linux/linux-5.18.11/drivers/mtd/nand/raw/diskonchip.c

1580 lines
43 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* (C) 2003 Red Hat, Inc.
* (C) 2004 Dan Brown <dan_brown@ieee.org>
* (C) 2004 Kalev Lember <kalev@smartlink.ee>
*
* Author: David Woodhouse <dwmw2@infradead.org>
* Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
* Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
*
* Error correction code lifted from the old docecc code
* Author: Fabrice Bellard (fabrice.bellard@netgem.com)
* Copyright (C) 2000 Netgem S.A.
* converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
*
* Interface to generic NAND code for M-Systems DiskOnChip devices
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/rslib.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/doc2000.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/inftl.h>
#include <linux/module.h>
/* Where to look for the devices? */
#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
#endif
static unsigned long doc_locations[] __initdata = {
#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
#else
0xc8000, 0xca000, 0xcc000, 0xce000,
0xd0000, 0xd2000, 0xd4000, 0xd6000,
0xd8000, 0xda000, 0xdc000, 0xde000,
0xe0000, 0xe2000, 0xe4000, 0xe6000,
0xe8000, 0xea000, 0xec000, 0xee000,
#endif
#endif
0xffffffff };
static struct mtd_info *doclist = NULL;
struct doc_priv {
struct nand_controller base;
void __iomem *virtadr;
unsigned long physadr;
u_char ChipID;
u_char CDSNControl;
int chips_per_floor; /* The number of chips detected on each floor */
int curfloor;
int curchip;
int mh0_page;
int mh1_page;
struct rs_control *rs_decoder;
struct mtd_info *nextdoc;
bool supports_32b_reads;
/* Handle the last stage of initialization (BBT scan, partitioning) */
int (*late_init)(struct mtd_info *mtd);
};
/* This is the ecc value computed by the HW ecc generator upon writing an empty
page, one with all 0xff for data. */
static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
#define INFTL_BBT_RESERVED_BLOCKS 4
#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
static int debug = 0;
module_param(debug, int, 0);
static int try_dword = 1;
module_param(try_dword, int, 0);
static int no_ecc_failures = 0;
module_param(no_ecc_failures, int, 0);
static int no_autopart = 0;
module_param(no_autopart, int, 0);
static int show_firmware_partition = 0;
module_param(show_firmware_partition, int, 0);
#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
static int inftl_bbt_write = 1;
#else
static int inftl_bbt_write = 0;
#endif
module_param(inftl_bbt_write, int, 0);
static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
module_param(doc_config_location, ulong, 0);
MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
/* Sector size for HW ECC */
#define SECTOR_SIZE 512
/* The sector bytes are packed into NB_DATA 10 bit words */
#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
/* Number of roots */
#define NROOTS 4
/* First consective root */
#define FCR 510
/* Number of symbols */
#define NN 1023
/*
* The HW decoder in the DoC ASIC's provides us a error syndrome,
* which we must convert to a standard syndrome usable by the generic
* Reed-Solomon library code.
*
* Fabrice Bellard figured this out in the old docecc code. I added
* some comments, improved a minor bit and converted it to make use
* of the generic Reed-Solomon library. tglx
*/
static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
{
int i, j, nerr, errpos[8];
uint8_t parity;
uint16_t ds[4], s[5], tmp, errval[8], syn[4];
struct rs_codec *cd = rs->codec;
memset(syn, 0, sizeof(syn));
/* Convert the ecc bytes into words */
ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
parity = ecc[1];
/* Initialize the syndrome buffer */
for (i = 0; i < NROOTS; i++)
s[i] = ds[0];
/*
* Evaluate
* s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
* where x = alpha^(FCR + i)
*/
for (j = 1; j < NROOTS; j++) {
if (ds[j] == 0)
continue;
tmp = cd->index_of[ds[j]];
for (i = 0; i < NROOTS; i++)
s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)];
}
/* Calc syn[i] = s[i] / alpha^(v + i) */
for (i = 0; i < NROOTS; i++) {
if (s[i])
syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i));
}
/* Call the decoder library */
nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
/* Incorrectable errors ? */
if (nerr < 0)
return nerr;
/*
* Correct the errors. The bitpositions are a bit of magic,
* but they are given by the design of the de/encoder circuit
* in the DoC ASIC's.
