linux/linux-5.18.11/drivers/hwmon/lm93.c

2650 lines
77 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* lm93.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
*
* Author/Maintainer: Mark M. Hoffman <mhoffman@lightlink.com>
* Copyright (c) 2004 Utilitek Systems, Inc.
*
* derived in part from lm78.c:
* Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
*
* derived in part from lm85.c:
* Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
* Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
*
* derived in part from w83l785ts.c:
* Copyright (c) 2003-2004 Jean Delvare <jdelvare@suse.de>
*
* Ported to Linux 2.6 by Eric J. Bowersox <ericb@aspsys.com>
* Copyright (c) 2005 Aspen Systems, Inc.
*
* Adapted to 2.6.20 by Carsten Emde <cbe@osadl.org>
* Copyright (c) 2006 Carsten Emde, Open Source Automation Development Lab
*
* Modified for mainline integration by Hans J. Koch <hjk@hansjkoch.de>
* Copyright (c) 2007 Hans J. Koch, Linutronix GmbH
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
/* LM93 REGISTER ADDRESSES */
/* miscellaneous */
#define LM93_REG_MFR_ID 0x3e
#define LM93_REG_VER 0x3f
#define LM93_REG_STATUS_CONTROL 0xe2
#define LM93_REG_CONFIG 0xe3
#define LM93_REG_SLEEP_CONTROL 0xe4
/* alarm values start here */
#define LM93_REG_HOST_ERROR_1 0x48
/* voltage inputs: in1-in16 (nr => 0-15) */
#define LM93_REG_IN(nr) (0x56 + (nr))
#define LM93_REG_IN_MIN(nr) (0x90 + (nr) * 2)
#define LM93_REG_IN_MAX(nr) (0x91 + (nr) * 2)
/* temperature inputs: temp1-temp4 (nr => 0-3) */
#define LM93_REG_TEMP(nr) (0x50 + (nr))
#define LM93_REG_TEMP_MIN(nr) (0x78 + (nr) * 2)
#define LM93_REG_TEMP_MAX(nr) (0x79 + (nr) * 2)
/* temp[1-4]_auto_boost (nr => 0-3) */
#define LM93_REG_BOOST(nr) (0x80 + (nr))
/* #PROCHOT inputs: prochot1-prochot2 (nr => 0-1) */
#define LM93_REG_PROCHOT_CUR(nr) (0x67 + (nr) * 2)
#define LM93_REG_PROCHOT_AVG(nr) (0x68 + (nr) * 2)
#define LM93_REG_PROCHOT_MAX(nr) (0xb0 + (nr))
/* fan tach inputs: fan1-fan4 (nr => 0-3) */
#define LM93_REG_FAN(nr) (0x6e + (nr) * 2)
#define LM93_REG_FAN_MIN(nr) (0xb4 + (nr) * 2)
/* pwm outputs: pwm1-pwm2 (nr => 0-1, reg => 0-3) */
#define LM93_REG_PWM_CTL(nr, reg) (0xc8 + (reg) + (nr) * 4)
#define LM93_PWM_CTL1 0x0
#define LM93_PWM_CTL2 0x1
#define LM93_PWM_CTL3 0x2
#define LM93_PWM_CTL4 0x3
/* GPIO input state */
#define LM93_REG_GPI 0x6b
/* vid inputs: vid1-vid2 (nr => 0-1) */
#define LM93_REG_VID(nr) (0x6c + (nr))
/* vccp1 & vccp2: VID relative inputs (nr => 0-1) */
#define LM93_REG_VCCP_LIMIT_OFF(nr) (0xb2 + (nr))
/* temp[1-4]_auto_boost_hyst */
#define LM93_REG_BOOST_HYST_12 0xc0
#define LM93_REG_BOOST_HYST_34 0xc1
#define LM93_REG_BOOST_HYST(nr) (0xc0 + (nr)/2)
/* temp[1-4]_auto_pwm_[min|hyst] */
#define LM93_REG_PWM_MIN_HYST_12 0xc3
#define LM93_REG_PWM_MIN_HYST_34 0xc4
#define LM93_REG_PWM_MIN_HYST(nr) (0xc3 + (nr)/2)
/* prochot_override & prochot_interval */
#define LM93_REG_PROCHOT_OVERRIDE 0xc6
#define LM93_REG_PROCHOT_INTERVAL 0xc7
/* temp[1-4]_auto_base (nr => 0-3) */
#define LM93_REG_TEMP_BASE(nr) (0xd0 + (nr))
/* temp[1-4]_auto_offsets (step => 0-11) */
#define LM93_REG_TEMP_OFFSET(step) (0xd4 + (step))
/* #PROCHOT & #VRDHOT PWM ramp control */
#define LM93_REG_PWM_RAMP_CTL 0xbf
/* miscellaneous */
#define LM93_REG_SFC1 0xbc
#define LM93_REG_SFC2 0xbd
#define LM93_REG_GPI_VID_CTL 0xbe
#define LM93_REG_SF_TACH_TO_PWM 0xe0
/* error masks */
#define LM93_REG_GPI_ERR_MASK 0xec
#define LM93_REG_MISC_ERR_MASK 0xed
/* LM93 REGISTER VALUES */
#define LM93_MFR_ID 0x73
#define LM93_MFR_ID_PROTOTYPE 0x72
/* LM94 REGISTER VALUES */
