linux/linux-5.18.11/drivers/net/ethernet/broadcom/bnxt/bnxt_tc.c

2098 lines
59 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
/* Broadcom NetXtreme-C/E network driver.
*
* Copyright (c) 2017 Broadcom Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*/
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/if_vlan.h>
#include <net/flow_dissector.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_skbedit.h>
#include <net/tc_act/tc_mirred.h>
#include <net/tc_act/tc_vlan.h>
#include <net/tc_act/tc_pedit.h>
#include <net/tc_act/tc_tunnel_key.h>
#include <net/vxlan.h>
#include "bnxt_hsi.h"
#include "bnxt.h"
#include "bnxt_hwrm.h"
#include "bnxt_sriov.h"
#include "bnxt_tc.h"
#include "bnxt_vfr.h"
#define BNXT_FID_INVALID 0xffff
#define VLAN_TCI(vid, prio) ((vid) | ((prio) << VLAN_PRIO_SHIFT))
#define is_vlan_pcp_wildcarded(vlan_tci_mask) \
((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == 0x0000)
#define is_vlan_pcp_exactmatch(vlan_tci_mask) \
((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == VLAN_PRIO_MASK)
#define is_vlan_pcp_zero(vlan_tci) \
((ntohs(vlan_tci) & VLAN_PRIO_MASK) == 0x0000)
#define is_vid_exactmatch(vlan_tci_mask) \
((ntohs(vlan_tci_mask) & VLAN_VID_MASK) == VLAN_VID_MASK)
static bool is_wildcard(void *mask, int len);
static bool is_exactmatch(void *mask, int len);
/* Return the dst fid of the func for flow forwarding
* For PFs: src_fid is the fid of the PF
* For VF-reps: src_fid the fid of the VF
*/
static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev)
{
struct bnxt *bp;
/* check if dev belongs to the same switch */
if (!netdev_port_same_parent_id(pf_bp->dev, dev)) {
netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch\n",
dev->ifindex);
return BNXT_FID_INVALID;
}
/* Is dev a VF-rep? */
if (bnxt_dev_is_vf_rep(dev))
return bnxt_vf_rep_get_fid(dev);
bp = netdev_priv(dev);
return bp->pf.fw_fid;
}
static int bnxt_tc_parse_redir(struct bnxt *bp,
struct bnxt_tc_actions *actions,
const struct flow_action_entry *act)
{
struct net_device *dev = act->dev;
if (!dev) {
netdev_info(bp->dev, "no dev in mirred action\n");
return -EINVAL;
}
actions->flags |= BNXT_TC_ACTION_FLAG_FWD;
actions->dst_dev = dev;
return 0;
}
static int bnxt_tc_parse_vlan(struct bnxt *bp,
struct bnxt_tc_actions *actions,
const struct flow_action_entry *act)
{
switch (act->id) {
case FLOW_ACTION_VLAN_POP:
actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN;
break;
case FLOW_ACTION_VLAN_PUSH:
actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN;
actions->push_vlan_tci = htons(act->vlan.vid);
actions->push_vlan_tpid = act->vlan.proto;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int bnxt_tc_parse_tunnel_set(struct bnxt *bp,
struct bnxt_tc_actions *actions,
const struct flow_action_entry *act)
{
const struct ip_tunnel_info *tun_info = act->tunnel;
const struct ip_tunnel_key *tun_key = &tun_info->key;
if (ip_tunnel_info_af(tun_info) != AF_INET) {
netdev_info(bp->dev, "only IPv4 tunnel-encap is supported\n");
return -EOPNOTSUPP;
}
actions->tun_encap_key = *tun_key;
actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP;
return 0;
}
/* Key & Mask from the stack comes unaligned in multiple iterations of 4 bytes
* each(u32).
* This routine consolidates such multiple unaligned values into one
* field each for Key & Mask (for src and dst macs separately)
* For example,
* Mask/Key Offset Iteration
* ========== ====== =========
* dst mac 0xffffffff 0 1
* dst mac 0x0000ffff 4 2
*
* src mac 0xffff0000 4 1
* src mac 0xffffffff 8 2
*
* The above combination coming from the stack will be consolidated as
* Mask/Key
* ==============
* src mac: 0xffffffffffff
* dst mac: 0xffffffffffff
*/
static void bnxt_set_l2_key_mask(u32 part_key, u32 part_mask,
u8 *actual_key, u8 *actual_mask)
{
u32 key = get_unaligned((u32 *)actual_key);
u32 mask = get_unaligned((u32 *)actual_mask);
part_key &= part_mask;
part_key |= key & ~part_mask;
put_unaligned(mask | part_mask, (u32 *)actual_mask);
put_unaligned(part_key, (u32 *)actual_key);
}
static int
bnxt_fill_l2_rewrite_fields(struct bnxt_tc_actions *actions,
u16 *eth_addr, u16 *eth_addr_mask)
{
u16 *p;
int j;
if (unlikely(bnxt_eth_addr_key_mask_invalid(eth_addr, eth_addr_mask)))
return -EINVAL;
if (!is_wildcard(&eth_addr_mask[0], ETH_ALEN)) {
if (!is_exactmatch(&eth_addr_mask[0], ETH_ALEN))
return -EINVAL;
/* FW expects dmac to be in u16 array format */
p = eth_addr;
for (j = 0; j < 3; j++)
actions->l2_rewrite_dmac[j] = cpu_to_be16(*(p + j));
}
if (!is_wildcard(&eth_addr_mask[ETH_ALEN / 2], ETH_ALEN)) {
if (!is_exactmatch(&eth_addr_mask[ETH_ALEN / 2], ETH_ALEN))
return -EINVAL;
/* FW expects smac to be in u16 array format */
p = &eth_addr[ETH_ALEN / 2];
for (j = 0; j < 3; j++)
actions->l2_rewrite_smac[j] = cpu_to_be16(*(p + j));
}
return 0;
}
static int
bnxt_tc_parse_pedit(struct bnxt *bp, struct bnxt_tc_actions *actions,
struct flow_action_entry *act, int act_idx, u8 *eth_addr,
u8 *eth_addr_mask)
{
size_t offset_of_ip6_daddr = offsetof(struct ipv6hdr, daddr);
size_t offset_of_ip6_saddr = offsetof(struct ipv6hdr, saddr);
u32 mask, val, offset, idx;
u8 htype;
offset = act->mangle.offset;
htype = act->mangle.htype;
mask = ~act->mangle.mask;
val = act->mangle.val;
switch (htype) {
case FLOW_ACT_MANGLE_HDR_TYPE_ETH:
if (offset > PEDIT_OFFSET_SMAC_LAST_4_BYTES) {
netdev_err(bp->dev,
"%s: eth_hdr: Invalid pedit field\n",
__func__);
return -EINVAL;
}
actions->flags |= BNXT_TC_ACTION_FLAG_L2_REWRITE;
bnxt_set_l2_key_mask(val, mask, &eth_addr[offset],
&eth_addr_mask[offset]);
break;
case FLOW_ACT_MANGLE_HDR_TYPE_IP4:
actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE;
actions->nat.l3_is_ipv4 = true;
if (offset == offsetof(struct iphdr, saddr)) {
actions->nat.src_xlate = true;
actions->nat.l3.ipv4.saddr.s_addr = htonl(val);
} else if (offset == offsetof(struct iphdr, daddr)) {
actions->nat.src_xlate = false;
actions->nat.l3.ipv4.daddr.s_addr = htonl(val);
} else {
netdev_err(bp->dev,
"%s: IPv4_hdr: Invalid pedit field\n",
__func__);
return -EINVAL;
}
netdev_dbg(bp->dev, "nat.src_xlate = %d src IP: %pI4 dst ip : %pI4\n",
actions->nat.src_xlate, &actions->nat.l3.ipv4.saddr,
&actions->nat.l3.ipv4.daddr);
break;
case FLOW_ACT_MANGLE_HDR_TYPE_IP6:
actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE;
actions->nat.l3_is_ipv4 = false;
if (offset >= offsetof(struct ipv6hdr, saddr) &&
offset < offset_of_ip6_daddr) {
/* 16 byte IPv6 address comes in 4 iterations of
* 4byte chunks each
*/
actions->nat.src_xlate = true;
idx = (offset - offset_of_ip6_saddr) / 4;
/* First 4bytes will be copied to idx 0 and so on */
actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val);
} else if (offset >= offset_of_ip6_daddr &&
offset < offset_of_ip6_daddr + 16) {
actions->nat.src_xlate = false;
idx = (offset - offset_of_ip6_daddr) / 4;
actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val);
} else {
netdev_err(bp->dev,
"%s: IPv6_hdr: Invalid pedit field\n",
__func__);
return -EINVAL;
}
break;
case FLOW_ACT_MANGLE_HDR_TYPE_TCP:
case FLOW_ACT_MANGLE_HDR_TYPE_UDP:
/* HW does not support L4 rewrite alone without L3
* rewrite
*/
if (!(actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE)) {
netdev_err(bp->dev,
"Need to specify L3 rewrite as well\n");
return -EINVAL;
}
if (actions->nat.src_xlate)