*/
for (i = 0; i < nerr; i++) {
int index, bitpos, pos = 1015 - errpos[i];
uint8_t val;
if (pos >= NB_DATA && pos < 1019)
continue;
if (pos < NB_DATA) {
/* extract bit position (MSB first) */
pos = 10 * (NB_DATA - 1 - pos) - 6;
/* now correct the following 10 bits. At most two bytes
can be modified since pos is even */
index = (pos >> 3) ^ 1;
bitpos = pos & 7;
if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
val = (uint8_t) (errval[i] >> (2 + bitpos));
parity ^= val;
if (index < SECTOR_SIZE)
data[index] ^= val;
}
index = ((pos >> 3) + 1) ^ 1;
bitpos = (bitpos + 10) & 7;
if (bitpos == 0)
bitpos = 8;
if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
val = (uint8_t) (errval[i] << (8 - bitpos));
parity ^= val;
if (index < SECTOR_SIZE)
data[index] ^= val;
}
}
}
/* If the parity is wrong, no rescue possible */
return parity ? -EBADMSG : nerr;
}
static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
{
volatile char __always_unused dummy;
int i;
for (i = 0; i < cycles; i++) {
if (DoC_is_Millennium(doc))
dummy = ReadDOC(doc->virtadr, NOP);
else if (DoC_is_MillenniumPlus(doc))
dummy = ReadDOC(doc->virtadr, Mplus_NOP);
else
dummy = ReadDOC(doc->virtadr, DOCStatus);
}
}
#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
static int _DoC_WaitReady(struct doc_priv *doc)
{
void __iomem *docptr = doc->virtadr;
unsigned long timeo = jiffies + (HZ * 10);
if (debug)
printk("_DoC_WaitReady...\n");
/* Out-of-line routine to wait for chip response */
if (DoC_is_MillenniumPlus(doc)) {
while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
if (time_after(jiffies, timeo)) {
printk("_DoC_WaitReady timed out.\n");
return -EIO;
}
udelay(1);
cond_resched();
}
} else {
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
if (time_after(jiffies, timeo)) {
printk("_DoC_WaitReady timed out.\n");
return -EIO;
}
udelay(1);
cond_resched();
}
}
return 0;
}
static inline int DoC_WaitReady(struct doc_priv *doc)
{
void __iomem *docptr = doc->virtadr;
int ret = 0;
if (DoC_is_MillenniumPlus(doc)) {
DoC_Delay(doc, 4);
if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
/* Call the out-of-line routine to wait */
ret = _DoC_WaitReady(doc);
} else {
DoC_Delay(doc, 4);
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
/* Call the out-of-line routine to wait */
ret = _DoC_WaitReady(doc);
DoC_Delay(doc, 2);
}
if (debug)
printk("DoC_WaitReady OK\n");
return ret;
}
static void doc2000_write_byte(struct nand_chip *this, u_char datum)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
if (debug)
printk("write_byte %02x\n", datum);
WriteDOC(datum, docptr, CDSNSlowIO);
WriteDOC(datum, docptr, 2k_CDSN_IO);
}
static void doc2000_writebuf(struct nand_chip *this, const u_char *buf,
int len)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
int i;
if (debug)
printk("writebuf of %d bytes: ", len);
for (i = 0; i < len; i++) {
WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
if (debug && i < 16)
printk("%02x ", buf[i]);
}
if (debug)
printk("\n");
}
static void doc2000_readbuf(struct nand_chip *this, u_char *buf, int len)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
u32 *buf32 = (u32 *)buf;
int i;
if (debug)
printk("readbuf of %d bytes: ", len);
if (!doc->supports_32b_reads ||
((((unsigned long)buf) | len) & 3)) {
for (i = 0; i < len; i++)
buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
} else {
for (i = 0; i < len / 4; i++)
buf32[i] = readl(docptr + DoC_2k_CDSN_IO + i);
}
}
/*
* We need our own readid() here because it's called before the NAND chip
* has been initialized, and calling nand_op_readid() would lead to a NULL
* pointer exception when dereferencing the NAND timings.
*/
static void doc200x_readid(struct nand_chip *this, unsigned int cs, u8 *id)
{
u8 addr = 0;
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_READID, 0),
NAND_OP_ADDR(1, &addr, 50),
NAND_OP_8BIT_DATA_IN(2, id, 0),
};
struct nand_operation op = NAND_OPERATION(cs, instrs);
if (!id)
op.ninstrs--;
this->controller->ops->exec_op(this, &op, false);
}
static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
uint16_t ret;
u8 id[2];
doc200x_readid(this, nr, id);
ret = ((u16)id[0] << 8) | id[1];
if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
/* First chip probe. See if we get same results by 32-bit access */
union {
uint32_t dword;
uint8_t byte[4];
} ident;
void __iomem *docptr = doc->virtadr;
doc200x_readid(this, nr, NULL);
ident.dword = readl(docptr + DoC_2k_CDSN_IO);
if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
pr_info("DiskOnChip 2000 responds to DWORD access\n");
doc->supports_32b_reads = true;
}
}
return ret;
}
static void __init doc2000_count_chips(struct mtd_info *mtd)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
uint16_t mfrid;
int i;
/* Max 4 chips per floor on DiskOnChip 2000 */
doc->chips_per_floor = 4;
/* Find out what the first chip is */
mfrid = doc200x_ident_chip(mtd, 0);
/* Find how many chips in each floor. */
for (i = 1; i < 4; i++) {
if (doc200x_ident_chip(mtd, i) != mfrid)
