linux/linux-5.18.11/drivers/md/dm-ebs-target.c

474 lines
12 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
/*
* Copyright (C) 2020 Red Hat GmbH
*
* This file is released under the GPL.
*
* Device-mapper target to emulate smaller logical block
* size on backing devices exposing (natively) larger ones.
*
* E.g. 512 byte sector emulation on 4K native disks.
*/
#include "dm.h"
#include <linux/module.h>
#include <linux/workqueue.h>
#include <linux/dm-bufio.h>
#define DM_MSG_PREFIX "ebs"
static void ebs_dtr(struct dm_target *ti);
/* Emulated block size context. */
struct ebs_c {
struct dm_dev *dev; /* Underlying device to emulate block size on. */
struct dm_bufio_client *bufio; /* Use dm-bufio for read and read-modify-write processing. */
struct workqueue_struct *wq; /* Workqueue for ^ processing of bios. */
struct work_struct ws; /* Work item used for ^. */
struct bio_list bios_in; /* Worker bios input list. */
spinlock_t lock; /* Guard bios input list above. */
sector_t start; /* <start> table line argument, see ebs_ctr below. */
unsigned int e_bs; /* Emulated block size in sectors exposed to upper layer. */
unsigned int u_bs; /* Underlying block size in sectors retrieved from/set on lower layer device. */
unsigned char block_shift; /* bitshift sectors -> blocks used in dm-bufio API. */
bool u_bs_set:1; /* Flag to indicate underlying block size is set on table line. */
};
static inline sector_t __sector_to_block(struct ebs_c *ec, sector_t sector)
{
return sector >> ec->block_shift;
}
static inline sector_t __block_mod(sector_t sector, unsigned int bs)
{
return sector & (bs - 1);
}
/* Return number of blocks for a bio, accounting for misalignment of start and end sectors. */
static inline unsigned int __nr_blocks(struct ebs_c *ec, struct bio *bio)
{
sector_t end_sector = __block_mod(bio->bi_iter.bi_sector, ec->u_bs) + bio_sectors(bio);
return __sector_to_block(ec, end_sector) + (__block_mod(end_sector, ec->u_bs) ? 1 : 0);
}
static inline bool __ebs_check_bs(unsigned int bs)
{
return bs && is_power_of_2(bs);
}
/*
* READ/WRITE:
*
* copy blocks between bufio blocks and bio vector's (partial/overlapping) pages.
*/
static int __ebs_rw_bvec(struct ebs_c *ec, int rw, struct bio_vec *bv, struct bvec_iter *iter)
{
int r = 0;
unsigned char *ba, *pa;
unsigned int cur_len;
unsigned int bv_len = bv->bv_len;
unsigned int buf_off = to_bytes(__block_mod(iter->bi_sector, ec->u_bs));
sector_t block = __sector_to_block(ec, iter->bi_sector);
struct dm_buffer *b;
if (unlikely(!bv->bv_page || !bv_len))
return -EIO;
pa = bvec_virt(bv);
/* Handle overlapping page <-> blocks */
while (bv_len) {
cur_len = min(dm_bufio_get_block_size(ec->bufio) - buf_off, bv_len);
/* Avoid reading for writes in case bio vector's page overwrites block completely. */
if (rw == READ || buf_off || bv_len < dm_bufio_get_block_size(ec->bufio))
ba = dm_bufio_read(ec->bufio, block, &b);
else
ba = dm_bufio_new(ec->bufio, block, &b);
if (IS_ERR(ba)) {
/*
* Carry on with next buffer, if any, to issue all possible
* data but return error.
*/
r = PTR_ERR(ba);
} else {
/* Copy data to/from bio to buffer if read/new was successful above. */
ba += buf_off;
if (rw == READ) {
memcpy(pa, ba, cur_len);
flush_dcache_page(bv->bv_page);
} else {
flush_dcache_page(bv->bv_page);
memcpy(ba, pa, cur_len);
dm_bufio_mark_partial_buffer_dirty(b, buf_off, buf_off + cur_len);
}
dm_bufio_release(b);
}
pa += cur_len;
bv_len -= cur_len;
buf_off = 0;
block++;
}
return r;
}
/* READ/WRITE: iterate bio vector's copying between (partial) pages and bufio blocks. */
static int __ebs_rw_bio(struct ebs_c *ec, int rw, struct bio *bio)
{
int r = 0, rr;
struct bio_vec bv;
struct bvec_iter iter;
bio_for_each_bvec(bv, bio, iter) {
rr = __ebs_rw_bvec(ec, rw, &bv, &iter);
if (rr)
r = rr;
}
return r;
}
/*
* Discard bio's blocks, i.e. pass discards down.
*
* Avoid discarding partial blocks at beginning and end;
* return 0 in case no blocks can be discarded as a result.
*/
static int __ebs_discard_bio(struct ebs_c *ec, struct bio *bio)
{
sector_t block, blocks, sector = bio->bi_iter.bi_sector;
block = __sector_to_block(ec, sector);
blocks = __nr_blocks(ec, bio);
/*
* Partial first underlying block (__nr_blocks() may have
* resulted in one block).