actions->nat.l4.ports.sport = htons(val);
else
actions->nat.l4.ports.dport = htons(val);
netdev_dbg(bp->dev, "actions->nat.sport = %d dport = %d\n",
actions->nat.l4.ports.sport,
actions->nat.l4.ports.dport);
break;
default:
netdev_err(bp->dev, "%s: Unsupported pedit hdr type\n",
__func__);
return -EINVAL;
}
return 0;
}
static int bnxt_tc_parse_actions(struct bnxt *bp,
struct bnxt_tc_actions *actions,
struct flow_action *flow_action,
struct netlink_ext_ack *extack)
{
/* Used to store the L2 rewrite mask for dmac (6 bytes) followed by
* smac (6 bytes) if rewrite of both is specified, otherwise either
* dmac or smac
*/
u16 eth_addr_mask[ETH_ALEN] = { 0 };
/* Used to store the L2 rewrite key for dmac (6 bytes) followed by
* smac (6 bytes) if rewrite of both is specified, otherwise either
* dmac or smac
*/
u16 eth_addr[ETH_ALEN] = { 0 };
struct flow_action_entry *act;
int i, rc;
if (!flow_action_has_entries(flow_action)) {
netdev_info(bp->dev, "no actions\n");
return -EINVAL;
}
if (!flow_action_basic_hw_stats_check(flow_action, extack))
return -EOPNOTSUPP;
flow_action_for_each(i, act, flow_action) {
switch (act->id) {
case FLOW_ACTION_DROP:
actions->flags |= BNXT_TC_ACTION_FLAG_DROP;
return 0; /* don't bother with other actions */
case FLOW_ACTION_REDIRECT:
rc = bnxt_tc_parse_redir(bp, actions, act);
if (rc)
return rc;
break;
case FLOW_ACTION_VLAN_POP:
case FLOW_ACTION_VLAN_PUSH:
case FLOW_ACTION_VLAN_MANGLE:
rc = bnxt_tc_parse_vlan(bp, actions, act);
if (rc)
return rc;
break;
case FLOW_ACTION_TUNNEL_ENCAP:
rc = bnxt_tc_parse_tunnel_set(bp, actions, act);
if (rc)
return rc;
break;
case FLOW_ACTION_TUNNEL_DECAP:
actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_DECAP;
break;
/* Packet edit: L2 rewrite, NAT, NAPT */
case FLOW_ACTION_MANGLE:
rc = bnxt_tc_parse_pedit(bp, actions, act, i,
(u8 *)eth_addr,
(u8 *)eth_addr_mask);
if (rc)
return rc;
break;
default:
break;
}
}
if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) {
rc = bnxt_fill_l2_rewrite_fields(actions, eth_addr,
eth_addr_mask);
if (rc)
return rc;
}
if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) {
/* dst_fid is PF's fid */
actions->dst_fid = bp->pf.fw_fid;
} else {
/* find the FID from dst_dev */
actions->dst_fid =
bnxt_flow_get_dst_fid(bp, actions->dst_dev);
if (actions->dst_fid == BNXT_FID_INVALID)
return -EINVAL;
}
}
return 0;
}
static int bnxt_tc_parse_flow(struct bnxt *bp,
struct flow_cls_offload *tc_flow_cmd,
struct bnxt_tc_flow *flow)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(tc_flow_cmd);
struct flow_dissector *dissector = rule->match.dissector;
/* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */
if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 ||
(dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) {
netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x\n",
dissector->used_keys);
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
flow->l2_key.ether_type = match.key->n_proto;
flow->l2_mask.ether_type = match.mask->n_proto;
if (match.key->n_proto == htons(ETH_P_IP) ||
match.key->n_proto == htons(ETH_P_IPV6)) {
flow->l4_key.ip_proto = match.key->ip_proto;
flow->l4_mask.ip_proto = match.mask->ip_proto;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS;
ether_addr_copy(flow->l2_key.dmac, match.key->dst);
ether_addr_copy(flow->l2_mask.dmac, match.mask->dst);
ether_addr_copy(flow->l2_key.smac, match.key->src);
ether_addr_copy(flow->l2_mask.smac, match.mask->src);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
flow->l2_key.inner_vlan_tci =
cpu_to_be16(VLAN_TCI(match.key->vlan_id,
match.key->vlan_priority));
flow->l2_mask.inner_vlan_tci =
cpu_to_be16((VLAN_TCI(match.mask->vlan_id,
match.mask->vlan_priority)));
flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q);
flow->l2_mask.inner_vlan_tpid = htons(0xffff);
flow->l2_key.num_vlans = 1;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
struct flow_match_ipv4_addrs match;
flow_rule_match_ipv4_addrs(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS;
flow->l3_key.ipv4.daddr.s_addr = match.key->dst;
flow->l3_mask.ipv4.daddr.s_addr = match.mask->dst;
flow->l3_key.ipv4.saddr.s_addr = match.key->src;
flow->l3_mask.ipv4.saddr.s_addr = match.mask->src;
} else if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
struct flow_match_ipv6_addrs match;
flow_rule_match_ipv6_addrs(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS;
flow->l3_key.ipv6.daddr = match.key->dst;
flow->l3_mask.ipv6.daddr = match.mask->dst;
flow->l3_key.ipv6.saddr = match.key->src;
flow->l3_mask.ipv6.saddr = match.mask->src;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS;
flow->l4_key.ports.dport = match.key->dst;
flow->l4_mask.ports.dport = match.mask->dst;
flow->l4_key.ports.sport = match.key->src;
flow->l4_mask.ports.sport = match.mask->src;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP)) {
struct flow_match_icmp match;
flow_rule_match_icmp(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP;
flow->l4_key.icmp.type = match.key->type;
flow->l4_key.icmp.code = match.key->code;
flow->l4_mask.icmp.type = match.mask->type;
flow->l4_mask.icmp.code = match.mask->code;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
struct flow_match_ipv4_addrs match;
flow_rule_match_enc_ipv4_addrs(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS;
flow->tun_key.u.ipv4.dst = match.key->dst;
flow->tun_mask.u.ipv4.dst = match.mask->dst;
flow->tun_key.u.ipv4.src = match.key->src;
flow->tun_mask.u.ipv4.src = match.mask->src;
} else if (flow_rule_match_key(rule,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_match_enc_keyid match;
flow_rule_match_enc_keyid(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ID;
flow->tun_key.tun_id = key32_to_tunnel_id(match.key->keyid);
flow->tun_mask.tun_id = key32_to_tunnel_id(match.mask->keyid);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
struct flow_match_ports match;
flow_rule_match_enc_ports(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_PORTS;
flow->tun_key.tp_dst = match.key->dst;
flow->tun_mask.tp_dst = match.mask->dst;
flow->tun_key.tp_src = match.key->src;
flow->tun_mask.tp_src = match.mask->src;
}
return bnxt_tc_parse_actions(bp, &flow->actions, &rule->action,
tc_flow_cmd->common.extack);
}
static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
struct hwrm_cfa_flow_free_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_FLOW_FREE);
if (!rc) {
if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
req->ext_flow_handle = flow_node->ext_flow_handle;
else
req->flow_handle = flow_node->flow_handle;
rc = hwrm_req_send(bp, req);
}
if (rc)
netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
return rc;
}
static int ipv6_mask_len(struct in6_addr *mask)
{
int mask_len = 0, i;
for (i = 0; i < 4; i++)
mask_len += inet_mask_len(mask->s6_addr32[i]);
return mask_len;
}
static bool is_wildcard(void *mask, int len)
{
const u8 *p = mask;
int i;
for (i = 0; i < len; i++) {
if (p[i] != 0)
return false;
}
return true;
}
static bool is_exactmatch(void *mask, int len)
{
const u8 *p = mask;
int i;
for (i = 0; i < len; i++)
if (p[i] != 0xff)
return false;
return true;
}
static bool is_vlan_tci_allowed(__be16 vlan_tci_mask,
__be16 vlan_tci)
{
/* VLAN priority must be either exactly zero or fully wildcarded and
* VLAN id must be exact match.