break;
}
doc->chips_per_floor = i;
pr_debug("Detected %d chips per floor.\n", i);
}
static void doc2001_write_byte(struct nand_chip *this, u_char datum)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
WriteDOC(datum, docptr, CDSNSlowIO);
WriteDOC(datum, docptr, Mil_CDSN_IO);
WriteDOC(datum, docptr, WritePipeTerm);
}
static void doc2001_writebuf(struct nand_chip *this, const u_char *buf, int len)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
int i;
for (i = 0; i < len; i++)
WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
/* Terminate write pipeline */
WriteDOC(0x00, docptr, WritePipeTerm);
}
static void doc2001_readbuf(struct nand_chip *this, u_char *buf, int len)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
int i;
/* Start read pipeline */
ReadDOC(docptr, ReadPipeInit);
for (i = 0; i < len - 1; i++)
buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
/* Terminate read pipeline */
buf[i] = ReadDOC(docptr, LastDataRead);
}
static void doc2001plus_writebuf(struct nand_chip *this, const u_char *buf, int len)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
int i;
if (debug)
printk("writebuf of %d bytes: ", len);
for (i = 0; i < len; i++) {
WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
if (debug && i < 16)
printk("%02x ", buf[i]);
}
if (debug)
printk("\n");
}
static void doc2001plus_readbuf(struct nand_chip *this, u_char *buf, int len)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
int i;
if (debug)
printk("readbuf of %d bytes: ", len);
/* Start read pipeline */
ReadDOC(docptr, Mplus_ReadPipeInit);
ReadDOC(docptr, Mplus_ReadPipeInit);
for (i = 0; i < len - 2; i++) {
buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
if (debug && i < 16)
printk("%02x ", buf[i]);
}
/* Terminate read pipeline */
if (len >= 2) {
buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
if (debug && i < 16)
printk("%02x ", buf[len - 2]);
}
buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
if (debug && i < 16)
printk("%02x ", buf[len - 1]);
if (debug)
printk("\n");
}
static void doc200x_write_control(struct doc_priv *doc, u8 value)
{
WriteDOC(value, doc->virtadr, CDSNControl);
/* 11.4.3 -- 4 NOPs after CSDNControl write */
DoC_Delay(doc, 4);
}
static void doc200x_exec_instr(struct nand_chip *this,
const struct nand_op_instr *instr)
{
struct doc_priv *doc = nand_get_controller_data(this);
unsigned int i;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_CLE);
doc2000_write_byte(this, instr->ctx.cmd.opcode);
break;
case NAND_OP_ADDR_INSTR:
doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_ALE);
for (i = 0; i < instr->ctx.addr.naddrs; i++) {
u8 addr = instr->ctx.addr.addrs[i];
if (DoC_is_2000(doc))
doc2000_write_byte(this, addr);
else
doc2001_write_byte(this, addr);
}
break;
case NAND_OP_DATA_IN_INSTR:
doc200x_write_control(doc, CDSN_CTRL_CE);
if (DoC_is_2000(doc))
doc2000_readbuf(this, instr->ctx.data.buf.in,
instr->ctx.data.len);
else
doc2001_readbuf(this, instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
doc200x_write_control(doc, CDSN_CTRL_CE);
if (DoC_is_2000(doc))
doc2000_writebuf(this, instr->ctx.data.buf.out,
instr->ctx.data.len);
else
doc2001_writebuf(this, instr->ctx.data.buf.out,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
DoC_WaitReady(doc);
break;
}
if (instr->delay_ns)
ndelay(instr->delay_ns);
}
static int doc200x_exec_op(struct nand_chip *this,
const struct nand_operation *op,
bool check_only)
{
struct doc_priv *doc = nand_get_controller_data(this);
unsigned int i;
if (check_only)
return true;
doc->curchip = op->cs % doc->chips_per_floor;
doc->curfloor = op->cs / doc->chips_per_floor;
WriteDOC(doc->curfloor, doc->virtadr, FloorSelect);
WriteDOC(doc->curchip, doc->virtadr, CDSNDeviceSelect);
/* Assert CE pin */
doc200x_write_control(doc, CDSN_CTRL_CE);
for (i = 0; i < op->ninstrs; i++)
doc200x_exec_instr(this, &op->instrs[i]);
/* De-assert CE pin */
doc200x_write_control(doc, 0);
return 0;
}
static void doc2001plus_write_pipe_term(struct doc_priv *doc)
{
WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm);
WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm);
}
static void doc2001plus_exec_instr(struct nand_chip *this,
const struct nand_op_instr *instr)
{
struct doc_priv *doc = nand_get_controller_data(this);
unsigned int i;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
WriteDOC(instr->ctx.cmd.opcode, doc->virtadr, Mplus_FlashCmd);
doc2001plus_write_pipe_term(doc);
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++) {
u8 addr = instr->ctx.addr.addrs[i];
WriteDOC(addr, doc->virtadr, Mplus_FlashAddress);
}
doc2001plus_write_pipe_term(doc);
/* deassert ALE */
WriteDOC(0, doc->virtadr, Mplus_FlashControl);
break;
case NAND_OP_DATA_IN_INSTR:
doc2001plus_readbuf(this, instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
doc2001plus_writebuf(this, instr->ctx.data.buf.out,
instr->ctx.data.len);
doc2001plus_write_pipe_term(doc);
break;
case NAND_OP_WAITRDY_INSTR:
DoC_WaitReady(doc);
break;
}