*/
if (__block_mod(sector, ec->u_bs)) {
block++;
blocks--;
}
/* Partial last underlying block if any. */
if (blocks && __block_mod(bio_end_sector(bio), ec->u_bs))
blocks--;
return blocks ? dm_bufio_issue_discard(ec->bufio, block, blocks) : 0;
}
/* Release blocks them from the bufio cache. */
static void __ebs_forget_bio(struct ebs_c *ec, struct bio *bio)
{
sector_t blocks, sector = bio->bi_iter.bi_sector;
blocks = __nr_blocks(ec, bio);
dm_bufio_forget_buffers(ec->bufio, __sector_to_block(ec, sector), blocks);
}
/* Worker function to process incoming bios. */
static void __ebs_process_bios(struct work_struct *ws)
{
int r;
bool write = false;
sector_t block1, block2;
struct ebs_c *ec = container_of(ws, struct ebs_c, ws);
struct bio *bio;
struct bio_list bios;
bio_list_init(&bios);
spin_lock_irq(&ec->lock);
bios = ec->bios_in;
bio_list_init(&ec->bios_in);
spin_unlock_irq(&ec->lock);
/* Prefetch all read and any mis-aligned write buffers */
bio_list_for_each(bio, &bios) {
block1 = __sector_to_block(ec, bio->bi_iter.bi_sector);
if (bio_op(bio) == REQ_OP_READ)
dm_bufio_prefetch(ec->bufio, block1, __nr_blocks(ec, bio));
else if (bio_op(bio) == REQ_OP_WRITE && !(bio->bi_opf & REQ_PREFLUSH)) {
block2 = __sector_to_block(ec, bio_end_sector(bio));
if (__block_mod(bio->bi_iter.bi_sector, ec->u_bs))
dm_bufio_prefetch(ec->bufio, block1, 1);
if (__block_mod(bio_end_sector(bio), ec->u_bs) && block2 != block1)
dm_bufio_prefetch(ec->bufio, block2, 1);
}
}
bio_list_for_each(bio, &bios) {
r = -EIO;
if (bio_op(bio) == REQ_OP_READ)
r = __ebs_rw_bio(ec, READ, bio);
else if (bio_op(bio) == REQ_OP_WRITE) {
write = true;
r = __ebs_rw_bio(ec, WRITE, bio);
} else if (bio_op(bio) == REQ_OP_DISCARD) {
__ebs_forget_bio(ec, bio);
r = __ebs_discard_bio(ec, bio);
}
if (r < 0)
bio->bi_status = errno_to_blk_status(r);
}
/*
* We write dirty buffers after processing I/O on them
* but before we endio thus addressing REQ_FUA/REQ_SYNC.
*/
r = write ? dm_bufio_write_dirty_buffers(ec->bufio) : 0;
while ((bio = bio_list_pop(&bios))) {
/* Any other request is endioed. */
if (unlikely(r && bio_op(bio) == REQ_OP_WRITE))
bio_io_error(bio);
else
bio_endio(bio);
}
}
/*
* Construct an emulated block size mapping: <dev_path> <offset> <ebs> [<ubs>]
*
* <dev_path>: path of the underlying device
* <offset>: offset in 512 bytes sectors into <dev_path>
* <ebs>: emulated block size in units of 512 bytes exposed to the upper layer
* [<ubs>]: underlying block size in units of 512 bytes imposed on the lower layer;
* optional, if not supplied, retrieve logical block size from underlying device
*/
static int ebs_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
int r;
unsigned short tmp1;
unsigned long long tmp;
char dummy;
struct ebs_c *ec;
if (argc < 3 || argc > 4) {
ti->error = "Invalid argument count";
return -EINVAL;
}
ec = ti->private = kzalloc(sizeof(*ec), GFP_KERNEL);
if (!ec) {
ti->error = "Cannot allocate ebs context";
return -ENOMEM;
}
r = -EINVAL;
if (sscanf(argv[1], "%llu%c", &tmp, &dummy) != 1 ||
tmp != (sector_t)tmp ||
(sector_t)tmp >= ti->len) {
ti->error = "Invalid device offset sector";
goto bad;
}
ec->start = tmp;
if (sscanf(argv[2], "%hu%c", &tmp1, &dummy) != 1 ||
!__ebs_check_bs(tmp1) ||
to_bytes(tmp1) > PAGE_SIZE) {
ti->error = "Invalid emulated block size";
goto bad;
}
ec->e_bs = tmp1;
if (argc > 3) {
if (sscanf(argv[3], "%hu%c", &tmp1, &dummy) != 1 || !__ebs_check_bs(tmp1)) {
ti->error = "Invalid underlying block size";
goto bad;
}
ec->u_bs = tmp1;
ec->u_bs_set = true;
} else
ec->u_bs_set = false;
r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ec->dev);
if (r) {
ti->error = "Device lookup failed";
ec->dev = NULL;
goto bad;
}
r = -EINVAL;
if (!ec->u_bs_set) {
ec->u_bs = to_sector(bdev_logical_block_size(ec->dev->bdev));
if (!__ebs_check_bs(ec->u_bs)) {
ti->error = "Invalid retrieved underlying block size";
goto bad;
}
}
