285 lines
8.5 KiB
C
285 lines
8.5 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
|
||
|
* Copyright (C) 2006 Andrey Volkov, Varma Electronics
|
||
|
* Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/units.h>
|
||
|
#include <linux/can/dev.h>
|
||
|
|
||
|
#ifdef CONFIG_CAN_CALC_BITTIMING
|
||
|
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
|
||
|
|
||
|
/* Bit-timing calculation derived from:
|
||
|
*
|
||
|
* Code based on LinCAN sources and H8S2638 project
|
||
|
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
|
||
|
* Copyright 2005 Stanislav Marek
|
||
|
* email: pisa@cmp.felk.cvut.cz
|
||
|
*
|
||
|
* Calculates proper bit-timing parameters for a specified bit-rate
|
||
|
* and sample-point, which can then be used to set the bit-timing
|
||
|
* registers of the CAN controller. You can find more information
|
||
|
* in the header file linux/can/netlink.h.
|
||
|
*/
|
||
|
static int
|
||
|
can_update_sample_point(const struct can_bittiming_const *btc,
|
||
|
const unsigned int sample_point_nominal, const unsigned int tseg,
|
||
|
unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
|
||
|
unsigned int *sample_point_error_ptr)
|
||
|
{
|
||
|
unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
|
||
|
unsigned int sample_point, best_sample_point = 0;
|
||
|
unsigned int tseg1, tseg2;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i <= 1; i++) {
|
||
|
tseg2 = tseg + CAN_SYNC_SEG -
|
||
|
(sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
|
||
|
1000 - i;
|
||
|
tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
|
||
|
tseg1 = tseg - tseg2;
|
||
|
if (tseg1 > btc->tseg1_max) {
|
||
|
tseg1 = btc->tseg1_max;
|
||
|
tseg2 = tseg - tseg1;
|
||
|
}
|
||
|
|
||
|
sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
|
||
|
(tseg + CAN_SYNC_SEG);
|
||
|
sample_point_error = abs(sample_point_nominal - sample_point);
|
||
|
|
||
|
if (sample_point <= sample_point_nominal &&
|
||
|
sample_point_error < best_sample_point_error) {
|
||
|
best_sample_point = sample_point;
|
||
|
best_sample_point_error = sample_point_error;
|
||
|
*tseg1_ptr = tseg1;
|
||
|
*tseg2_ptr = tseg2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (sample_point_error_ptr)
|
||
|
*sample_point_error_ptr = best_sample_point_error;
|
||
|
|
||
|
return best_sample_point;
|
||
|
}
|
||
|
|
||
|
int can_calc_bittiming(const struct net_device *dev, struct can_bittiming *bt,
|
||
|
const struct can_bittiming_const *btc)
|
||
|
{
|
||
|
struct can_priv *priv = netdev_priv(dev);
|
||
|
unsigned int bitrate; /* current bitrate */
|
||
|
unsigned int bitrate_error; /* difference between current and nominal value */
|
||
|
unsigned int best_bitrate_error = UINT_MAX;
|
||
|
unsigned int sample_point_error; /* difference between current and nominal value */
|
||
|
unsigned int best_sample_point_error = UINT_MAX;
|
||
|
unsigned int sample_point_nominal; /* nominal sample point */
|
||
|
unsigned int best_tseg = 0; /* current best value for tseg */
|
||
|
unsigned int best_brp = 0; /* current best value for brp */
|
||
|
unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
|
||
|
u64 v64;
|
||
|
|
||
|
/* Use CiA recommended sample points */
|
||
|
if (bt->sample_point) {
|
||
|
sample_point_nominal = bt->sample_point;
|
||
|
} else {
|
||
|
if (bt->bitrate > 800 * KILO /* BPS */)
|
||
|
sample_point_nominal = 750;
|
||
|