if (instr->delay_ns)
ndelay(instr->delay_ns);
}
static int doc2001plus_exec_op(struct nand_chip *this,
const struct nand_operation *op,
bool check_only)
{
struct doc_priv *doc = nand_get_controller_data(this);
unsigned int i;
if (check_only)
return true;
doc->curchip = op->cs % doc->chips_per_floor;
doc->curfloor = op->cs / doc->chips_per_floor;
/* Assert ChipEnable and deassert WriteProtect */
WriteDOC(DOC_FLASH_CE, doc->virtadr, Mplus_FlashSelect);
for (i = 0; i < op->ninstrs; i++)
doc2001plus_exec_instr(this, &op->instrs[i]);
/* De-assert ChipEnable */
WriteDOC(0, doc->virtadr, Mplus_FlashSelect);
return 0;
}
static void doc200x_enable_hwecc(struct nand_chip *this, int mode)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
/* Prime the ECC engine */
switch (mode) {
case NAND_ECC_READ:
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
WriteDOC(DOC_ECC_EN, docptr, ECCConf);
break;
case NAND_ECC_WRITE:
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
break;
}
}
static void doc2001plus_enable_hwecc(struct nand_chip *this, int mode)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
/* Prime the ECC engine */
switch (mode) {
case NAND_ECC_READ:
WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
break;
case NAND_ECC_WRITE:
WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
break;
}
}
/* This code is only called on write */
static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat,
unsigned char *ecc_code)
{
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
int i;
int __always_unused emptymatch = 1;
/* flush the pipeline */
if (DoC_is_2000(doc)) {
WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
WriteDOC(0, docptr, 2k_CDSN_IO);
WriteDOC(0, docptr, 2k_CDSN_IO);
WriteDOC(0, docptr, 2k_CDSN_IO);
WriteDOC(doc->CDSNControl, docptr, CDSNControl);
} else if (DoC_is_MillenniumPlus(doc)) {
WriteDOC(0, docptr, Mplus_NOP);
WriteDOC(0, docptr, Mplus_NOP);
WriteDOC(0, docptr, Mplus_NOP);
} else {
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
}
for (i = 0; i < 6; i++) {
if (DoC_is_MillenniumPlus(doc))
ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
else
ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
if (ecc_code[i] != empty_write_ecc[i])
emptymatch = 0;
}
if (DoC_is_MillenniumPlus(doc))
WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
else
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
#if 0
/* If emptymatch=1, we might have an all-0xff data buffer. Check. */
if (emptymatch) {
/* Note: this somewhat expensive test should not be triggered
often. It could be optimized away by examining the data in
the writebuf routine, and remembering the result. */
for (i = 0; i < 512; i++) {
if (dat[i] == 0xff)
continue;
emptymatch = 0;
break;
}
}
/* If emptymatch still =1, we do have an all-0xff data buffer.
Return all-0xff ecc value instead of the computed one, so
it'll look just like a freshly-erased page. */
if (emptymatch)
memset(ecc_code, 0xff, 6);
#endif
return 0;
}
static int doc200x_correct_data(struct nand_chip *this, u_char *dat,
u_char *read_ecc, u_char *isnull)
{
int i, ret = 0;
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
uint8_t calc_ecc[6];
volatile u_char dummy;
/* flush the pipeline */
if (DoC_is_2000(doc)) {
dummy = ReadDOC(docptr, 2k_ECCStatus);
dummy = ReadDOC(docptr, 2k_ECCStatus);
dummy = ReadDOC(docptr, 2k_ECCStatus);
} else if (DoC_is_MillenniumPlus(doc)) {
dummy = ReadDOC(docptr, Mplus_ECCConf);
dummy = ReadDOC(docptr, Mplus_ECCConf);
dummy = ReadDOC(docptr, Mplus_ECCConf);
} else {
dummy = ReadDOC(docptr, ECCConf);
dummy = ReadDOC(docptr, ECCConf);
dummy = ReadDOC(docptr, ECCConf);
}
/* Error occurred ? */
if (dummy & 0x80) {
for (i = 0; i < 6; i++) {
if (DoC_is_MillenniumPlus(doc))
calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
else
calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
}
ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc);
if (ret > 0)
pr_err("doc200x_correct_data corrected %d errors\n",
ret);
}
if (DoC_is_MillenniumPlus(doc))
WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
else
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
if (no_ecc_failures && mtd_is_eccerr(ret)) {
pr_err("suppressing ECC failure\n");
ret = 0;
}
return ret;
}
//u_char mydatabuf[528];
static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
oobregion->offset = 0;
oobregion->length = 6;
return 0;
}
static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section > 1)
return -ERANGE;
/*
* The strange out-of-order free bytes definition is a (possibly
* unneeded) attempt to retain compatibility. It used to read:
* .oobfree = { {8, 8} }
* Since that leaves two bytes unusable, it was changed. But the
* following scheme might affect existing jffs2 installs by moving the
* cleanmarker:
* .oobfree = { {6, 10} }
* jffs2 seems to handle the above gracefully, but the current scheme
* seems safer. The only problem with it is that any code retrieving
* free bytes position must be able to handle out-of-order segments.