#define LM94_MFR_ID_2 0x7a
#define LM94_MFR_ID 0x79
#define LM94_MFR_ID_PROTOTYPE 0x78
/* SMBus capabilities */
#define LM93_SMBUS_FUNC_FULL (I2C_FUNC_SMBUS_BYTE_DATA | \
I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_BLOCK_DATA)
#define LM93_SMBUS_FUNC_MIN (I2C_FUNC_SMBUS_BYTE_DATA | \
I2C_FUNC_SMBUS_WORD_DATA)
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
/* Insmod parameters */
static bool disable_block;
module_param(disable_block, bool, 0);
MODULE_PARM_DESC(disable_block,
"Set to non-zero to disable SMBus block data transactions.");
static bool init;
module_param(init, bool, 0);
MODULE_PARM_DESC(init, "Set to non-zero to force chip initialization.");
static int vccp_limit_type[2] = {0, 0};
module_param_array(vccp_limit_type, int, NULL, 0);
MODULE_PARM_DESC(vccp_limit_type, "Configures in7 and in8 limit modes.");
static int vid_agtl;
module_param(vid_agtl, int, 0);
MODULE_PARM_DESC(vid_agtl, "Configures VID pin input thresholds.");
/* Driver data */
static struct i2c_driver lm93_driver;
/* LM93 BLOCK READ COMMANDS */
static const struct { u8 cmd; u8 len; } lm93_block_read_cmds[12] = {
{ 0xf2, 8 },
{ 0xf3, 8 },
{ 0xf4, 6 },
{ 0xf5, 16 },
{ 0xf6, 4 },
{ 0xf7, 8 },
{ 0xf8, 12 },
{ 0xf9, 32 },
{ 0xfa, 8 },
{ 0xfb, 8 },
{ 0xfc, 16 },
{ 0xfd, 9 },
};
/*
* ALARMS: SYSCTL format described further below
* REG: 64 bits in 8 registers, as immediately below
*/
struct block1_t {
u8 host_status_1;
u8 host_status_2;
u8 host_status_3;
u8 host_status_4;
u8 p1_prochot_status;
u8 p2_prochot_status;
u8 gpi_status;
u8 fan_status;
};
/*
* Client-specific data
*/
struct lm93_data {
struct i2c_client *client;
struct mutex update_lock;
unsigned long last_updated; /* In jiffies */
/* client update function */
void (*update)(struct lm93_data *, struct i2c_client *);
bool valid; /* true if following fields are valid */
/* register values, arranged by block read groups */
struct block1_t block1;
/*
* temp1 - temp4: unfiltered readings
* temp1 - temp2: filtered readings
*/
u8 block2[6];
/* vin1 - vin16: readings */
u8 block3[16];
/* prochot1 - prochot2: readings */
struct {
u8 cur;
u8 avg;
} block4[2];
/* fan counts 1-4 => 14-bits, LE, *left* justified */
u16 block5[4];
/* block6 has a lot of data we don't need */
struct {
u8 min;
u8 max;
} temp_lim[4];
/* vin1 - vin16: low and high limits */
struct {
u8 min;
u8 max;
} block7[16];
/* fan count limits 1-4 => same format as block5 */
u16 block8[4];
/* pwm control registers (2 pwms, 4 regs) */
u8 block9[2][4];
/* auto/pwm base temp and offset temp registers */
struct {
u8 base[4];
u8 offset[12];
} block10;
/* master config register */
u8 config;
/* VID1 & VID2 => register format, 6-bits, right justified */
u8 vid[2];
/* prochot1 - prochot2: limits */
u8 prochot_max[2];
/* vccp1 & vccp2 (in7 & in8): VID relative limits (register format) */
u8 vccp_limits[2];
/* GPIO input state (register format, i.e. inverted) */
u8 gpi;
/* #PROCHOT override (register format) */
u8 prochot_override;
/* #PROCHOT intervals (register format) */
u8 prochot_interval;
/* Fan Boost Temperatures (register format) */
u8 boost[4];
/* Fan Boost Hysteresis (register format) */
u8 boost_hyst[2];
/* Temperature Zone Min. PWM & Hysteresis (register format) */
u8 auto_pwm_min_hyst[2];
/* #PROCHOT & #VRDHOT PWM Ramp Control */
u8 pwm_ramp_ctl;
/* miscellaneous setup regs */
u8 sfc1;
u8 sfc2;
u8 sf_tach_to_pwm;
/*
* The two PWM CTL2 registers can read something other than what was
* last written for the OVR_DC field (duty cycle override). So, we
* save the user-commanded value here.