*/
if (is_vid_exactmatch(vlan_tci_mask) &&
((is_vlan_pcp_exactmatch(vlan_tci_mask) &&
is_vlan_pcp_zero(vlan_tci)) ||
is_vlan_pcp_wildcarded(vlan_tci_mask)))
return true;
return false;
}
static bool bits_set(void *key, int len)
{
const u8 *p = key;
int i;
for (i = 0; i < len; i++)
if (p[i] != 0)
return true;
return false;
}
static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow,
__le16 ref_flow_handle,
__le32 tunnel_handle,
struct bnxt_tc_flow_node *flow_node)
{
struct bnxt_tc_actions *actions = &flow->actions;
struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask;
struct bnxt_tc_l3_key *l3_key = &flow->l3_key;
struct hwrm_cfa_flow_alloc_output *resp;
struct hwrm_cfa_flow_alloc_input *req;
u16 flow_flags = 0, action_flags = 0;
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_FLOW_ALLOC);
if (rc)
return rc;
req->src_fid = cpu_to_le16(flow->src_fid);
req->ref_flow_handle = ref_flow_handle;
if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) {
memcpy(req->l2_rewrite_dmac, actions->l2_rewrite_dmac,
ETH_ALEN);
memcpy(req->l2_rewrite_smac, actions->l2_rewrite_smac,
ETH_ALEN);
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
}
if (actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE) {
if (actions->nat.l3_is_ipv4) {
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_IPV4_ADDRESS;
if (actions->nat.src_xlate) {
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC;
/* L3 source rewrite */
req->nat_ip_address[0] =
actions->nat.l3.ipv4.saddr.s_addr;
/* L4 source port */
if (actions->nat.l4.ports.sport)
req->nat_port =
actions->nat.l4.ports.sport;
} else {
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST;
/* L3 destination rewrite */
req->nat_ip_address[0] =
actions->nat.l3.ipv4.daddr.s_addr;
/* L4 destination port */
if (actions->nat.l4.ports.dport)
req->nat_port =
actions->nat.l4.ports.dport;
}
netdev_dbg(bp->dev,
"req->nat_ip_address: %pI4 src_xlate: %d req->nat_port: %x\n",
req->nat_ip_address, actions->nat.src_xlate,
req->nat_port);
} else {
if (actions->nat.src_xlate) {
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC;
/* L3 source rewrite */
memcpy(req->nat_ip_address,
actions->nat.l3.ipv6.saddr.s6_addr32,
sizeof(req->nat_ip_address));
/* L4 source port */
if (actions->nat.l4.ports.sport)
req->nat_port =
actions->nat.l4.ports.sport;
} else {
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST;
/* L3 destination rewrite */
memcpy(req->nat_ip_address,
actions->nat.l3.ipv6.daddr.s6_addr32,
sizeof(req->nat_ip_address));
/* L4 destination port */
if (actions->nat.l4.ports.dport)
req->nat_port =
actions->nat.l4.ports.dport;
}
netdev_dbg(bp->dev,
"req->nat_ip_address: %pI6 src_xlate: %d req->nat_port: %x\n",
req->nat_ip_address, actions->nat.src_xlate,
req->nat_port);
}
}
if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP ||
actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) {
req->tunnel_handle = tunnel_handle;
flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_TUNNEL;
action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_TUNNEL;
}
req->ethertype = flow->l2_key.ether_type;
req->ip_proto = flow->l4_key.ip_proto;
if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) {
memcpy(req->dmac, flow->l2_key.dmac, ETH_ALEN);
memcpy(req->smac, flow->l2_key.smac, ETH_ALEN);
}
if (flow->l2_key.num_vlans > 0) {
flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE;
/* FW expects the inner_vlan_tci value to be set
* in outer_vlan_tci when num_vlans is 1 (which is
* always the case in TC.)
*/
req->outer_vlan_tci = flow->l2_key.inner_vlan_tci;
}
/* If all IP and L4 fields are wildcarded then this is an L2 flow */
if (is_wildcard(l3_mask, sizeof(*l3_mask)) &&
is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) {
flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2;
} else {
flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ?
CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 :
CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6;
if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) {
req->ip_dst[0] = l3_key->ipv4.daddr.s_addr;
req->ip_dst_mask_len =
inet_mask_len(l3_mask->ipv4.daddr.s_addr);
req->ip_src[0] = l3_key->ipv4.saddr.s_addr;
req->ip_src_mask_len =
inet_mask_len(l3_mask->ipv4.saddr.s_addr);
} else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) {
memcpy(req->ip_dst, l3_key->ipv6.daddr.s6_addr32,
sizeof(req->ip_dst));
req->ip_dst_mask_len =
ipv6_mask_len(&l3_mask->ipv6.daddr);
memcpy(req->ip_src, l3_key->ipv6.saddr.s6_addr32,
sizeof(req->ip_src));
req->ip_src_mask_len =
ipv6_mask_len(&l3_mask->ipv6.saddr);
}
}
if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) {
req->l4_src_port = flow->l4_key.ports.sport;
req->l4_src_port_mask = flow->l4_mask.ports.sport;
req->l4_dst_port = flow->l4_key.ports.dport;
req->l4_dst_port_mask = flow->l4_mask.ports.dport;
} else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) {
/* l4 ports serve as type/code when ip_proto is ICMP */
req->l4_src_port = htons(flow->l4_key.icmp.type);
req->l4_src_port_mask = htons(flow->l4_mask.icmp.type);
req->l4_dst_port = htons(flow->l4_key.icmp.code);
req->l4_dst_port_mask = htons(flow->l4_mask.icmp.code);
}
req->flags = cpu_to_le16(flow_flags);
if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) {
action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP;
} else {
if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD;
req->dst_fid = cpu_to_le16(actions->dst_fid);
}
if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) {
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
req->l2_rewrite_vlan_tpid = actions->push_vlan_tpid;
req->l2_rewrite_vlan_tci = actions->push_vlan_tci;
memcpy(&req->l2_rewrite_dmac, &req->dmac, ETH_ALEN);
memcpy(&req->l2_rewrite_smac, &req->smac, ETH_ALEN);
}
if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) {
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
/* Rewrite config with tpid = 0 implies vlan pop */
req->l2_rewrite_vlan_tpid = 0;
memcpy(&req->l2_rewrite_dmac, &req->dmac, ETH_ALEN);
memcpy(&req->l2_rewrite_smac, &req->smac, ETH_ALEN);
}
}
req->action_flags = cpu_to_le16(action_flags);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send_silent(bp, req);
if (!rc) {
/* CFA_FLOW_ALLOC response interpretation:
* fw with fw with
* 16-bit 64-bit
* flow handle flow handle
* =========== ===========
* flow_handle flow handle flow context id
* ext_flow_handle INVALID flow handle
* flow_id INVALID flow counter id
*/
flow_node->flow_handle = resp->flow_handle;
if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) {
flow_node->ext_flow_handle = resp->ext_flow_handle;
flow_node->flow_id = resp->flow_id;
}
}
hwrm_req_drop(bp, req);
return rc;
}
static int hwrm_cfa_decap_filter_alloc(struct bnxt *bp,
struct bnxt_tc_flow *flow,
struct bnxt_tc_l2_key *l2_info,
__le32 ref_decap_handle,
__le32 *decap_filter_handle)
{
struct hwrm_cfa_decap_filter_alloc_output *resp;
struct ip_tunnel_key *tun_key = &flow->tun_key;
struct hwrm_cfa_decap_filter_alloc_input *req;
u32 enables = 0;
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_DECAP_FILTER_ALLOC);
if (rc)
goto exit;
req->flags = cpu_to_le32(CFA_DECAP_FILTER_ALLOC_REQ_FLAGS_OVS_TUNNEL);
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE |
CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL;
req->tunnel_type = CFA_DECAP_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
req->ip_protocol = CFA_DECAP_FILTER_ALLOC_REQ_IP_PROTOCOL_UDP;
if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ID) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_ID;
/* tunnel_id is wrongly defined in hsi defn. as __le32 */
req->tunnel_id = tunnel_id_to_key32(tun_key->tun_id);
}
if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_MACADDR;
ether_addr_copy(req->dst_macaddr, l2_info->dmac);
}
if (l2_info->num_vlans) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_T_IVLAN_VID;
req->t_ivlan_vid = l2_info->inner_vlan_tci;
}
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE;
req->ethertype = htons(ETH_P_IP);
if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |
CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |
CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE;
req->ip_addr_type =
CFA_DECAP_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
req->dst_ipaddr[0] = tun_key->u.ipv4.dst;
req->src_ipaddr[0] = tun_key->u.ipv4.src;
}
if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_PORTS) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_PORT;
req->dst_port = tun_key->tp_dst;
}
/* Eventhough the decap_handle returned by hwrm_cfa_decap_filter_alloc
* is defined as __le32, l2_ctxt_ref_id is defined in HSI as __le16.