*/
if (!section) {
oobregion->offset = 8;
oobregion->length = 8;
} else {
oobregion->offset = 6;
oobregion->length = 2;
}
return 0;
}
static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
.ecc = doc200x_ooblayout_ecc,
.free = doc200x_ooblayout_free,
};
/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
On successful return, buf will contain a copy of the media header for
further processing. id is the string to scan for, and will presumably be
either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
header. The page #s of the found media headers are placed in mh0_page and
mh1_page in the DOC private structure. */
static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
unsigned offs;
int ret;
size_t retlen;
for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
if (retlen != mtd->writesize)
continue;
if (ret) {
pr_warn("ECC error scanning DOC at 0x%x\n", offs);
}
if (memcmp(buf, id, 6))
continue;
pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
if (doc->mh0_page == -1) {
doc->mh0_page = offs >> this->page_shift;
if (!findmirror)
return 1;
continue;
}
doc->mh1_page = offs >> this->page_shift;
return 2;
}
if (doc->mh0_page == -1) {
pr_warn("DiskOnChip %s Media Header not found.\n", id);
return 0;
}
/* Only one mediaheader was found. We want buf to contain a
mediaheader on return, so we'll have to re-read the one we found. */
offs = doc->mh0_page << this->page_shift;
ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
if (retlen != mtd->writesize) {
/* Insanity. Give up. */
pr_err("Read DiskOnChip Media Header once, but can't reread it???\n");
return 0;
}
return 1;
}
static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
struct nand_memory_organization *memorg;
int ret = 0;
u_char *buf;
struct NFTLMediaHeader *mh;
const unsigned psize = 1 << this->page_shift;
int numparts = 0;
unsigned blocks, maxblocks;
int offs, numheaders;
memorg = nanddev_get_memorg(&this->base);
buf = kmalloc(mtd->writesize, GFP_KERNEL);
if (!buf) {
return 0;
}
if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
goto out;
mh = (struct NFTLMediaHeader *)buf;
le16_to_cpus(&mh->NumEraseUnits);
le16_to_cpus(&mh->FirstPhysicalEUN);
le32_to_cpus(&mh->FormattedSize);
pr_info(" DataOrgID = %s\n"
" NumEraseUnits = %d\n"
" FirstPhysicalEUN = %d\n"
" FormattedSize = %d\n"
" UnitSizeFactor = %d\n",
mh->DataOrgID, mh->NumEraseUnits,
mh->FirstPhysicalEUN, mh->FormattedSize,
mh->UnitSizeFactor);
blocks = mtd->size >> this->phys_erase_shift;
maxblocks = min(32768U, mtd->erasesize - psize);
if (mh->UnitSizeFactor == 0x00) {
/* Auto-determine UnitSizeFactor. The constraints are:
- There can be at most 32768 virtual blocks.
- There can be at most (virtual block size - page size)
virtual blocks (because MediaHeader+BBT must fit in 1).
*/
mh->UnitSizeFactor = 0xff;
while (blocks > maxblocks) {
blocks >>= 1;
maxblocks = min(32768U, (maxblocks << 1) + psize);
mh->UnitSizeFactor--;
}
pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
}
/* NOTE: The lines below modify internal variables of the NAND and MTD
layers; variables with have already been configured by nand_scan.
Unfortunately, we didn't know before this point what these values
should be. Thus, this code is somewhat dependent on the exact
implementation of the NAND layer. */
if (mh->UnitSizeFactor != 0xff) {
this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
memorg->pages_per_eraseblock <<= (0xff - mh->UnitSizeFactor);
mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
blocks = mtd->size >> this->bbt_erase_shift;
maxblocks = min(32768U, mtd->erasesize - psize);
}
if (blocks > maxblocks) {
pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
goto out;
}
/* Skip past the media headers. */
offs = max(doc->mh0_page, doc->mh1_page);
offs <<= this->page_shift;
offs += mtd->erasesize;
if (show_firmware_partition == 1) {
parts[0].name = " DiskOnChip Firmware / Media Header partition";
parts[0].offset = 0;
parts[0].size = offs;
numparts = 1;
}
parts[numparts].name = " DiskOnChip BDTL partition";
parts[numparts].offset = offs;
parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
offs += parts[numparts].size;
numparts++;
if (offs < mtd->size) {
parts[numparts].name = " DiskOnChip Remainder partition";
parts[numparts].offset = offs;
parts[numparts].size = mtd->size - offs;
numparts++;
}
ret = numparts;
out:
kfree(buf);
return ret;
}
/* This is a stripped-down copy of the code in inftlmount.c */
static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
int ret = 0;
u_char *buf;
struct INFTLMediaHeader *mh;
struct INFTLPartition *ip;
int numparts = 0;
int blocks;
int vshift, lastvunit = 0;
int i;
int end = mtd->size;
if (inftl_bbt_write)
end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
buf = kmalloc(mtd->writesize, GFP_KERNEL);
if (!buf) {
return 0;
}
if (!find_media_headers(mtd, buf, "BNAND", 0))
goto out;
doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
mh = (struct INFTLMediaHeader *)buf;
le32_to_cpus(&mh->NoOfBootImageBlocks);
le32_to_cpus(&mh->NoOfBinaryPartitions);
le32_to_cpus(&mh->NoOfBDTLPartitions);
le32_to_cpus(&mh->BlockMultiplierBits);
le32_to_cpus(&mh->FormatFlags);
le32_to_cpus(&mh->PercentUsed);
pr_info(" bootRecordID = %s\n"
" NoOfBootImageBlocks = %d\n"
" NoOfBinaryPartitions = %d\n"
