linux/linux-5.18.11/drivers/media/cec/platform/meson/ao-cec-g12a.c

795 lines
21 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for Amlogic Meson AO CEC G12A Controller
*
* Copyright (C) 2017 Amlogic, Inc. All rights reserved
* Copyright (C) 2019 BayLibre, SAS
* Author: Neil Armstrong <narmstrong@baylibre.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/regmap.h>
#include <media/cec.h>
#include <media/cec-notifier.h>
#include <linux/clk-provider.h>
/* CEC Registers */
#define CECB_CLK_CNTL_REG0 0x00
#define CECB_CLK_CNTL_N1 GENMASK(11, 0)
#define CECB_CLK_CNTL_N2 GENMASK(23, 12)
#define CECB_CLK_CNTL_DUAL_EN BIT(28)
#define CECB_CLK_CNTL_OUTPUT_EN BIT(30)
#define CECB_CLK_CNTL_INPUT_EN BIT(31)
#define CECB_CLK_CNTL_REG1 0x04
#define CECB_CLK_CNTL_M1 GENMASK(11, 0)
#define CECB_CLK_CNTL_M2 GENMASK(23, 12)
#define CECB_CLK_CNTL_BYPASS_EN BIT(24)
/*
* [14:12] Filter_del. For glitch-filtering CEC line, ignore signal
* change pulse width < filter_del * T(filter_tick) * 3.
* [9:8] Filter_tick_sel: Select which periodical pulse for
* glitch-filtering CEC line signal.
* - 0=Use T(xtal)*3 = 125ns;
* - 1=Use once-per-1us pulse;
* - 2=Use once-per-10us pulse;
* - 3=Use once-per-100us pulse.
* [3] Sysclk_en. 0=Disable system clock; 1=Enable system clock.
* [2:1] cntl_clk
* - 0 = Disable clk (Power-off mode)
* - 1 = Enable gated clock (Normal mode)
* - 2 = Enable free-run clk (Debug mode)
* [0] SW_RESET 1=Apply reset; 0=No reset.
*/
#define CECB_GEN_CNTL_REG 0x08
#define CECB_GEN_CNTL_RESET BIT(0)
#define CECB_GEN_CNTL_CLK_DISABLE 0
#define CECB_GEN_CNTL_CLK_ENABLE 1
#define CECB_GEN_CNTL_CLK_ENABLE_DBG 2
#define CECB_GEN_CNTL_CLK_CTRL_MASK GENMASK(2, 1)
#define CECB_GEN_CNTL_SYS_CLK_EN BIT(3)
#define CECB_GEN_CNTL_FILTER_TICK_125NS 0
#define CECB_GEN_CNTL_FILTER_TICK_1US 1
#define CECB_GEN_CNTL_FILTER_TICK_10US 2
#define CECB_GEN_CNTL_FILTER_TICK_100US 3
#define CECB_GEN_CNTL_FILTER_TICK_SEL GENMASK(9, 8)
#define CECB_GEN_CNTL_FILTER_DEL GENMASK(14, 12)
/*
* [7:0] cec_reg_addr
* [15:8] cec_reg_wrdata
* [16] cec_reg_wr
* - 0 = Read
* - 1 = Write
* [31:24] cec_reg_rddata
*/
#define CECB_RW_REG 0x0c
#define CECB_RW_ADDR GENMASK(7, 0)
#define CECB_RW_WR_DATA GENMASK(15, 8)
#define CECB_RW_WRITE_EN BIT(16)
#define CECB_RW_BUS_BUSY BIT(23)
#define CECB_RW_RD_DATA GENMASK(31, 24)
/*
* [0] DONE Interrupt
* [1] End Of Message Interrupt
* [2] Not Acknowlegde Interrupt
* [3] Arbitration Loss Interrupt
* [4] Initiator Error Interrupt
* [5] Follower Error Interrupt
* [6] Wake-Up Interrupt
*/
#define CECB_INTR_MASKN_REG 0x10
#define CECB_INTR_CLR_REG 0x14
#define CECB_INTR_STAT_REG 0x18
#define CECB_INTR_DONE BIT(0)
#define CECB_INTR_EOM BIT(1)