*/
req->l2_ctxt_ref_id = (__force __le16)ref_decap_handle;
req->enables = cpu_to_le32(enables);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send_silent(bp, req);
if (!rc)
*decap_filter_handle = resp->decap_filter_id;
hwrm_req_drop(bp, req);
exit:
if (rc)
netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
return rc;
}
static int hwrm_cfa_decap_filter_free(struct bnxt *bp,
__le32 decap_filter_handle)
{
struct hwrm_cfa_decap_filter_free_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_DECAP_FILTER_FREE);
if (!rc) {
req->decap_filter_id = decap_filter_handle;
rc = hwrm_req_send(bp, req);
}
if (rc)
netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
return rc;
}
static int hwrm_cfa_encap_record_alloc(struct bnxt *bp,
struct ip_tunnel_key *encap_key,
struct bnxt_tc_l2_key *l2_info,
__le32 *encap_record_handle)
{
struct hwrm_cfa_encap_record_alloc_output *resp;
struct hwrm_cfa_encap_record_alloc_input *req;
struct hwrm_cfa_encap_data_vxlan *encap;
struct hwrm_vxlan_ipv4_hdr *encap_ipv4;
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_ENCAP_RECORD_ALLOC);
if (rc)
goto exit;
encap = (struct hwrm_cfa_encap_data_vxlan *)&req->encap_data;
req->encap_type = CFA_ENCAP_RECORD_ALLOC_REQ_ENCAP_TYPE_VXLAN;
ether_addr_copy(encap->dst_mac_addr, l2_info->dmac);
ether_addr_copy(encap->src_mac_addr, l2_info->smac);
if (l2_info->num_vlans) {
encap->num_vlan_tags = l2_info->num_vlans;
encap->ovlan_tci = l2_info->inner_vlan_tci;
encap->ovlan_tpid = l2_info->inner_vlan_tpid;
}
encap_ipv4 = (struct hwrm_vxlan_ipv4_hdr *)encap->l3;
encap_ipv4->ver_hlen = 4 << VXLAN_IPV4_HDR_VER_HLEN_VERSION_SFT;
encap_ipv4->ver_hlen |= 5 << VXLAN_IPV4_HDR_VER_HLEN_HEADER_LENGTH_SFT;
encap_ipv4->ttl = encap_key->ttl;
encap_ipv4->dest_ip_addr = encap_key->u.ipv4.dst;
encap_ipv4->src_ip_addr = encap_key->u.ipv4.src;
encap_ipv4->protocol = IPPROTO_UDP;
encap->dst_port = encap_key->tp_dst;
encap->vni = tunnel_id_to_key32(encap_key->tun_id);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send_silent(bp, req);
if (!rc)
*encap_record_handle = resp->encap_record_id;
hwrm_req_drop(bp, req);
exit:
if (rc)
netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
return rc;
}
static int hwrm_cfa_encap_record_free(struct bnxt *bp,
__le32 encap_record_handle)
{
struct hwrm_cfa_encap_record_free_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_ENCAP_RECORD_FREE);
if (!rc) {
req->encap_record_id = encap_record_handle;
rc = hwrm_req_send(bp, req);
}
if (rc)
netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
return rc;
}
static int bnxt_tc_put_l2_node(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
struct bnxt_tc_l2_node *l2_node = flow_node->l2_node;
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
/* remove flow_node from the L2 shared flow list */
list_del(&flow_node->l2_list_node);
if (--l2_node->refcount == 0) {
rc = rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node,
tc_info->l2_ht_params);
if (rc)
netdev_err(bp->dev,
"Error: %s: rhashtable_remove_fast: %d\n",
__func__, rc);
kfree_rcu(l2_node, rcu);
}
return 0;
}
static struct bnxt_tc_l2_node *
bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table,
struct rhashtable_params ht_params,
struct bnxt_tc_l2_key *l2_key)
{
struct bnxt_tc_l2_node *l2_node;
int rc;
l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params);
if (!l2_node) {
l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL);
if (!l2_node) {
rc = -ENOMEM;
return NULL;
}
l2_node->key = *l2_key;
rc = rhashtable_insert_fast(l2_table, &l2_node->node,
ht_params);
if (rc) {
kfree_rcu(l2_node, rcu);
netdev_err(bp->dev,
"Error: %s: rhashtable_insert_fast: %d\n",
__func__, rc);
return NULL;
}
INIT_LIST_HEAD(&l2_node->common_l2_flows);
}
return l2_node;
}
/* Get the ref_flow_handle for a flow by checking if there are any other
* flows that share the same L2 key as this flow.
*/
static int
bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node,
__le16 *ref_flow_handle)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow_node *ref_flow_node;
struct bnxt_tc_l2_node *l2_node;
l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table,
tc_info->l2_ht_params,
&flow->l2_key);
if (!l2_node)
return -1;
/* If any other flow is using this l2_node, use it's flow_handle
* as the ref_flow_handle
*/
if (l2_node->refcount > 0) {
ref_flow_node = list_first_entry(&l2_node->common_l2_flows,
struct bnxt_tc_flow_node,
l2_list_node);
*ref_flow_handle = ref_flow_node->flow_handle;
} else {
*ref_flow_handle = cpu_to_le16(0xffff);
}
/* Insert the l2_node into the flow_node so that subsequent flows
* with a matching l2 key can use the flow_handle of this flow
* as their ref_flow_handle
*/
flow_node->l2_node = l2_node;
list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows);
l2_node->refcount++;
return 0;
}
/* After the flow parsing is done, this routine is used for checking
* if there are any aspects of the flow that prevent it from being
* offloaded.