*/
u8 pwm_override[2];
};
/*
* VID: mV
* REG: 6-bits, right justified, *always* using Intel VRM/VRD 10
*/
static int LM93_VID_FROM_REG(u8 reg)
{
return vid_from_reg((reg & 0x3f), 100);
}
/* min, max, and nominal register values, per channel (u8) */
static const u8 lm93_vin_reg_min[16] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xae,
};
static const u8 lm93_vin_reg_max[16] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xfa, 0xff, 0xff, 0xff, 0xff, 0xff, 0xd1,
};
/*
* Values from the datasheet. They're here for documentation only.
* static const u8 lm93_vin_reg_nom[16] = {
* 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0,
* 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0x40, 0xc0,
* };
*/
/* min, max, and nominal voltage readings, per channel (mV)*/
static const unsigned long lm93_vin_val_min[16] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 3000,
};
static const unsigned long lm93_vin_val_max[16] = {
1236, 1236, 1236, 1600, 2000, 2000, 1600, 1600,
4400, 6500, 3333, 2625, 1312, 1312, 1236, 3600,
};
/*
* Values from the datasheet. They're here for documentation only.
* static const unsigned long lm93_vin_val_nom[16] = {
* 927, 927, 927, 1200, 1500, 1500, 1200, 1200,
* 3300, 5000, 2500, 1969, 984, 984, 309, 3300,
* };
*/
static unsigned LM93_IN_FROM_REG(int nr, u8 reg)
{
const long uv_max = lm93_vin_val_max[nr] * 1000;
const long uv_min = lm93_vin_val_min[nr] * 1000;
const long slope = (uv_max - uv_min) /
(lm93_vin_reg_max[nr] - lm93_vin_reg_min[nr]);
const long intercept = uv_min - slope * lm93_vin_reg_min[nr];
return (slope * reg + intercept + 500) / 1000;
}
/*
* IN: mV, limits determined by channel nr
* REG: scaling determined by channel nr
*/
static u8 LM93_IN_TO_REG(int nr, unsigned val)
{
/* range limit */
const long mv = clamp_val(val,
lm93_vin_val_min[nr], lm93_vin_val_max[nr]);
/* try not to lose too much precision here */
const long uv = mv * 1000;
const long uv_max = lm93_vin_val_max[nr] * 1000;
const long uv_min = lm93_vin_val_min[nr] * 1000;
/* convert */
const long slope = (uv_max - uv_min) /
(lm93_vin_reg_max[nr] - lm93_vin_reg_min[nr]);
const long intercept = uv_min - slope * lm93_vin_reg_min[nr];
u8 result = ((uv - intercept + (slope/2)) / slope);
result = clamp_val(result,
lm93_vin_reg_min[nr], lm93_vin_reg_max[nr]);
return result;
}
/* vid in mV, upper == 0 indicates low limit, otherwise upper limit */
static unsigned LM93_IN_REL_FROM_REG(u8 reg, int upper, int vid)
{
const long uv_offset = upper ? (((reg >> 4 & 0x0f) + 1) * 12500) :
(((reg >> 0 & 0x0f) + 1) * -25000);
const long uv_vid = vid * 1000;
return (uv_vid + uv_offset + 5000) / 10000;
}
#define LM93_IN_MIN_FROM_REG(reg, vid) LM93_IN_REL_FROM_REG((reg), 0, (vid))
#define LM93_IN_MAX_FROM_REG(reg, vid) LM93_IN_REL_FROM_REG((reg), 1, (vid))
/*
* vid in mV , upper == 0 indicates low limit, otherwise upper limit
* upper also determines which nibble of the register is returned
* (the other nibble will be 0x0)
*/
static u8 LM93_IN_REL_TO_REG(unsigned val, int upper, int vid)
{
long uv_offset = vid * 1000 - val * 10000;