" NoOfBDTLPartitions = %d\n"
" BlockMultiplierBits = %d\n"
" FormatFlgs = %d\n"
" OsakVersion = %d.%d.%d.%d\n"
" PercentUsed = %d\n",
mh->bootRecordID, mh->NoOfBootImageBlocks,
mh->NoOfBinaryPartitions,
mh->NoOfBDTLPartitions,
mh->BlockMultiplierBits, mh->FormatFlags,
((unsigned char *) &mh->OsakVersion)[0] & 0xf,
((unsigned char *) &mh->OsakVersion)[1] & 0xf,
((unsigned char *) &mh->OsakVersion)[2] & 0xf,
((unsigned char *) &mh->OsakVersion)[3] & 0xf,
mh->PercentUsed);
vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
blocks = mtd->size >> vshift;
if (blocks > 32768) {
pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
goto out;
}
blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
if (inftl_bbt_write && (blocks > mtd->erasesize)) {
pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
goto out;
}
/* Scan the partitions */
for (i = 0; (i < 4); i++) {
ip = &(mh->Partitions[i]);
le32_to_cpus(&ip->virtualUnits);
le32_to_cpus(&ip->firstUnit);
le32_to_cpus(&ip->lastUnit);
le32_to_cpus(&ip->flags);
le32_to_cpus(&ip->spareUnits);
le32_to_cpus(&ip->Reserved0);
pr_info(" PARTITION[%d] ->\n"
" virtualUnits = %d\n"
" firstUnit = %d\n"
" lastUnit = %d\n"
" flags = 0x%x\n"
" spareUnits = %d\n",
i, ip->virtualUnits, ip->firstUnit,
ip->lastUnit, ip->flags,
ip->spareUnits);
if ((show_firmware_partition == 1) &&
(i == 0) && (ip->firstUnit > 0)) {
parts[0].name = " DiskOnChip IPL / Media Header partition";
parts[0].offset = 0;
parts[0].size = mtd->erasesize * ip->firstUnit;
numparts = 1;
}
if (ip->flags & INFTL_BINARY)
parts[numparts].name = " DiskOnChip BDK partition";
else
parts[numparts].name = " DiskOnChip BDTL partition";
parts[numparts].offset = ip->firstUnit << vshift;
parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
numparts++;
if (ip->lastUnit > lastvunit)
lastvunit = ip->lastUnit;
if (ip->flags & INFTL_LAST)
break;
}
lastvunit++;
if ((lastvunit << vshift) < end) {
parts[numparts].name = " DiskOnChip Remainder partition";
parts[numparts].offset = lastvunit << vshift;
parts[numparts].size = end - parts[numparts].offset;
numparts++;
}
ret = numparts;
out:
kfree(buf);
return ret;
}
static int __init nftl_scan_bbt(struct mtd_info *mtd)
{
int ret, numparts;
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
struct mtd_partition parts[2];
memset((char *)parts, 0, sizeof(parts));
/* On NFTL, we have to find the media headers before we can read the
BBTs, since they're stored in the media header eraseblocks. */
numparts = nftl_partscan(mtd, parts);
if (!numparts)
return -EIO;
this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
NAND_BBT_VERSION;
this->bbt_td->veroffs = 7;
this->bbt_td->pages[0] = doc->mh0_page + 1;
if (doc->mh1_page != -1) {
this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
NAND_BBT_VERSION;
this->bbt_md->veroffs = 7;
this->bbt_md->pages[0] = doc->mh1_page + 1;
} else {
this->bbt_md = NULL;
}
ret = nand_create_bbt(this);
if (ret)
return ret;
return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
}
static int __init inftl_scan_bbt(struct mtd_info *mtd)
{
int ret, numparts;
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
struct mtd_partition parts[5];
if (nanddev_ntargets(&this->base) > doc->chips_per_floor) {
pr_err("Multi-floor INFTL devices not yet supported.\n");
return -EIO;
}
if (DoC_is_MillenniumPlus(doc)) {
this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
if (inftl_bbt_write)
this->bbt_td->options |= NAND_BBT_WRITE;
this->bbt_td->pages[0] = 2;
this->bbt_md = NULL;
} else {
this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
if (inftl_bbt_write)
this->bbt_td->options |= NAND_BBT_WRITE;
this->bbt_td->offs = 8;
this->bbt_td->len = 8;
this->bbt_td->veroffs = 7;
this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
this->bbt_td->reserved_block_code = 0x01;
this->bbt_td->pattern = "MSYS_BBT";
this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
if (inftl_bbt_write)
this->bbt_md->options |= NAND_BBT_WRITE;
this->bbt_md->offs = 8;
this->bbt_md->len = 8;
this->bbt_md->veroffs = 7;
this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
this->bbt_md->reserved_block_code = 0x01;
this->bbt_md->pattern = "TBB_SYSM";
}
ret = nand_create_bbt(this);
if (ret)
return ret;
memset((char *)parts, 0, sizeof(parts));
numparts = inftl_partscan(mtd, parts);
/* At least for now, require the INFTL Media Header. We could probably
do without it for non-INFTL use, since all it gives us is
autopartitioning, but I want to give it more thought. */
if (!numparts)
return -EIO;
return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
}
static inline int __init doc2000_init(struct mtd_info *mtd)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
doc->late_init = nftl_scan_bbt;
doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
doc2000_count_chips(mtd);
mtd->name = "DiskOnChip 2000 (NFTL Model)";
return (4 * doc->chips_per_floor);
}
static inline int __init doc2001_init(struct mtd_info *mtd)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
ReadDOC(doc->virtadr, ChipID);
ReadDOC(doc->virtadr, ChipID);
ReadDOC(doc->virtadr, ChipID);
if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
/* It's not a Millennium; it's one of the newer
DiskOnChip 2000 units with a similar ASIC.