#define CECB_INTR_NACK BIT(2)
#define CECB_INTR_ARB_LOSS BIT(3)
#define CECB_INTR_INITIATOR_ERR BIT(4)
#define CECB_INTR_FOLLOWER_ERR BIT(5)
#define CECB_INTR_WAKE_UP BIT(6)
/* CEC Commands */
#define CECB_CTRL 0x00
#define CECB_CTRL_SEND BIT(0)
#define CECB_CTRL_TYPE GENMASK(2, 1)
#define CECB_CTRL_TYPE_RETRY 0
#define CECB_CTRL_TYPE_NEW 1
#define CECB_CTRL_TYPE_NEXT 2
#define CECB_CTRL2 0x01
#define CECB_CTRL2_RISE_DEL_MAX GENMASK(4, 0)
#define CECB_INTR_MASK 0x02
#define CECB_LADD_LOW 0x05
#define CECB_LADD_HIGH 0x06
#define CECB_TX_CNT 0x07
#define CECB_RX_CNT 0x08
#define CECB_STAT0 0x09
#define CECB_TX_DATA00 0x10
#define CECB_TX_DATA01 0x11
#define CECB_TX_DATA02 0x12
#define CECB_TX_DATA03 0x13
#define CECB_TX_DATA04 0x14
#define CECB_TX_DATA05 0x15
#define CECB_TX_DATA06 0x16
#define CECB_TX_DATA07 0x17
#define CECB_TX_DATA08 0x18
#define CECB_TX_DATA09 0x19
#define CECB_TX_DATA10 0x1A
#define CECB_TX_DATA11 0x1B
#define CECB_TX_DATA12 0x1C
#define CECB_TX_DATA13 0x1D
#define CECB_TX_DATA14 0x1E
#define CECB_TX_DATA15 0x1F
#define CECB_RX_DATA00 0x20
#define CECB_RX_DATA01 0x21
#define CECB_RX_DATA02 0x22
#define CECB_RX_DATA03 0x23
#define CECB_RX_DATA04 0x24
#define CECB_RX_DATA05 0x25
#define CECB_RX_DATA06 0x26
#define CECB_RX_DATA07 0x27
#define CECB_RX_DATA08 0x28
#define CECB_RX_DATA09 0x29
#define CECB_RX_DATA10 0x2A
#define CECB_RX_DATA11 0x2B
#define CECB_RX_DATA12 0x2C
#define CECB_RX_DATA13 0x2D
#define CECB_RX_DATA14 0x2E
#define CECB_RX_DATA15 0x2F
#define CECB_LOCK_BUF 0x30
#define CECB_LOCK_BUF_EN BIT(0)
#define CECB_WAKEUPCTRL 0x31
struct meson_ao_cec_g12a_data {
/* Setup the internal CECB_CTRL2 register */
bool ctrl2_setup;
};
struct meson_ao_cec_g12a_device {
struct platform_device *pdev;
struct regmap *regmap;
struct regmap *regmap_cec;
spinlock_t cec_reg_lock;
struct cec_notifier *notify;
struct cec_adapter *adap;
struct cec_msg rx_msg;
struct clk *oscin;
struct clk *core;
const struct meson_ao_cec_g12a_data *data;
};
static const struct regmap_config meson_ao_cec_g12a_regmap_conf = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = CECB_INTR_STAT_REG,
};
/*
* The AO-CECB embeds a dual/divider to generate a more precise
* 32,768KHz clock for CEC core clock.
* ______ ______
* | | | |
* ______ | Div1 |-| Cnt1 | ______
* | | /|______| |______|\ | |
* Xtal-->| Gate |---| ______ ______ X-X--| Gate |-->
* |______| | \| | | |/ | |______|
* | | Div2 |-| Cnt2 | |
* | |______| |______| |
* |_______________________|
*
* The dividing can be switched to single or dual, with a counter
* for each divider to set when the switching is done.
* The entire dividing mechanism can be also bypassed.