*/
static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow)
{
/* If L4 ports are specified then ip_proto must be TCP or UDP */
if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) &&
(flow->l4_key.ip_proto != IPPROTO_TCP &&
flow->l4_key.ip_proto != IPPROTO_UDP)) {
netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports\n",
flow->l4_key.ip_proto);
return false;
}
/* Currently source/dest MAC cannot be partial wildcard */
if (bits_set(&flow->l2_key.smac, sizeof(flow->l2_key.smac)) &&
!is_exactmatch(flow->l2_mask.smac, sizeof(flow->l2_mask.smac))) {
netdev_info(bp->dev, "Wildcard match unsupported for Source MAC\n");
return false;
}
if (bits_set(&flow->l2_key.dmac, sizeof(flow->l2_key.dmac)) &&
!is_exactmatch(&flow->l2_mask.dmac, sizeof(flow->l2_mask.dmac))) {
netdev_info(bp->dev, "Wildcard match unsupported for Dest MAC\n");
return false;
}
/* Currently VLAN fields cannot be partial wildcard */
if (bits_set(&flow->l2_key.inner_vlan_tci,
sizeof(flow->l2_key.inner_vlan_tci)) &&
!is_vlan_tci_allowed(flow->l2_mask.inner_vlan_tci,
flow->l2_key.inner_vlan_tci)) {
netdev_info(bp->dev, "Unsupported VLAN TCI\n");
return false;
}
if (bits_set(&flow->l2_key.inner_vlan_tpid,
sizeof(flow->l2_key.inner_vlan_tpid)) &&
!is_exactmatch(&flow->l2_mask.inner_vlan_tpid,
sizeof(flow->l2_mask.inner_vlan_tpid))) {
netdev_info(bp->dev, "Wildcard match unsupported for VLAN TPID\n");
return false;
}
/* Currently Ethertype must be set */
if (!is_exactmatch(&flow->l2_mask.ether_type,
sizeof(flow->l2_mask.ether_type))) {
netdev_info(bp->dev, "Wildcard match unsupported for Ethertype\n");
return false;
}
return true;
}
/* Returns the final refcount of the node on success
* or a -ve error code on failure
*/
static int bnxt_tc_put_tunnel_node(struct bnxt *bp,
struct rhashtable *tunnel_table,
struct rhashtable_params *ht_params,
struct bnxt_tc_tunnel_node *tunnel_node)
{
int rc;
if (--tunnel_node->refcount == 0) {
rc = rhashtable_remove_fast(tunnel_table, &tunnel_node->node,
*ht_params);
if (rc) {
netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc);
rc = -1;
}
kfree_rcu(tunnel_node, rcu);
return rc;
} else {
return tunnel_node->refcount;
}
}
/* Get (or add) either encap or decap tunnel node from/to the supplied
* hash table.
*/
static struct bnxt_tc_tunnel_node *
bnxt_tc_get_tunnel_node(struct bnxt *bp, struct rhashtable *tunnel_table,
struct rhashtable_params *ht_params,
struct ip_tunnel_key *tun_key)
{
struct bnxt_tc_tunnel_node *tunnel_node;
int rc;
tunnel_node = rhashtable_lookup_fast(tunnel_table, tun_key, *ht_params);
if (!tunnel_node) {
tunnel_node = kzalloc(sizeof(*tunnel_node), GFP_KERNEL);
if (!tunnel_node) {
rc = -ENOMEM;
goto err;
}
tunnel_node->key = *tun_key;
tunnel_node->tunnel_handle = INVALID_TUNNEL_HANDLE;
rc = rhashtable_insert_fast(tunnel_table, &tunnel_node->node,
*ht_params);
if (rc) {
kfree_rcu(tunnel_node, rcu);
goto err;
}
}
tunnel_node->refcount++;
return tunnel_node;
err:
netdev_info(bp->dev, "error rc=%d\n", rc);
return NULL;
}
static int bnxt_tc_get_ref_decap_handle(struct bnxt *bp,
struct bnxt_tc_flow *flow,
struct bnxt_tc_l2_key *l2_key,
struct bnxt_tc_flow_node *flow_node,
__le32 *ref_decap_handle)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow_node *ref_flow_node;
struct bnxt_tc_l2_node *decap_l2_node;
decap_l2_node = bnxt_tc_get_l2_node(bp, &tc_info->decap_l2_table,
tc_info->decap_l2_ht_params,
l2_key);
if (!decap_l2_node)
return -1;
/* If any other flow is using this decap_l2_node, use it's decap_handle
* as the ref_decap_handle
*/
if (decap_l2_node->refcount > 0) {
ref_flow_node =
list_first_entry(&decap_l2_node->common_l2_flows,
struct bnxt_tc_flow_node,
decap_l2_list_node);
*ref_decap_handle = ref_flow_node->decap_node->tunnel_handle;
} else {
*ref_decap_handle = INVALID_TUNNEL_HANDLE;
}
/* Insert the l2_node into the flow_node so that subsequent flows
* with a matching decap l2 key can use the decap_filter_handle of
* this flow as their ref_decap_handle
*/
flow_node->decap_l2_node = decap_l2_node;
list_add(&flow_node->decap_l2_list_node,
&decap_l2_node->common_l2_flows);
decap_l2_node->refcount++;
return 0;
}
static void bnxt_tc_put_decap_l2_node(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
struct bnxt_tc_l2_node *decap_l2_node = flow_node->decap_l2_node;
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
/* remove flow_node from the decap L2 sharing flow list */
list_del(&flow_node->decap_l2_list_node);
if (--decap_l2_node->refcount == 0) {
rc = rhashtable_remove_fast(&tc_info->decap_l2_table,
&decap_l2_node->node,
tc_info->decap_l2_ht_params);
if (rc)
netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc);
kfree_rcu(decap_l2_node, rcu);
}
}
static void bnxt_tc_put_decap_handle(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
__le32 decap_handle = flow_node->decap_node->tunnel_handle;
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
if (flow_node->decap_l2_node)
bnxt_tc_put_decap_l2_node(bp, flow_node);
rc = bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table,
&tc_info->decap_ht_params,
flow_node->decap_node);
if (!rc && decap_handle != INVALID_TUNNEL_HANDLE)
hwrm_cfa_decap_filter_free(bp, decap_handle);
}
static int bnxt_tc_resolve_tunnel_hdrs(struct bnxt *bp,
struct ip_tunnel_key *tun_key,
struct bnxt_tc_l2_key *l2_info)
{
#ifdef CONFIG_INET
struct net_device *real_dst_dev = bp->dev;
struct flowi4 flow = { {0} };
struct net_device *dst_dev;
struct neighbour *nbr;
struct rtable *rt;
int rc;
flow.flowi4_proto = IPPROTO_UDP;
flow.fl4_dport = tun_key->tp_dst;
flow.daddr = tun_key->u.ipv4.dst;
rt = ip_route_output_key(dev_net(real_dst_dev), &flow);
if (IS_ERR(rt)) {
netdev_info(bp->dev, "no route to %pI4b\n", &flow.daddr);
return -EOPNOTSUPP;
}
/* The route must either point to the real_dst_dev or a dst_dev that
* uses the real_dst_dev.
*/
dst_dev = rt->dst.dev;
if (is_vlan_dev(dst_dev)) {
#if IS_ENABLED(CONFIG_VLAN_8021Q)
struct vlan_dev_priv *vlan = vlan_dev_priv(dst_dev);
if (vlan->real_dev != real_dst_dev) {
netdev_info(bp->dev,
"dst_dev(%s) doesn't use PF-if(%s)\n",
netdev_name(dst_dev),
netdev_name(real_dst_dev));
rc = -EOPNOTSUPP;
goto put_rt;
}
l2_info->inner_vlan_tci = htons(vlan->vlan_id);
l2_info->inner_vlan_tpid = vlan->vlan_proto;
l2_info->num_vlans = 1;
#endif
} else if (dst_dev != real_dst_dev) {
netdev_info(bp->dev,
"dst_dev(%s) for %pI4b is not PF-if(%s)\n",
netdev_name(dst_dev), &flow.daddr,
netdev_name(real_dst_dev));
rc = -EOPNOTSUPP;
goto put_rt;
}
nbr = dst_neigh_lookup(&rt->dst, &flow.daddr);
if (!nbr) {
netdev_info(bp->dev, "can't lookup neighbor for %pI4b\n",
&flow.daddr);
rc = -EOPNOTSUPP;
goto put_rt;
}
tun_key->u.ipv4.src = flow.saddr;
tun_key->ttl = ip4_dst_hoplimit(&rt->dst);
neigh_ha_snapshot(l2_info->dmac, nbr, dst_dev);
ether_addr_copy(l2_info->smac, dst_dev->dev_addr);
neigh_release(nbr);
ip_rt_put(rt);
return 0;
put_rt:
ip_rt_put(rt);
return rc;
#else
return -EOPNOTSUPP;
#endif
}
static int bnxt_tc_get_decap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node,
__le32 *decap_filter_handle)
{
struct ip_tunnel_key *decap_key = &flow->tun_key;
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_l2_key l2_info = { {0} };
struct bnxt_tc_tunnel_node *decap_node;
struct ip_tunnel_key tun_key = { 0 };
struct bnxt_tc_l2_key *decap_l2_info;
__le32 ref_decap_handle;
int rc;
/* Check if there's another flow using the same tunnel decap.