if (!ec->u_bs_set && ec->e_bs == ec->u_bs)
DMINFO("Emulation superfluous: emulated equal to underlying block size");
if (__block_mod(ec->start, ec->u_bs)) {
ti->error = "Device offset must be multiple of underlying block size";
goto bad;
}
ec->bufio = dm_bufio_client_create(ec->dev->bdev, to_bytes(ec->u_bs), 1, 0, NULL, NULL);
if (IS_ERR(ec->bufio)) {
ti->error = "Cannot create dm bufio client";
r = PTR_ERR(ec->bufio);
ec->bufio = NULL;
goto bad;
}
ec->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
if (!ec->wq) {
ti->error = "Cannot create dm-" DM_MSG_PREFIX " workqueue";
r = -ENOMEM;
goto bad;
}
ec->block_shift = __ffs(ec->u_bs);
INIT_WORK(&ec->ws, &__ebs_process_bios);
bio_list_init(&ec->bios_in);
spin_lock_init(&ec->lock);
ti->num_flush_bios = 1;
ti->num_discard_bios = 1;
ti->num_secure_erase_bios = 0;
ti->num_write_zeroes_bios = 0;
return 0;
bad:
ebs_dtr(ti);
return r;
}
static void ebs_dtr(struct dm_target *ti)
{
struct ebs_c *ec = ti->private;
if (ec->wq)
destroy_workqueue(ec->wq);
if (ec->bufio)
dm_bufio_client_destroy(ec->bufio);
if (ec->dev)
dm_put_device(ti, ec->dev);
kfree(ec);
}
static int ebs_map(struct dm_target *ti, struct bio *bio)
{
struct ebs_c *ec = ti->private;
bio_set_dev(bio, ec->dev->bdev);
bio->bi_iter.bi_sector = ec->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
if (unlikely(bio_op(bio) == REQ_OP_FLUSH))
return DM_MAPIO_REMAPPED;
/*
* Only queue for bufio processing in case of partial or overlapping buffers
* -or-
* emulation with ebs == ubs aiming for tests of dm-bufio overhead.
*/
if (likely(__block_mod(bio->bi_iter.bi_sector, ec->u_bs) ||
__block_mod(bio_end_sector(bio), ec->u_bs) ||
ec->e_bs == ec->u_bs)) {
spin_lock_irq(&ec->lock);
bio_list_add(&ec->bios_in, bio);
spin_unlock_irq(&ec->lock);
queue_work(ec->wq, &ec->ws);
return DM_MAPIO_SUBMITTED;
}
/* Forget any buffer content relative to this direct backing device I/O. */
__ebs_forget_bio(ec, bio);
return DM_MAPIO_REMAPPED;
}
static void ebs_status(struct dm_target *ti, status_type_t type,
unsigned status_flags, char *result, unsigned maxlen)
{
struct ebs_c *ec = ti->private;
switch (type) {
case STATUSTYPE_INFO:
*result = '\0';
break;
case STATUSTYPE_TABLE:
snprintf(result, maxlen, ec->u_bs_set ? "%s %llu %u %u" : "%s %llu %u",
ec->dev->name, (unsigned long long) ec->start, ec->e_bs, ec->u_bs);
break;
case STATUSTYPE_IMA:
*result = '\0';
break;
}
}
static int ebs_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
{
struct ebs_c *ec = ti->private;
struct dm_dev *dev = ec->dev;
/*
* Only pass ioctls through if the device sizes match exactly.
*/
*bdev = dev->bdev;
return !!(ec->start || ti->len != bdev_nr_sectors(dev->bdev));
}
static void ebs_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
struct ebs_c *ec = ti->private;
limits->logical_block_size = to_bytes(ec->e_bs);
limits->physical_block_size = to_bytes(ec->u_bs);
limits->alignment_offset = limits->physical_block_size;
blk_limits_io_min(limits, limits->logical_block_size);
}
static int ebs_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn, void *data)
{
struct ebs_c *ec = ti->private;
return fn(ti, ec->dev, ec->start, ti->len, data);
}
static struct target_type ebs_target = {
.name = "ebs",
.version = {1, 0, 1},
.features = DM_TARGET_PASSES_INTEGRITY,
.module = THIS_MODULE,
.ctr = ebs_ctr,
.dtr = ebs_dtr,
.map = ebs_map,
.status = ebs_status,
.io_hints = ebs_io_hints,
.prepare_ioctl = ebs_prepare_ioctl,
.iterate_devices = ebs_iterate_devices,
};
static int __init dm_ebs_init(void)
{
int r = dm_register_target(&ebs_target);
if (r < 0)
DMERR("register failed %d", r);
return r;
}
static void dm_ebs_exit(void)
{
dm_unregister_target(&ebs_target);
}
module_init(dm_ebs_init);
module_exit(dm_ebs_exit);
MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
MODULE_DESCRIPTION(DM_NAME " emulated block size target");
MODULE_LICENSE("GPL");