else if (bt->bitrate > 500 * KILO /* BPS */)
|
||
|
sample_point_nominal = 800;
|
||
|
else
|
||
|
sample_point_nominal = 875;
|
||
|
}
|
||
|
|
||
|
/* tseg even = round down, odd = round up */
|
||
|
for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
|
||
|
tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
|
||
|
tsegall = CAN_SYNC_SEG + tseg / 2;
|
||
|
|
||
|
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
|
||
|
brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
|
||
|
|
||
|
/* choose brp step which is possible in system */
|
||
|
brp = (brp / btc->brp_inc) * btc->brp_inc;
|
||
|
if (brp < btc->brp_min || brp > btc->brp_max)
|
||
|
continue;
|
||
|
|
||
|
bitrate = priv->clock.freq / (brp * tsegall);
|
||
|
bitrate_error = abs(bt->bitrate - bitrate);
|
||
|
|
||
|
/* tseg brp biterror */
|
||
|
if (bitrate_error > best_bitrate_error)
|
||
|
continue;
|
||
|
|
||
|
/* reset sample point error if we have a better bitrate */
|
||
|
if (bitrate_error < best_bitrate_error)
|
||
|
best_sample_point_error = UINT_MAX;
|
||
|
|
||
|
can_update_sample_point(btc, sample_point_nominal, tseg / 2,
|
||
|
&tseg1, &tseg2, &sample_point_error);
|
||
|
if (sample_point_error > best_sample_point_error)
|
||
|
continue;
|
||
|
|
||
|
best_sample_point_error = sample_point_error;
|
||
|
best_bitrate_error = bitrate_error;
|
||
|
best_tseg = tseg / 2;
|
||
|
best_brp = brp;
|
||
|
|
||
|
if (bitrate_error == 0 && sample_point_error == 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (best_bitrate_error) {
|
||
|
/* Error in one-tenth of a percent */
|
||
|
v64 = (u64)best_bitrate_error * 1000;
|
||
|
do_div(v64, bt->bitrate);
|
||
|
bitrate_error = (u32)v64;
|
||
|
if (bitrate_error > CAN_CALC_MAX_ERROR) {
|
||
|
netdev_err(dev,
|
||
|
"bitrate error %d.%d%% too high\n",
|
||
|
bitrate_error / 10, bitrate_error % 10);
|
||
|
return -EDOM;
|
||
|
}
|
||
|
netdev_warn(dev, "bitrate error %d.%d%%\n",
|
||
|
bitrate_error / 10, bitrate_error % 10);
|
||
|
}
|
||
|
|
||
|
/* real sample point */
|
||
|
bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
|
||
|
best_tseg, &tseg1, &tseg2,
|
||
|
NULL);
|
||
|
|
||
|
v64 = (u64)best_brp * 1000 * 1000 * 1000;
|
||
|
do_div(v64, priv->clock.freq);
|
||
|
bt->tq = (u32)v64;
|
||
|
bt->prop_seg = tseg1 / 2;
|
||
|
bt->phase_seg1 = tseg1 - bt->prop_seg;
|
||
|
bt->phase_seg2 = tseg2;
|
||
|
|
||
|
/* check for sjw user settings */
|
||
|
if (!bt->sjw || !btc->sjw_max) {
|
||
|
bt->sjw = 1;
|
||
|
} else {
|
||
|
/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
|
||
|
if (bt->sjw > btc->sjw_max)
|
||
|
bt->sjw = btc->sjw_max;
|
||
|
/* bt->sjw must not be higher than tseg2 */
|
||
|
if (tseg2 < bt->sjw)
|
||
|
bt->sjw = tseg2;
|
||
|
}
|
||
|
|
||
|
bt->brp = best_brp;
|
||
|
|
||
|
/* real bitrate */
|
||
|
bt->bitrate = priv->clock.freq /
|
||
|
(bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void can_calc_tdco(struct can_tdc *tdc, const struct can_tdc_const *tdc_const,
|
||
|
const struct can_bittiming *dbt,
|
||
|
u32 *ctrlmode, u32 ctrlmode_supported)
|
||
|
|
||
|
{
|
||
|
if (!tdc_const || !(ctrlmode_supported & CAN_CTRLMODE_TDC_AUTO))
|
||
|
return;
|
||
|
|
||
|
*ctrlmode &= ~CAN_CTRLMODE_TDC_MASK;
|
||
|
|
||
|
/* As specified in ISO 11898-1 section 11.3.3 "Transmitter
|
||
|
* delay compensation" (TDC) is only applicable if data BRP is
|
||
|
* one or two.