*/
struct meson_ao_cec_g12a_dualdiv_clk {
struct clk_hw hw;
struct regmap *regmap;
};
#define hw_to_meson_ao_cec_g12a_dualdiv_clk(_hw) \
container_of(_hw, struct meson_ao_cec_g12a_dualdiv_clk, hw) \
static unsigned long
meson_ao_cec_g12a_dualdiv_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct meson_ao_cec_g12a_dualdiv_clk *dualdiv_clk =
hw_to_meson_ao_cec_g12a_dualdiv_clk(hw);
unsigned long n1;
u32 reg0, reg1;
regmap_read(dualdiv_clk->regmap, CECB_CLK_CNTL_REG0, &reg0);
regmap_read(dualdiv_clk->regmap, CECB_CLK_CNTL_REG0, &reg1);
if (reg1 & CECB_CLK_CNTL_BYPASS_EN)
return parent_rate;
if (reg0 & CECB_CLK_CNTL_DUAL_EN) {
unsigned long n2, m1, m2, f1, f2, p1, p2;
n1 = FIELD_GET(CECB_CLK_CNTL_N1, reg0) + 1;
n2 = FIELD_GET(CECB_CLK_CNTL_N2, reg0) + 1;
m1 = FIELD_GET(CECB_CLK_CNTL_M1, reg1) + 1;
m2 = FIELD_GET(CECB_CLK_CNTL_M1, reg1) + 1;
f1 = DIV_ROUND_CLOSEST(parent_rate, n1);
f2 = DIV_ROUND_CLOSEST(parent_rate, n2);
p1 = DIV_ROUND_CLOSEST(100000000 * m1, f1 * (m1 + m2));
p2 = DIV_ROUND_CLOSEST(100000000 * m2, f2 * (m1 + m2));
return DIV_ROUND_UP(100000000, p1 + p2);
}
n1 = FIELD_GET(CECB_CLK_CNTL_N1, reg0) + 1;
return DIV_ROUND_CLOSEST(parent_rate, n1);
}
static int meson_ao_cec_g12a_dualdiv_clk_enable(struct clk_hw *hw)
{
struct meson_ao_cec_g12a_dualdiv_clk *dualdiv_clk =
hw_to_meson_ao_cec_g12a_dualdiv_clk(hw);
/* Disable Input & Output */
regmap_update_bits(dualdiv_clk->regmap, CECB_CLK_CNTL_REG0,
CECB_CLK_CNTL_INPUT_EN | CECB_CLK_CNTL_OUTPUT_EN,
0);
/* Set N1 & N2 */
regmap_update_bits(dualdiv_clk->regmap, CECB_CLK_CNTL_REG0,
CECB_CLK_CNTL_N1,
FIELD_PREP(CECB_CLK_CNTL_N1, 733 - 1));
regmap_update_bits(dualdiv_clk->regmap, CECB_CLK_CNTL_REG0,
CECB_CLK_CNTL_N2,
FIELD_PREP(CECB_CLK_CNTL_N2, 732 - 1));
/* Set M1 & M2 */
regmap_update_bits(dualdiv_clk->regmap, CECB_CLK_CNTL_REG1,
CECB_CLK_CNTL_M1,
FIELD_PREP(CECB_CLK_CNTL_M1, 8 - 1));
regmap_update_bits(dualdiv_clk->regmap, CECB_CLK_CNTL_REG1,
CECB_CLK_CNTL_M2,
FIELD_PREP(CECB_CLK_CNTL_M2, 11 - 1));
/* Enable Dual divisor */
regmap_update_bits(dualdiv_clk->regmap, CECB_CLK_CNTL_REG0,
CECB_CLK_CNTL_DUAL_EN, CECB_CLK_CNTL_DUAL_EN);
/* Disable divisor bypass */
regmap_update_bits(dualdiv_clk->regmap, CECB_CLK_CNTL_REG1,
CECB_CLK_CNTL_BYPASS_EN, 0);
/* Enable Input & Output */
regmap_update_bits(dualdiv_clk->regmap, CECB_CLK_CNTL_REG0,
CECB_CLK_CNTL_INPUT_EN | CECB_CLK_CNTL_OUTPUT_EN,
CECB_CLK_CNTL_INPUT_EN | CECB_CLK_CNTL_OUTPUT_EN);
return 0;
}
static void meson_ao_cec_g12a_dualdiv_clk_disable(struct clk_hw *hw)
{
struct meson_ao_cec_g12a_dualdiv_clk *dualdiv_clk =
hw_to_meson_ao_cec_g12a_dualdiv_clk(hw);
regmap_update_bits(dualdiv_clk->regmap, CECB_CLK_CNTL_REG0,
CECB_CLK_CNTL_INPUT_EN | CECB_CLK_CNTL_OUTPUT_EN,
0);
}
static int meson_ao_cec_g12a_dualdiv_clk_is_enabled(struct clk_hw *hw)
{
struct meson_ao_cec_g12a_dualdiv_clk *dualdiv_clk =