Treat it like a Millennium, except that it
can have multiple chips. */
doc2000_count_chips(mtd);
mtd->name = "DiskOnChip 2000 (INFTL Model)";
doc->late_init = inftl_scan_bbt;
return (4 * doc->chips_per_floor);
} else {
/* Bog-standard Millennium */
doc->chips_per_floor = 1;
mtd->name = "DiskOnChip Millennium";
doc->late_init = nftl_scan_bbt;
return 1;
}
}
static inline int __init doc2001plus_init(struct mtd_info *mtd)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct doc_priv *doc = nand_get_controller_data(this);
doc->late_init = inftl_scan_bbt;
this->ecc.hwctl = doc2001plus_enable_hwecc;
doc->chips_per_floor = 1;
mtd->name = "DiskOnChip Millennium Plus";
return 1;
}
static int doc200x_attach_chip(struct nand_chip *chip)
{
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
return 0;
chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
chip->ecc.size = 512;
chip->ecc.bytes = 6;
chip->ecc.strength = 2;
chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
chip->ecc.hwctl = doc200x_enable_hwecc;
chip->ecc.calculate = doc200x_calculate_ecc;
chip->ecc.correct = doc200x_correct_data;
return 0;
}
static const struct nand_controller_ops doc200x_ops = {
.exec_op = doc200x_exec_op,
.attach_chip = doc200x_attach_chip,
};
static const struct nand_controller_ops doc2001plus_ops = {
.exec_op = doc2001plus_exec_op,
.attach_chip = doc200x_attach_chip,
};
static int __init doc_probe(unsigned long physadr)
{
struct nand_chip *nand = NULL;
struct doc_priv *doc = NULL;
unsigned char ChipID;
struct mtd_info *mtd;
void __iomem *virtadr;
unsigned char save_control;
unsigned char tmp, tmpb, tmpc;
int reg, len, numchips;
int ret = 0;
if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
return -EBUSY;
virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
if (!virtadr) {
pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n",
DOC_IOREMAP_LEN, physadr);
ret = -EIO;
goto error_ioremap;
}
/* It's not possible to cleanly detect the DiskOnChip - the
* bootup procedure will put the device into reset mode, and
* it's not possible to talk to it without actually writing
* to the DOCControl register. So we store the current contents
* of the DOCControl register's location, in case we later decide
* that it's not a DiskOnChip, and want to put it back how we
* found it.
*/
save_control = ReadDOC(virtadr, DOCControl);
/* Reset the DiskOnChip ASIC */
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
/* Enable the DiskOnChip ASIC */
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
ChipID = ReadDOC(virtadr, ChipID);
switch (ChipID) {
case DOC_ChipID_Doc2k:
reg = DoC_2k_ECCStatus;
break;
case DOC_ChipID_DocMil:
reg = DoC_ECCConf;
break;
case DOC_ChipID_DocMilPlus16:
case DOC_ChipID_DocMilPlus32:
case 0:
/* Possible Millennium Plus, need to do more checks */
/* Possibly release from power down mode */
for (tmp = 0; (tmp < 4); tmp++)
ReadDOC(virtadr, Mplus_Power);
/* Reset the Millennium Plus ASIC */
tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
WriteDOC(tmp, virtadr, Mplus_DOCControl);
WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
usleep_range(1000, 2000);
/* Enable the Millennium Plus ASIC */
tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
WriteDOC(tmp, virtadr, Mplus_DOCControl);
WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
usleep_range(1000, 2000);
ChipID = ReadDOC(virtadr, ChipID);
switch (ChipID) {
case DOC_ChipID_DocMilPlus16:
reg = DoC_Mplus_Toggle;
break;
case DOC_ChipID_DocMilPlus32:
pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
fallthrough;
default:
ret = -ENODEV;
goto notfound;
}
break;
default:
ret = -ENODEV;
goto notfound;
}
/* Check the TOGGLE bit in the ECC register */
tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
if ((tmp == tmpb) || (tmp != tmpc)) {
pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
ret = -ENODEV;
goto notfound;
}
for (mtd = doclist; mtd; mtd = doc->nextdoc) {
unsigned char oldval;
unsigned char newval;
nand = mtd_to_nand(mtd);
doc = nand_get_controller_data(nand);
/* Use the alias resolution register to determine if this is
in fact the same DOC aliased to a new address. If writes