* If not, add this tunnel to the table and resolve the other
* tunnel header fileds. Ignore src_port in the tunnel_key,
* since it is not required for decap filters.
*/
decap_key->tp_src = 0;
decap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->decap_table,
&tc_info->decap_ht_params,
decap_key);
if (!decap_node)
return -ENOMEM;
flow_node->decap_node = decap_node;
if (decap_node->tunnel_handle != INVALID_TUNNEL_HANDLE)
goto done;
/* Resolve the L2 fields for tunnel decap
* Resolve the route for remote vtep (saddr) of the decap key
* Find it's next-hop mac addrs
*/
tun_key.u.ipv4.dst = flow->tun_key.u.ipv4.src;
tun_key.tp_dst = flow->tun_key.tp_dst;
rc = bnxt_tc_resolve_tunnel_hdrs(bp, &tun_key, &l2_info);
if (rc)
goto put_decap;
decap_l2_info = &decap_node->l2_info;
/* decap smac is wildcarded */
ether_addr_copy(decap_l2_info->dmac, l2_info.smac);
if (l2_info.num_vlans) {
decap_l2_info->num_vlans = l2_info.num_vlans;
decap_l2_info->inner_vlan_tpid = l2_info.inner_vlan_tpid;
decap_l2_info->inner_vlan_tci = l2_info.inner_vlan_tci;
}
flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS;
/* For getting a decap_filter_handle we first need to check if
* there are any other decap flows that share the same tunnel L2
* key and if so, pass that flow's decap_filter_handle as the
* ref_decap_handle for this flow.
*/
rc = bnxt_tc_get_ref_decap_handle(bp, flow, decap_l2_info, flow_node,
&ref_decap_handle);
if (rc)
goto put_decap;
/* Issue the hwrm cmd to allocate a decap filter handle */
rc = hwrm_cfa_decap_filter_alloc(bp, flow, decap_l2_info,
ref_decap_handle,
&decap_node->tunnel_handle);
if (rc)
goto put_decap_l2;
done:
*decap_filter_handle = decap_node->tunnel_handle;
return 0;
put_decap_l2:
bnxt_tc_put_decap_l2_node(bp, flow_node);
put_decap:
bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table,
&tc_info->decap_ht_params,
flow_node->decap_node);
return rc;
}
static void bnxt_tc_put_encap_handle(struct bnxt *bp,
struct bnxt_tc_tunnel_node *encap_node)
{
__le32 encap_handle = encap_node->tunnel_handle;
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
rc = bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table,
&tc_info->encap_ht_params, encap_node);
if (!rc && encap_handle != INVALID_TUNNEL_HANDLE)
hwrm_cfa_encap_record_free(bp, encap_handle);
}
/* Lookup the tunnel encap table and check if there's an encap_handle
* alloc'd already.
* If not, query L2 info via a route lookup and issue an encap_record_alloc
* cmd to FW.
*/
static int bnxt_tc_get_encap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node,
__le32 *encap_handle)
{
struct ip_tunnel_key *encap_key = &flow->actions.tun_encap_key;
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_tunnel_node *encap_node;
int rc;
/* Check if there's another flow using the same tunnel encap.
* If not, add this tunnel to the table and resolve the other
* tunnel header fileds
*/
encap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->encap_table,
&tc_info->encap_ht_params,
encap_key);
if (!encap_node)
return -ENOMEM;
flow_node->encap_node = encap_node;
if (encap_node->tunnel_handle != INVALID_TUNNEL_HANDLE)
goto done;
rc = bnxt_tc_resolve_tunnel_hdrs(bp, encap_key, &encap_node->l2_info);
if (rc)
goto put_encap;
/* Allocate a new tunnel encap record */
rc = hwrm_cfa_encap_record_alloc(bp, encap_key, &encap_node->l2_info,
&encap_node->tunnel_handle);
if (rc)
goto put_encap;
done:
*encap_handle = encap_node->tunnel_handle;
return 0;
put_encap:
bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table,
&tc_info->encap_ht_params, encap_node);
return rc;
}
static void bnxt_tc_put_tunnel_handle(struct bnxt *bp,
struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node)
{
if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP)
bnxt_tc_put_decap_handle(bp, flow_node);
else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP)
bnxt_tc_put_encap_handle(bp, flow_node->encap_node);
}
static int bnxt_tc_get_tunnel_handle(struct bnxt *bp,
struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node,
__le32 *tunnel_handle)
{
if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP)
return bnxt_tc_get_decap_handle(bp, flow, flow_node,
tunnel_handle);
else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP)
return bnxt_tc_get_encap_handle(bp, flow, flow_node,
tunnel_handle);
else
return 0;
}
static int __bnxt_tc_del_flow(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
/* send HWRM cmd to free the flow-id */
bnxt_hwrm_cfa_flow_free(bp, flow_node);
mutex_lock(&tc_info->lock);
/* release references to any tunnel encap/decap nodes */
bnxt_tc_put_tunnel_handle(bp, &flow_node->flow, flow_node);
/* release reference to l2 node */
bnxt_tc_put_l2_node(bp, flow_node);
mutex_unlock(&tc_info->lock);
rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node,
tc_info->flow_ht_params);
if (rc)
netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d\n",
__func__, rc);
kfree_rcu(flow_node, rcu);
return 0;
}
static void bnxt_tc_set_flow_dir(struct bnxt *bp, struct bnxt_tc_flow *flow,
u16 src_fid)
{
flow->l2_key.dir = (bp->pf.fw_fid == src_fid) ? BNXT_DIR_RX : BNXT_DIR_TX;
}
static void bnxt_tc_set_src_fid(struct bnxt *bp, struct bnxt_tc_flow *flow,
u16 src_fid)
{
if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP)
flow->src_fid = bp->pf.fw_fid;
else
flow->src_fid = src_fid;
}
/* Add a new flow or replace an existing flow.
* Notes on locking:
* There are essentially two critical sections here.
* 1. while adding a new flow
* a) lookup l2-key
* b) issue HWRM cmd and get flow_handle
* c) link l2-key with flow
* 2. while deleting a flow
* a) unlinking l2-key from flow
* A lock is needed to protect these two critical sections.
*
* The hash-tables are already protected by the rhashtable API.
*/
static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid,
struct flow_cls_offload *tc_flow_cmd)
{
struct bnxt_tc_flow_node *new_node, *old_node;
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow *flow;
__le32 tunnel_handle = 0;
__le16 ref_flow_handle;
int rc;
/* allocate memory for the new flow and it's node */
new_node = kzalloc(sizeof(*new_node), GFP_KERNEL);
if (!new_node) {
rc = -ENOMEM;
goto done;
}
new_node->cookie = tc_flow_cmd->cookie;
flow = &new_node->flow;
rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow);
if (rc)
goto free_node;
bnxt_tc_set_src_fid(bp, flow, src_fid);
bnxt_tc_set_flow_dir(bp, flow, flow->src_fid);
if (!bnxt_tc_can_offload(bp, flow)) {
rc = -EOPNOTSUPP;
kfree_rcu(new_node, rcu);
return rc;
}
/* If a flow exists with the same cookie, delete it */
old_node = rhashtable_lookup_fast(&tc_info->flow_table,
&tc_flow_cmd->cookie,
tc_info->flow_ht_params);
if (old_node)
__bnxt_tc_del_flow(bp, old_node);
/* Check if the L2 part of the flow has been offloaded already.