|
||
|
*/
|
||
|
if (dbt->brp == 1 || dbt->brp == 2) {
|
||
|
/* Sample point in clock periods */
|
||
|
u32 sample_point_in_tc = (CAN_SYNC_SEG + dbt->prop_seg +
|
||
|
dbt->phase_seg1) * dbt->brp;
|
||
|
|
||
|
if (sample_point_in_tc < tdc_const->tdco_min)
|
||
|
return;
|
||
|
tdc->tdco = min(sample_point_in_tc, tdc_const->tdco_max);
|
||
|
*ctrlmode |= CAN_CTRLMODE_TDC_AUTO;
|
||
|
}
|
||
|
}
|
||
|
#endif /* CONFIG_CAN_CALC_BITTIMING */
|
||
|
|
||
|
/* Checks the validity of the specified bit-timing parameters prop_seg,
|
||
|
* phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
|
||
|
* prescaler value brp. You can find more information in the header
|
||
|
* file linux/can/netlink.h.
|
||
|
*/
|
||
|
static int can_fixup_bittiming(const struct net_device *dev, struct can_bittiming *bt,
|
||
|
const struct can_bittiming_const *btc)
|
||
|
{
|
||
|
const struct can_priv *priv = netdev_priv(dev);
|
||
|
unsigned int tseg1, alltseg;
|
||
|
u64 brp64;
|
||
|
|
||
|
tseg1 = bt->prop_seg + bt->phase_seg1;
|
||
|
if (!bt->sjw)
|
||
|
bt->sjw = 1;
|
||
|
if (bt->sjw > btc->sjw_max ||
|
||
|
tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
|
||
|
bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
|
||
|
return -ERANGE;
|
||
|
|
||
|
brp64 = (u64)priv->clock.freq * (u64)bt->tq;
|
||
|
if (btc->brp_inc > 1)
|
||
|
do_div(brp64, btc->brp_inc);
|
||
|
brp64 += 500000000UL - 1;
|
||
|
do_div(brp64, 1000000000UL); /* the practicable BRP */
|
||
|
if (btc->brp_inc > 1)
|
||
|
brp64 *= btc->brp_inc;
|
||
|
bt->brp = (u32)brp64;
|
||
|
|
||
|
if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
|
||
|
return -EINVAL;
|
||
|
|
||
|
alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
|
||
|
bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
|
||
|
bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Checks the validity of predefined bitrate settings */
|
||
|
static int
|
||
|
can_validate_bitrate(const struct net_device *dev, const struct can_bittiming *bt,
|
||
|
const u32 *bitrate_const,
|
||
|
const unsigned int bitrate_const_cnt)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
|
||
|
for (i = 0; i < bitrate_const_cnt; i++) {
|
||
|
if (bt->bitrate == bitrate_const[i])
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
int can_get_bittiming(const struct net_device *dev, struct can_bittiming *bt,
|
||
|
const struct can_bittiming_const *btc,
|
||
|
const u32 *bitrate_const,
|
||
|
const unsigned int bitrate_const_cnt)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
/* Depending on the given can_bittiming parameter structure the CAN
|
||
|
* timing parameters are calculated based on the provided bitrate OR
|
||
|
* alternatively the CAN timing parameters (tq, prop_seg, etc.) are
|
||
|
* provided directly which are then checked and fixed up.
|
||
|
*/
|
||
|
if (!bt->tq && bt->bitrate && btc)
|
||
|
err = can_calc_bittiming(dev, bt, btc);
|
||
|
else if (bt->tq && !bt->bitrate && btc)
|
||
|
err = can_fixup_bittiming(dev, bt, btc);
|
||
|
else if (!bt->tq && bt->bitrate && bitrate_const)
|
||
|
err = can_validate_bitrate(dev, bt, bitrate_const,
|
||
|
bitrate_const_cnt);
|
||
|
else
|
||
|
err = -EINVAL;
|
||
|
|
||
|
return err;
|
||
|
}
|