117 lines
3.2 KiB
C
117 lines
3.2 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright (c) 2011 Jonathan Cameron
|
||
|
*
|
||
|
* Buffer handling elements of industrial I/O reference driver.
|
||
|
* Uses the kfifo buffer.
|
||
|
*
|
||
|
* To test without hardware use the sysfs trigger.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/irq.h>
|
||
|
#include <linux/bitmap.h>
|
||
|
|
||
|
#include <linux/iio/iio.h>
|
||
|
#include <linux/iio/buffer.h>
|
||
|
#include <linux/iio/trigger_consumer.h>
|
||
|
#include <linux/iio/triggered_buffer.h>
|
||
|
|
||
|
#include "iio_simple_dummy.h"
|
||
|
|
||
|
/* Some fake data */
|
||
|
|
||
|
static const s16 fakedata[] = {
|
||
|
[DUMMY_INDEX_VOLTAGE_0] = 7,
|
||
|
[DUMMY_INDEX_DIFFVOLTAGE_1M2] = -33,
|
||
|
[DUMMY_INDEX_DIFFVOLTAGE_3M4] = -2,
|
||
|
[DUMMY_INDEX_ACCELX] = 344,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* iio_simple_dummy_trigger_h() - the trigger handler function
|
||
|
* @irq: the interrupt number
|
||
|
* @p: private data - always a pointer to the poll func.
|
||
|
*
|
||
|
* This is the guts of buffered capture. On a trigger event occurring,
|
||
|
* if the pollfunc is attached then this handler is called as a threaded
|
||
|
* interrupt (and hence may sleep). It is responsible for grabbing data
|
||
|
* from the device and pushing it into the associated buffer.
|
||
|
*/
|
||
|
static irqreturn_t iio_simple_dummy_trigger_h(int irq, void *p)
|
||
|
{
|
||
|
struct iio_poll_func *pf = p;
|
||
|
struct iio_dev *indio_dev = pf->indio_dev;
|
||
|
u16 *data;
|
||
|
|
||
|
data = kmalloc(indio_dev->scan_bytes, GFP_KERNEL);
|
||
|
if (!data)
|
||
|
goto done;
|
||
|
|
||
|
if (!bitmap_empty(indio_dev->active_scan_mask, indio_dev->masklength)) {
|
||
|
/*
|
||
|
* Three common options here:
|
||
|
* hardware scans: certain combinations of channels make
|
||
|
* up a fast read. The capture will consist of all of them.
|
||
|
* Hence we just call the grab data function and fill the
|
||
|
* buffer without processing.
|
||
|
* software scans: can be considered to be random access
|
||
|
* so efficient reading is just a case of minimal bus
|
||
|
* transactions.
|
||
|
* software culled hardware scans:
|
||
|
* occasionally a driver may process the nearest hardware
|
||
|
* scan to avoid storing elements that are not desired. This
|
||
|
* is the fiddliest option by far.
|
||
|
* Here let's pretend we have random access. And the values are
|
||
|
* in the constant table fakedata.
|
||
|
*/
|
||
|
int i, j;
|
||
|
|
||
|
for (i = 0, j = 0;
|
||
|
i < bitmap_weight(indio_dev->active_scan_mask,
|
||
|
indio_dev->masklength);
|
||
|
i++, j++) {
|
||
|
j = find_next_bit(indio_dev->active_scan_mask,
|
||
|
indio_dev->masklength, j);
|
||
|
/* random access read from the 'device' */
|
||
|
data[i] = fakedata[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
iio_push_to_buffers_with_timestamp(indio_dev, data,
|
||
|
iio_get_time_ns(indio_dev));
|
||
|
|
||
|
kfree(data);
|
||
|
|
||
|
done:
|
||
|
/*
|
||
|
* Tell the core we are done with this trigger and ready for the
|
||
|
* next one.
|
||
|
*/
|
||
|
iio_trigger_notify_done(indio_dev->trig);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static const struct iio_buffer_setup_ops iio_simple_dummy_buffer_setup_ops = {
|
||
|
};
|
||
|
|
||
|
int iio_simple_dummy_configure_buffer(struct iio_dev *indio_dev)
|
||
|
{
|
||
|
return iio_triggered_buffer_setup(indio_dev, NULL,
|
||
|
iio_simple_dummy_trigger_h,
|
||
|
&iio_simple_dummy_buffer_setup_ops);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iio_simple_dummy_unconfigure_buffer() - release buffer resources
|
||
|
* @indio_dev: device instance state
|
||
|
*/
|
||
|
void iio_simple_dummy_unconfigure_buffer(struct iio_dev *indio_dev)
|
||
|
{
|
||
|
iio_triggered_buffer_cleanup(indio_dev);
|
||
|
}
|