* If so, bump up it's refcnt and get it's reference handle.
*/
mutex_lock(&tc_info->lock);
rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle);
if (rc)
goto unlock;
/* If the flow involves tunnel encap/decap, get tunnel_handle */
rc = bnxt_tc_get_tunnel_handle(bp, flow, new_node, &tunnel_handle);
if (rc)
goto put_l2;
/* send HWRM cmd to alloc the flow */
rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle,
tunnel_handle, new_node);
if (rc)
goto put_tunnel;
flow->lastused = jiffies;
spin_lock_init(&flow->stats_lock);
/* add new flow to flow-table */
rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node,
tc_info->flow_ht_params);
if (rc)
goto hwrm_flow_free;
mutex_unlock(&tc_info->lock);
return 0;
hwrm_flow_free:
bnxt_hwrm_cfa_flow_free(bp, new_node);
put_tunnel:
bnxt_tc_put_tunnel_handle(bp, flow, new_node);
put_l2:
bnxt_tc_put_l2_node(bp, new_node);
unlock:
mutex_unlock(&tc_info->lock);
free_node:
kfree_rcu(new_node, rcu);
done:
netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d\n",
__func__, tc_flow_cmd->cookie, rc);
return rc;
}
static int bnxt_tc_del_flow(struct bnxt *bp,
struct flow_cls_offload *tc_flow_cmd)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow_node *flow_node;
flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
&tc_flow_cmd->cookie,
tc_info->flow_ht_params);
if (!flow_node)
return -EINVAL;
return __bnxt_tc_del_flow(bp, flow_node);
}
static int bnxt_tc_get_flow_stats(struct bnxt *bp,
struct flow_cls_offload *tc_flow_cmd)
{
struct bnxt_tc_flow_stats stats, *curr_stats, *prev_stats;
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow_node *flow_node;
struct bnxt_tc_flow *flow;
unsigned long lastused;
flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
&tc_flow_cmd->cookie,
tc_info->flow_ht_params);
if (!flow_node)
return -1;
flow = &flow_node->flow;
curr_stats = &flow->stats;
prev_stats = &flow->prev_stats;
spin_lock(&flow->stats_lock);
stats.packets = curr_stats->packets - prev_stats->packets;
stats.bytes = curr_stats->bytes - prev_stats->bytes;
*prev_stats = *curr_stats;
lastused = flow->lastused;
spin_unlock(&flow->stats_lock);
flow_stats_update(&tc_flow_cmd->stats, stats.bytes, stats.packets, 0,
lastused, FLOW_ACTION_HW_STATS_DELAYED);
return 0;
}
static void bnxt_fill_cfa_stats_req(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node,
__le16 *flow_handle, __le32 *flow_id)
{
u16 handle;
if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) {
*flow_id = flow_node->flow_id;
/* If flow_id is used to fetch flow stats then:
* 1. lower 12 bits of flow_handle must be set to all 1s.
* 2. 15th bit of flow_handle must specify the flow
* direction (TX/RX).
*/
if (flow_node->flow.l2_key.dir == BNXT_DIR_RX)
handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_DIR_RX |
CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK;
else
handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK;
*flow_handle = cpu_to_le16(handle);
} else {
*flow_handle = flow_node->flow_handle;
}
}
static int
bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp, int num_flows,
struct bnxt_tc_stats_batch stats_batch[])
{
struct hwrm_cfa_flow_stats_output *resp;
struct hwrm_cfa_flow_stats_input *req;
__le16 *req_flow_handles;
__le32 *req_flow_ids;
int rc, i;
rc = hwrm_req_init(bp, req, HWRM_CFA_FLOW_STATS);
if (rc)
goto exit;
req_flow_handles = &req->flow_handle_0;
req_flow_ids = &req->flow_id_0;
req->num_flows = cpu_to_le16(num_flows);
for (i = 0; i < num_flows; i++) {
struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node;
bnxt_fill_cfa_stats_req(bp, flow_node,
&req_flow_handles[i], &req_flow_ids[i]);
}
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc) {
__le64 *resp_packets;
__le64 *resp_bytes;
resp_packets = &resp->packet_0;
resp_bytes = &resp->byte_0;
for (i = 0; i < num_flows; i++) {
stats_batch[i].hw_stats.packets =
le64_to_cpu(resp_packets[i]);
stats_batch[i].hw_stats.bytes =
le64_to_cpu(resp_bytes[i]);
}
}
hwrm_req_drop(bp, req);
exit:
if (rc)
netdev_info(bp->dev, "error rc=%d\n", rc);
return rc;
}
/* Add val to accum while handling a possible wraparound
* of val. Eventhough val is of type u64, its actual width
* is denoted by mask and will wrap-around beyond that width.
*/
static void accumulate_val(u64 *accum, u64 val, u64 mask)
{
#define low_bits(x, mask) ((x) & (mask))
#define high_bits(x, mask) ((x) & ~(mask))
bool wrapped = val < low_bits(*accum, mask);
*accum = high_bits(*accum, mask) + val;
if (wrapped)
*accum += (mask + 1);
}
/* The HW counters' width is much less than 64bits.
* Handle possible wrap-around while updating the stat counters
*/
static void bnxt_flow_stats_accum(struct bnxt_tc_info *tc_info,
struct bnxt_tc_flow_stats *acc_stats,
struct bnxt_tc_flow_stats *hw_stats)
{
accumulate_val(&acc_stats->bytes, hw_stats->bytes, tc_info->bytes_mask);
accumulate_val(&acc_stats->packets, hw_stats->packets,
tc_info->packets_mask);
}
static int
bnxt_tc_flow_stats_batch_update(struct bnxt *bp, int num_flows,
struct bnxt_tc_stats_batch stats_batch[])
{
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc, i;
rc = bnxt_hwrm_cfa_flow_stats_get(bp, num_flows, stats_batch);
if (rc)
return rc;
for (i = 0; i < num_flows; i++) {
struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node;
struct bnxt_tc_flow *flow = &flow_node->flow;
spin_lock(&flow->stats_lock);
bnxt_flow_stats_accum(tc_info, &flow->stats,
&stats_batch[i].hw_stats);
if (flow->stats.packets != flow->prev_stats.packets)
flow->lastused = jiffies;
spin_unlock(&flow->stats_lock);
}
return 0;
}
static int
bnxt_tc_flow_stats_batch_prep(struct bnxt *bp,
struct bnxt_tc_stats_batch stats_batch[],
int *num_flows)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
struct rhashtable_iter *iter = &tc_info->iter;
void *flow_node;
int rc, i;
rhashtable_walk_start(iter);
rc = 0;
for (i = 0; i < BNXT_FLOW_STATS_BATCH_MAX; i++) {
flow_node = rhashtable_walk_next(iter);
if (IS_ERR(flow_node)) {
i = 0;
if (PTR_ERR(flow_node) == -EAGAIN) {
continue;
} else {
rc = PTR_ERR(flow_node);
goto done;
}
}
/* No more flows */
if (!flow_node)
goto done;
stats_batch[i].flow_node = flow_node;
}
done:
rhashtable_walk_stop(iter);
*num_flows = i;
return rc;
}
void bnxt_tc_flow_stats_work(struct bnxt *bp)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
int num_flows, rc;
num_flows = atomic_read(&tc_info->flow_table.nelems);
if (!num_flows)
return;
rhashtable_walk_enter(&tc_info->flow_table, &tc_info->iter);
for (;;) {
rc = bnxt_tc_flow_stats_batch_prep(bp, tc_info->stats_batch,