to one chip's alias resolution register change the value on
the other chip, they're the same chip. */
if (ChipID == DOC_ChipID_DocMilPlus16) {
oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
newval = ReadDOC(virtadr, Mplus_AliasResolution);
} else {
oldval = ReadDOC(doc->virtadr, AliasResolution);
newval = ReadDOC(virtadr, AliasResolution);
}
if (oldval != newval)
continue;
if (ChipID == DOC_ChipID_DocMilPlus16) {
WriteDOC(~newval, virtadr, Mplus_AliasResolution);
oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
} else {
WriteDOC(~newval, virtadr, AliasResolution);
oldval = ReadDOC(doc->virtadr, AliasResolution);
WriteDOC(newval, virtadr, AliasResolution); // restore it
}
newval = ~newval;
if (oldval == newval) {
pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n",
doc->physadr, physadr);
goto notfound;
}
}
pr_notice("DiskOnChip found at 0x%lx\n", physadr);
len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
(2 * sizeof(struct nand_bbt_descr));
nand = kzalloc(len, GFP_KERNEL);
if (!nand) {
ret = -ENOMEM;
goto fail;
}
/*
* Allocate a RS codec instance
*
* Symbolsize is 10 (bits)
* Primitve polynomial is x^10+x^3+1
* First consecutive root is 510
* Primitve element to generate roots = 1
* Generator polinomial degree = 4
*/
doc = (struct doc_priv *) (nand + 1);
doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
if (!doc->rs_decoder) {
pr_err("DiskOnChip: Could not create a RS codec\n");
ret = -ENOMEM;
goto fail;
}
nand_controller_init(&doc->base);
if (ChipID == DOC_ChipID_DocMilPlus16)
doc->base.ops = &doc2001plus_ops;
else
doc->base.ops = &doc200x_ops;
mtd = nand_to_mtd(nand);
nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
nand->bbt_md = nand->bbt_td + 1;
mtd->owner = THIS_MODULE;
mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
nand->controller = &doc->base;
nand_set_controller_data(nand, doc);
nand->bbt_options = NAND_BBT_USE_FLASH;
/* Skip the automatic BBT scan so we can run it manually */
nand->options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK;
doc->physadr = physadr;
doc->virtadr = virtadr;
doc->ChipID = ChipID;
doc->curfloor = -1;
doc->curchip = -1;
doc->mh0_page = -1;
doc->mh1_page = -1;
doc->nextdoc = doclist;
if (ChipID == DOC_ChipID_Doc2k)
numchips = doc2000_init(mtd);
else if (ChipID == DOC_ChipID_DocMilPlus16)
numchips = doc2001plus_init(mtd);
else
numchips = doc2001_init(mtd);
if ((ret = nand_scan(nand, numchips)) || (ret = doc->late_init(mtd))) {
/* DBB note: i believe nand_cleanup is necessary here, as
buffers may have been allocated in nand_base. Check with
Thomas. FIX ME! */
nand_cleanup(nand);
goto fail;
}
/* Success! */
doclist = mtd;
return 0;
notfound:
/* Put back the contents of the DOCControl register, in case it's not
actually a DiskOnChip. */
WriteDOC(save_control, virtadr, DOCControl);
fail:
if (doc)
free_rs(doc->rs_decoder);
kfree(nand);
iounmap(virtadr);
error_ioremap:
release_mem_region(physadr, DOC_IOREMAP_LEN);
return ret;
}
static void release_nanddoc(void)
{
struct mtd_info *mtd, *nextmtd;
struct nand_chip *nand;
struct doc_priv *doc;
int ret;
for (mtd = doclist; mtd; mtd = nextmtd) {
nand = mtd_to_nand(mtd);
doc = nand_get_controller_data(nand);
nextmtd = doc->nextdoc;
ret = mtd_device_unregister(mtd);
WARN_ON(ret);
nand_cleanup(nand);
iounmap(doc->virtadr);
release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
free_rs(doc->rs_decoder);
kfree(nand);
}
}
static int __init init_nanddoc(void)
{
int i, ret = 0;
if (doc_config_location) {
pr_info("Using configured DiskOnChip probe address 0x%lx\n",
doc_config_location);
ret = doc_probe(doc_config_location);
if (ret < 0)
return ret;
} else {
for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
doc_probe(doc_locations[i]);
}
}
/* No banner message any more. Print a message if no DiskOnChip
found, so the user knows we at least tried. */
if (!doclist) {
pr_info("No valid DiskOnChip devices found\n");
ret = -ENODEV;
}
return ret;
}
static void __exit cleanup_nanddoc(void)
{
/* Cleanup the nand/DoC resources */
release_nanddoc();
}
module_init(init_nanddoc);
module_exit(cleanup_nanddoc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");