hw_to_meson_ao_cec_g12a_dualdiv_clk(hw);
int val;
regmap_read(dualdiv_clk->regmap, CECB_CLK_CNTL_REG0, &val);
return !!(val & (CECB_CLK_CNTL_INPUT_EN | CECB_CLK_CNTL_OUTPUT_EN));
}
static const struct clk_ops meson_ao_cec_g12a_dualdiv_clk_ops = {
.recalc_rate = meson_ao_cec_g12a_dualdiv_clk_recalc_rate,
.is_enabled = meson_ao_cec_g12a_dualdiv_clk_is_enabled,
.enable = meson_ao_cec_g12a_dualdiv_clk_enable,
.disable = meson_ao_cec_g12a_dualdiv_clk_disable,
};
static int meson_ao_cec_g12a_setup_clk(struct meson_ao_cec_g12a_device *ao_cec)
{
struct meson_ao_cec_g12a_dualdiv_clk *dualdiv_clk;
struct device *dev = &ao_cec->pdev->dev;
struct clk_init_data init;
const char *parent_name;
struct clk *clk;
char *name;
dualdiv_clk = devm_kzalloc(dev, sizeof(*dualdiv_clk), GFP_KERNEL);
if (!dualdiv_clk)
return -ENOMEM;
name = kasprintf(GFP_KERNEL, "%s#dualdiv_clk", dev_name(dev));
if (!name)
return -ENOMEM;
parent_name = __clk_get_name(ao_cec->oscin);
init.name = name;
init.ops = &meson_ao_cec_g12a_dualdiv_clk_ops;
init.flags = 0;
init.parent_names = &parent_name;
init.num_parents = 1;
dualdiv_clk->regmap = ao_cec->regmap;
dualdiv_clk->hw.init = &init;
clk = devm_clk_register(dev, &dualdiv_clk->hw);
kfree(name);
if (IS_ERR(clk)) {
dev_err(dev, "failed to register clock\n");
return PTR_ERR(clk);
}
ao_cec->core = clk;
return 0;
}
static int meson_ao_cec_g12a_read(void *context, unsigned int addr,
unsigned int *data)
{
struct meson_ao_cec_g12a_device *ao_cec = context;
u32 reg = FIELD_PREP(CECB_RW_ADDR, addr);
int ret = 0;
ret = regmap_write(ao_cec->regmap, CECB_RW_REG, reg);
if (ret)
return ret;
ret = regmap_read_poll_timeout(ao_cec->regmap, CECB_RW_REG, reg,
!(reg & CECB_RW_BUS_BUSY),
5, 1000);
if (ret)
return ret;
ret = regmap_read(ao_cec->regmap, CECB_RW_REG, &reg);
*data = FIELD_GET(CECB_RW_RD_DATA, reg);
return ret;
}
static int meson_ao_cec_g12a_write(void *context, unsigned int addr,
unsigned int data)
{
struct meson_ao_cec_g12a_device *ao_cec = context;
u32 reg = FIELD_PREP(CECB_RW_ADDR, addr) |
FIELD_PREP(CECB_RW_WR_DATA, data) |
CECB_RW_WRITE_EN;
return regmap_write(ao_cec->regmap, CECB_RW_REG, reg);
}
static const struct regmap_config meson_ao_cec_g12a_cec_regmap_conf = {
.reg_bits = 8,
.val_bits = 8,
.reg_read = meson_ao_cec_g12a_read,
.reg_write = meson_ao_cec_g12a_write,
.max_register = 0xffff,
};
static inline void
meson_ao_cec_g12a_irq_setup(struct meson_ao_cec_g12a_device *ao_cec,
bool enable)
{
u32 cfg = CECB_INTR_DONE | CECB_INTR_EOM | CECB_INTR_NACK |
CECB_INTR_ARB_LOSS | CECB_INTR_INITIATOR_ERR |
CECB_INTR_FOLLOWER_ERR;
regmap_write(ao_cec->regmap, CECB_INTR_MASKN_REG,
enable ? cfg : 0);
}
static void meson_ao_cec_g12a_irq_rx(struct meson_ao_cec_g12a_device *ao_cec)
{
int i, ret = 0;
u32 val;
ret = regmap_read(ao_cec->regmap_cec, CECB_RX_CNT, &val);
ao_cec->rx_msg.len = val;
if (ao_cec->rx_msg.len > CEC_MAX_MSG_SIZE)