&num_flows);
if (rc) {
if (rc == -EAGAIN)
continue;
break;
}
if (!num_flows)
break;
bnxt_tc_flow_stats_batch_update(bp, num_flows,
tc_info->stats_batch);
}
rhashtable_walk_exit(&tc_info->iter);
}
int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid,
struct flow_cls_offload *cls_flower)
{
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return bnxt_tc_add_flow(bp, src_fid, cls_flower);
case FLOW_CLS_DESTROY:
return bnxt_tc_del_flow(bp, cls_flower);
case FLOW_CLS_STATS:
return bnxt_tc_get_flow_stats(bp, cls_flower);
default:
return -EOPNOTSUPP;
}
}
static int bnxt_tc_setup_indr_block_cb(enum tc_setup_type type,
void *type_data, void *cb_priv)
{
struct bnxt_flower_indr_block_cb_priv *priv = cb_priv;
struct flow_cls_offload *flower = type_data;
struct bnxt *bp = priv->bp;
if (!tc_cls_can_offload_and_chain0(bp->dev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, flower);
default:
return -EOPNOTSUPP;
}
}
static struct bnxt_flower_indr_block_cb_priv *
bnxt_tc_indr_block_cb_lookup(struct bnxt *bp, struct net_device *netdev)
{
struct bnxt_flower_indr_block_cb_priv *cb_priv;
list_for_each_entry(cb_priv, &bp->tc_indr_block_list, list)
if (cb_priv->tunnel_netdev == netdev)
return cb_priv;
return NULL;
}
static void bnxt_tc_setup_indr_rel(void *cb_priv)
{
struct bnxt_flower_indr_block_cb_priv *priv = cb_priv;
list_del(&priv->list);
kfree(priv);
}
static int bnxt_tc_setup_indr_block(struct net_device *netdev, struct Qdisc *sch, struct bnxt *bp,
struct flow_block_offload *f, void *data,
void (*cleanup)(struct flow_block_cb *block_cb))
{
struct bnxt_flower_indr_block_cb_priv *cb_priv;
struct flow_block_cb *block_cb;
if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
return -EOPNOTSUPP;
switch (f->command) {
case FLOW_BLOCK_BIND:
cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL);
if (!cb_priv)
return -ENOMEM;
cb_priv->tunnel_netdev = netdev;
cb_priv->bp = bp;
list_add(&cb_priv->list, &bp->tc_indr_block_list);
block_cb = flow_indr_block_cb_alloc(bnxt_tc_setup_indr_block_cb,
cb_priv, cb_priv,
bnxt_tc_setup_indr_rel, f,
netdev, sch, data, bp, cleanup);
if (IS_ERR(block_cb)) {
list_del(&cb_priv->list);
kfree(cb_priv);
return PTR_ERR(block_cb);
}
flow_block_cb_add(block_cb, f);
list_add_tail(&block_cb->driver_list, &bnxt_block_cb_list);
break;
case FLOW_BLOCK_UNBIND:
cb_priv = bnxt_tc_indr_block_cb_lookup(bp, netdev);
if (!cb_priv)
return -ENOENT;
block_cb = flow_block_cb_lookup(f->block,
bnxt_tc_setup_indr_block_cb,
cb_priv);
if (!block_cb)
return -ENOENT;
flow_indr_block_cb_remove(block_cb, f);
list_del(&block_cb->driver_list);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static bool bnxt_is_netdev_indr_offload(struct net_device *netdev)
{
return netif_is_vxlan(netdev);
}
static int bnxt_tc_setup_indr_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv,
enum tc_setup_type type, void *type_data,
void *data,
void (*cleanup)(struct flow_block_cb *block_cb))
{
if (!netdev || !bnxt_is_netdev_indr_offload(netdev))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_BLOCK:
return bnxt_tc_setup_indr_block(netdev, sch, cb_priv, type_data, data, cleanup);
default:
break;
}
return -EOPNOTSUPP;
}
static const struct rhashtable_params bnxt_tc_flow_ht_params = {
.head_offset = offsetof(struct bnxt_tc_flow_node, node),
.key_offset = offsetof(struct bnxt_tc_flow_node, cookie),
.key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie),
.automatic_shrinking = true
};
static const struct rhashtable_params bnxt_tc_l2_ht_params = {
.head_offset = offsetof(struct bnxt_tc_l2_node, node),
.key_offset = offsetof(struct bnxt_tc_l2_node, key),
.key_len = BNXT_TC_L2_KEY_LEN,
.automatic_shrinking = true
};
static const struct rhashtable_params bnxt_tc_decap_l2_ht_params = {
.head_offset = offsetof(struct bnxt_tc_l2_node, node),
.key_offset = offsetof(struct bnxt_tc_l2_node, key),
.key_len = BNXT_TC_L2_KEY_LEN,
.automatic_shrinking = true
};
static const struct rhashtable_params bnxt_tc_tunnel_ht_params = {
.head_offset = offsetof(struct bnxt_tc_tunnel_node, node),
.key_offset = offsetof(struct bnxt_tc_tunnel_node, key),
.key_len = sizeof(struct ip_tunnel_key),
.automatic_shrinking = true
};
/* convert counter width in bits to a mask */
#define mask(width) ((u64)~0 >> (64 - (width)))
int bnxt_init_tc(struct bnxt *bp)
{
struct bnxt_tc_info *tc_info;
int rc;
if (bp->hwrm_spec_code < 0x10803)
return 0;
tc_info = kzalloc(sizeof(*tc_info), GFP_KERNEL);
if (!tc_info)
return -ENOMEM;
mutex_init(&tc_info->lock);
/* Counter widths are programmed by FW */
tc_info->bytes_mask = mask(36);
tc_info->packets_mask = mask(28);
tc_info->flow_ht_params = bnxt_tc_flow_ht_params;
rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params);
if (rc)
goto free_tc_info;
tc_info->l2_ht_params = bnxt_tc_l2_ht_params;
rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params);
if (rc)
goto destroy_flow_table;
tc_info->decap_l2_ht_params = bnxt_tc_decap_l2_ht_params;
rc = rhashtable_init(&tc_info->decap_l2_table,
&tc_info->decap_l2_ht_params);
if (rc)
goto destroy_l2_table;
tc_info->decap_ht_params = bnxt_tc_tunnel_ht_params;
rc = rhashtable_init(&tc_info->decap_table,
&tc_info->decap_ht_params);
if (rc)
goto destroy_decap_l2_table;
tc_info->encap_ht_params = bnxt_tc_tunnel_ht_params;
rc = rhashtable_init(&tc_info->encap_table,
&tc_info->encap_ht_params);
if (rc)
goto destroy_decap_table;
tc_info->enabled = true;
bp->dev->hw_features |= NETIF_F_HW_TC;
bp->dev->features |= NETIF_F_HW_TC;
bp->tc_info = tc_info;
/* init indirect block notifications */
INIT_LIST_HEAD(&bp->tc_indr_block_list);
rc = flow_indr_dev_register(bnxt_tc_setup_indr_cb, bp);
if (!rc)
return 0;
rhashtable_destroy(&tc_info->encap_table);
destroy_decap_table:
rhashtable_destroy(&tc_info->decap_table);
destroy_decap_l2_table:
rhashtable_destroy(&tc_info->decap_l2_table);
destroy_l2_table:
rhashtable_destroy(&tc_info->l2_table);
destroy_flow_table:
rhashtable_destroy(&tc_info->flow_table);
free_tc_info:
kfree(tc_info);
return rc;
}
void bnxt_shutdown_tc(struct bnxt *bp)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
if (!bnxt_tc_flower_enabled(bp))
return;
flow_indr_dev_unregister(bnxt_tc_setup_indr_cb, bp,
bnxt_tc_setup_indr_rel);
rhashtable_destroy(&tc_info->flow_table);
rhashtable_destroy(&tc_info->l2_table);
rhashtable_destroy(&tc_info->decap_l2_table);
rhashtable_destroy(&tc_info->decap_table);
rhashtable_destroy(&tc_info->encap_table);
kfree(tc_info);
bp->tc_info = NULL;
}