skb_any(skb);
|
||
|
if (tx->raw_addressing)
|
||
|
continue;
|
||
|
/* FIFO free */
|
||
|
for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
|
||
|
space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
|
||
|
info->iov[i].iov_len = 0;
|
||
|
info->iov[i].iov_padding = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!tx->raw_addressing)
|
||
|
gve_tx_free_fifo(&tx->tx_fifo, space_freed);
|
||
|
u64_stats_update_begin(&tx->statss);
|
||
|
tx->bytes_done += bytes;
|
||
|
tx->pkt_done += pkts;
|
||
|
u64_stats_update_end(&tx->statss);
|
||
|
netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
|
||
|
|
||
|
/* start the queue if we've stopped it */
|
||
|
#ifndef CONFIG_BQL
|
||
|
/* Make sure that the doorbells are synced */
|
||
|
smp_mb();
|
||
|
#endif
|
||
|
if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
|
||
|
likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
|
||
|
tx->wake_queue++;
|
||
|
netif_tx_wake_queue(tx->netdev_txq);
|
||
|
}
|
||
|
|
||
|
return pkts;
|
||
|
}
|
||
|
|
||
|
u32 gve_tx_load_event_counter(struct gve_priv *priv,
|
||
|
struct gve_tx_ring *tx)
|
||
|
{
|
||
|
u32 counter_index = be32_to_cpu(tx->q_resources->counter_index);
|
||
|
__be32 counter = READ_ONCE(priv->counter_array[counter_index]);
|
||
|
|
||
|
return be32_to_cpu(counter);
|
||
|
}
|
||
|
|
||
|
bool gve_tx_poll(struct gve_notify_block *block, int budget)
|
||
|
{
|
||
|
struct gve_priv *priv = block->priv;
|
||
|
struct gve_tx_ring *tx = block->tx;
|
||
|
u32 nic_done;
|
||
|
u32 to_do;
|
||
|
|
||
|
/* If budget is 0, do all the work */
|
||
|
if (budget == 0)
|
||
|
budget = INT_MAX;
|
||
|
|
||
|
/* In TX path, it may try to clean completed pkts in order to xmit,
|
||
|
* to avoid cleaning conflict, use spin_lock(), it yields better
|
||
|
* concurrency between xmit/clean than netif's lock.
|
||
|
*/
|
||
|
spin_lock(&tx->clean_lock);
|
||
|
/* Find out how much work there is to be done */
|
||
|
nic_done = gve_tx_load_event_counter(priv, tx);
|
||
|
to_do = min_t(u32, (nic_done - tx->done), budget);
|
||
|
gve_clean_tx_done(priv, tx, to_do, true);
|
||
|
spin_unlock(&tx->clean_lock);
|
||
|
/* If we still have work we want to repoll */
|
||
|
return nic_done != tx->done;
|
||
|
}
|
||
|
|
||
|
bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx)
|
||
|
{
|
||
|
u32 nic_done = gve_tx_load_event_counter(priv, tx);
|
||
|
|
||
|
return nic_done != tx->done;
|
||
|
}
|