ao_cec->rx_msg.len = CEC_MAX_MSG_SIZE;
for (i = 0; i < ao_cec->rx_msg.len; i++) {
ret |= regmap_read(ao_cec->regmap_cec,
CECB_RX_DATA00 + i, &val);
ao_cec->rx_msg.msg[i] = val & 0xff;
}
ret |= regmap_write(ao_cec->regmap_cec, CECB_LOCK_BUF, 0);
if (ret)
return;
cec_received_msg(ao_cec->adap, &ao_cec->rx_msg);
}
static irqreturn_t meson_ao_cec_g12a_irq(int irq, void *data)
{
struct meson_ao_cec_g12a_device *ao_cec = data;
u32 stat;
regmap_read(ao_cec->regmap, CECB_INTR_STAT_REG, &stat);
if (stat)
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
static irqreturn_t meson_ao_cec_g12a_irq_thread(int irq, void *data)
{
struct meson_ao_cec_g12a_device *ao_cec = data;
u32 stat;
regmap_read(ao_cec->regmap, CECB_INTR_STAT_REG, &stat);
regmap_write(ao_cec->regmap, CECB_INTR_CLR_REG, stat);
if (stat & CECB_INTR_DONE)
cec_transmit_attempt_done(ao_cec->adap, CEC_TX_STATUS_OK);
if (stat & CECB_INTR_EOM)
meson_ao_cec_g12a_irq_rx(ao_cec);
if (stat & CECB_INTR_NACK)
cec_transmit_attempt_done(ao_cec->adap, CEC_TX_STATUS_NACK);
if (stat & CECB_INTR_ARB_LOSS) {
regmap_write(ao_cec->regmap_cec, CECB_TX_CNT, 0);
regmap_update_bits(ao_cec->regmap_cec, CECB_CTRL,
CECB_CTRL_SEND | CECB_CTRL_TYPE, 0);
cec_transmit_attempt_done(ao_cec->adap, CEC_TX_STATUS_ARB_LOST);
}
/* Initiator reports an error on the CEC bus */
if (stat & CECB_INTR_INITIATOR_ERR)
cec_transmit_attempt_done(ao_cec->adap, CEC_TX_STATUS_ERROR);
/* Follower reports a receive error, just reset RX buffer */
if (stat & CECB_INTR_FOLLOWER_ERR)
regmap_write(ao_cec->regmap_cec, CECB_LOCK_BUF, 0);
return IRQ_HANDLED;
}
static int
meson_ao_cec_g12a_set_log_addr(struct cec_adapter *adap, u8 logical_addr)
{
struct meson_ao_cec_g12a_device *ao_cec = adap->priv;
int ret = 0;
if (logical_addr == CEC_LOG_ADDR_INVALID) {
/* Assume this will allways succeed */
regmap_write(ao_cec->regmap_cec, CECB_LADD_LOW, 0);
regmap_write(ao_cec->regmap_cec, CECB_LADD_HIGH, 0);
return 0;
} else if (logical_addr < 8) {
ret = regmap_update_bits(ao_cec->regmap_cec, CECB_LADD_LOW,
BIT(logical_addr),
BIT(logical_addr));
} else {
ret = regmap_update_bits(ao_cec->regmap_cec, CECB_LADD_HIGH,
BIT(logical_addr - 8),
BIT(logical_addr - 8));
}
/* Always set Broadcast/Unregistered 15 address */
ret |= regmap_update_bits(ao_cec->regmap_cec, CECB_LADD_HIGH,
BIT(CEC_LOG_ADDR_UNREGISTERED - 8),
BIT(CEC_LOG_ADDR_UNREGISTERED - 8));
return ret ? -EIO : 0;
}
static int meson_ao_cec_g12a_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct meson_ao_cec_g12a_device *ao_cec = adap->priv;
unsigned int type;
int ret = 0;
u32 val;
int i;
/* Check if RX is in progress */
ret = regmap_read(ao_cec->regmap_cec, CECB_LOCK_BUF, &val);
if (ret)
return ret;
if (val & CECB_LOCK_BUF_EN)
return -EBUSY;
/* Check if TX Busy */
ret = regmap_read(ao_cec->regmap_cec, CECB_CTRL, &val);
if (ret)
return ret;
if (val & CECB_CTRL_SEND)
return -EBUSY;
switch (signal_free_time) {
case CEC_SIGNAL_FREE_TIME_RETRY:
type = CECB_CTRL_TYPE_RETRY;
break;
case CEC_SIGNAL_FREE_TIME_NEXT_XFER:
type = CECB_CTRL_TYPE_NEXT;
break;
case CEC_SIGNAL_FREE_TIME_NEW_INITIATOR:
default:
type = CECB_CTRL_TYPE_NEW;
break;
}
for (i = 0; i < msg->len; i++)
ret |= regmap_write(ao_cec->regmap_cec, CECB_TX_DATA00 + i,
msg->msg[i]);
ret |= regmap_write(ao_cec->regmap_cec, CECB_TX_CNT, msg->len);
if (ret)
return -EIO;
ret = regmap_update_bits(ao_cec->regmap_cec, CECB_CTRL,
CECB_CTRL_SEND |
CECB_CTRL_TYPE,
CECB_CTRL_SEND |
FIELD_PREP(CECB_CTRL_TYPE, type));
return ret;
}
static int meson_ao_cec_g12a_adap_enable(struct cec_adapter *adap, bool enable)
{
struct meson_ao_cec_g12a_device *ao_cec = adap->priv;
meson_ao_cec_g12a_irq_setup(ao_cec, false);
regmap_update_bits(ao_cec->regmap, CECB_GEN_CNTL_REG,
CECB_GEN_CNTL_RESET, CECB_GEN_CNTL_RESET);
if (!enable)
return 0;
/* Setup Filter */
regmap_update_bits(ao_cec->regmap, CECB_GEN_CNTL_REG,
CECB_GEN_CNTL_FILTER_TICK_SEL |
CECB_GEN_CNTL_FILTER_DEL,
FIELD_PREP(CECB_GEN_CNTL_FILTER_TICK_SEL,
CECB_GEN_CNTL_FILTER_TICK_1US) |
FIELD_PREP(CECB_GEN_CNTL_FILTER_DEL, 7));
/* Enable System Clock */
regmap_update_bits(ao_cec->regmap, CECB_GEN_CNTL_REG,
CECB_GEN_CNTL_SYS_CLK_EN,
CECB_GEN_CNTL_SYS_CLK_EN);
/* Enable gated clock (Normal mode). */
regmap_update_bits(ao_cec->regmap, CECB_GEN_CNTL_REG,
CECB_GEN_CNTL_CLK_CTRL_MASK,
FIELD_PREP(CECB_GEN_CNTL_CLK_CTRL_MASK,
CECB_GEN_CNTL_CLK_ENABLE));
/* Release Reset */
regmap_update_bits(ao_cec->regmap, CECB_GEN_CNTL_REG,
CECB_GEN_CNTL_RESET, 0);
if (ao_cec->data->ctrl2_setup)
regmap_write(ao_cec->regmap_cec, CECB_CTRL2,
FIELD_PREP(CECB_CTRL2_RISE_DEL_MAX, 2));
meson_ao_cec_g12a_irq_setup(ao_cec, true);
return 0;
}
static const struct cec_adap_ops meson_ao_cec_g12a_ops = {
.adap_enable = meson_ao_cec_g12a_adap_enable,
.adap_log_addr = meson_ao_cec_g12a_set_log_addr,
.adap_transmit = meson_ao_cec_g12a_transmit,
};
static int meson_ao_cec_g12a_probe(struct platform_device *pdev)
{
struct meson_ao_cec_g12a_device *ao_cec;
struct device *hdmi_dev;
void __iomem *base;
int ret, irq;
hdmi_dev = cec_notifier_parse_hdmi_phandle(&pdev->dev);
if (IS_ERR(hdmi_dev))
return PTR_ERR(hdmi_dev);
ao_cec = devm_kzalloc(&pdev->dev, sizeof(*ao_cec), GFP_KERNEL);
if (!ao_cec)
return -ENOMEM;
ao_cec->data = of_device_get_match_data(&pdev->dev);
if (!ao_cec->data) {
dev_err(&pdev->dev, "failed to get match data\n");
return -ENODEV;
}
spin_lock_init(&ao_cec->cec_reg_lock);
ao_cec->pdev = pdev;
ao_cec->adap = cec_allocate_adapter(&meson_ao_cec_g12a_ops, ao_cec,
"meson_g12a_ao_cec",
CEC_CAP_DEFAULTS |
CEC_CAP_CONNECTOR_INFO,
CEC_MAX_LOG_ADDRS);
if (IS_ERR(ao_cec->adap))
return PTR_ERR(ao_cec->adap);
ao_cec->adap->owner = THIS_MODULE;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base)) {
ret = PTR_ERR(base);
goto out_probe_adapter;
}
ao_cec->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&meson_ao_cec_g12a_regmap_conf);
if (IS_ERR(ao_cec->regmap)) {
ret = PTR_ERR(ao_cec->regmap);
goto out_probe_adapter;
}
ao_cec->regmap_cec = devm_regmap_init(&pdev->dev, NULL, ao_cec,
&meson_ao_cec_g12a_cec_regmap_conf);
if (IS_ERR(ao_cec->regmap_cec)) {
ret = PTR_ERR(ao_cec->regmap_cec);
goto out_probe_adapter;
}
irq = platform_get_irq(pdev, 0);
ret = devm_request_threaded_irq(&pdev->dev, irq,
meson_ao_cec_g12a_irq,
meson_ao_cec_g12a_irq_thread,
0, NULL, ao_cec);
if (ret) {
dev_err(&pdev->dev, "irq request failed\n");
goto out_probe_adapter;
}
ao_cec->oscin = devm_clk_get(&pdev->dev, "oscin");
if (IS_ERR(ao_cec->oscin)) {
dev_err(&pdev->dev, "oscin clock request failed\n");
ret = PTR_ERR(ao_cec->oscin);
goto out_probe_adapter;
}
ret = meson_ao_cec_g12a_setup_clk(ao_cec);
if (ret)
goto out_probe_adapter;
ret = clk_prepare_enable(ao_cec->core);
if (ret) {
dev_err(&pdev->dev, "core clock enable failed\n");
goto out_probe_adapter;
}
device_reset_optional(&pdev->dev);
platform_set_drvdata(pdev, ao_cec);
ao_cec->notify = cec_notifier_cec_adap_register(hdmi_dev, NULL,
ao_cec->adap);
if (!ao_cec->notify) {
ret = -ENOMEM;
goto out_probe_core_clk;
}
ret = cec_register_adapter(ao_cec->adap, &pdev->dev);
if (ret < 0)
goto out_probe_notify;
/* Setup Hardware */
regmap_write(ao_cec->regmap, CECB_GEN_CNTL_REG, CECB_GEN_CNTL_RESET);
return 0;
out_probe_notify:
cec_notifier_cec_adap_unregister(ao_cec->notify, ao_cec->adap);
out_probe_core_clk:
clk_disable_unprepare(ao_cec->core);
out_probe_adapter:
cec_delete_adapter(ao_cec->adap);
dev_err(&pdev->dev, "CEC controller registration failed\n");
return ret;
}
static int meson_ao_cec_g12a_remove(struct platform_device *pdev)
{
struct meson_ao_cec_g12a_device *ao_cec = platform_get_drvdata(pdev);
clk_disable_unprepare(ao_cec->core);
cec_notifier_cec_adap_unregister(ao_cec->notify, ao_cec->adap);
cec_unregister_adapter(ao_cec->adap);
return 0;
}
static const struct meson_ao_cec_g12a_data ao_cec_g12a_data = {
.ctrl2_setup = false,
};
static const struct meson_ao_cec_g12a_data ao_cec_sm1_data = {
.ctrl2_setup = true,
};
static const struct of_device_id meson_ao_cec_g12a_of_match[] = {
{
.compatible = "amlogic,meson-g12a-ao-cec",
.data = &ao_cec_g12a_data,
},
{
.compatible = "amlogic,meson-sm1-ao-cec",
.data = &ao_cec_sm1_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, meson_ao_cec_g12a_of_match);
static struct platform_driver meson_ao_cec_g12a_driver = {
.probe = meson_ao_cec_g12a_probe,
.remove = meson_ao_cec_g12a_remove,
.driver = {
.name = "meson-ao-cec-g12a",
.of_match_table = of_match_ptr(meson_ao_cec_g12a_of_match),
},
};
module_platform_driver(meson_ao_cec_g12a_driver);
MODULE_DESCRIPTION("Meson AO CEC G12A Controller driver");
MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
MODULE_LICENSE("GPL");