if (upper) {
uv_offset = clamp_val(uv_offset, 12500, 200000);
return (u8)((uv_offset / 12500 - 1) << 4);
} else {
uv_offset = clamp_val(uv_offset, -400000, -25000);
return (u8)((uv_offset / -25000 - 1) << 0);
}
}
/*
* TEMP: 1/1000 degrees C (-128C to +127C)
* REG: 1C/bit, two's complement
*/
static int LM93_TEMP_FROM_REG(u8 reg)
{
return (s8)reg * 1000;
}
#define LM93_TEMP_MIN (-128000)
#define LM93_TEMP_MAX (127000)
/*
* TEMP: 1/1000 degrees C (-128C to +127C)
* REG: 1C/bit, two's complement
*/
static u8 LM93_TEMP_TO_REG(long temp)
{
int ntemp = clamp_val(temp, LM93_TEMP_MIN, LM93_TEMP_MAX);
ntemp += (ntemp < 0 ? -500 : 500);
return (u8)(ntemp / 1000);
}
/* Determine 4-bit temperature offset resolution */
static int LM93_TEMP_OFFSET_MODE_FROM_REG(u8 sfc2, int nr)
{
/* mode: 0 => 1C/bit, nonzero => 0.5C/bit */
return sfc2 & (nr < 2 ? 0x10 : 0x20);
}
/*
* This function is common to all 4-bit temperature offsets
* reg is 4 bits right justified
* mode 0 => 1C/bit, mode !0 => 0.5C/bit
*/
static int LM93_TEMP_OFFSET_FROM_REG(u8 reg, int mode)
{
return (reg & 0x0f) * (mode ? 5 : 10);
}
#define LM93_TEMP_OFFSET_MIN (0)
#define LM93_TEMP_OFFSET_MAX0 (150)
#define LM93_TEMP_OFFSET_MAX1 (75)
/*
* This function is common to all 4-bit temperature offsets
* returns 4 bits right justified
* mode 0 => 1C/bit, mode !0 => 0.5C/bit
*/
static u8 LM93_TEMP_OFFSET_TO_REG(int off, int mode)
{
int factor = mode ? 5 : 10;
off = clamp_val(off, LM93_TEMP_OFFSET_MIN,
mode ? LM93_TEMP_OFFSET_MAX1 : LM93_TEMP_OFFSET_MAX0);
return (u8)((off + factor/2) / factor);
}
/* 0 <= nr <= 3 */
static int LM93_TEMP_AUTO_OFFSET_FROM_REG(u8 reg, int nr, int mode)
{
/* temp1-temp2 (nr=0,1) use lower nibble */
if (nr < 2)
return LM93_TEMP_OFFSET_FROM_REG(reg & 0x0f, mode);
/* temp3-temp4 (nr=2,3) use upper nibble */
else
return LM93_TEMP_OFFSET_FROM_REG(reg >> 4 & 0x0f, mode);
}
/*
* TEMP: 1/10 degrees C (0C to +15C (mode 0) or +7.5C (mode non-zero))
* REG: 1.0C/bit (mode 0) or 0.5C/bit (mode non-zero)
* 0 <= nr <= 3
*/
static u8 LM93_TEMP_AUTO_OFFSET_TO_REG(u8 old, int off, int nr, int mode)
{
u8 new = LM93_TEMP_OFFSET_TO_REG(off, mode);
/* temp1-temp2 (nr=0,1) use lower nibble */
if (nr < 2)
return (old & 0xf0) | (new & 0x0f);
/* temp3-temp4 (nr=2,3) use upper nibble */
else
return (new << 4 & 0xf0) | (old & 0x0f);
}
static int LM93_AUTO_BOOST_HYST_FROM_REGS(struct lm93_data *data, int nr,
int mode)
{
u8 reg;
switch (nr) {
case 0:
reg = data->boost_hyst[0] & 0x0f;
break;
case 1:
reg = data->boost_hyst[0] >> 4 & 0x0f;
break;
case 2:
reg = data->boost_hyst[1] & 0x0f;
break;
case 3:
default:
reg = data->boost_hyst[1] >> 4 & 0x0f;
break;
}
return LM93_TEMP_FROM_REG(data->boost[nr]) -
LM93_TEMP_OFFSET_FROM_REG(reg, mode);
}
static u8 LM93_AUTO_BOOST_HYST_TO_REG(struct lm93_data *data, long hyst,
int nr, int mode)
{
u8 reg = LM93_TEMP_OFFSET_TO_REG(
(LM93_TEMP_FROM_REG(data->boost[nr]) - hyst), mode);
switch (nr) {
case 0:
reg = (data->boost_hyst[0] & 0xf0) | (reg & 0x0f);
break;
case 1:
reg = (reg << 4 & 0xf0) | (data->boost_hyst[0] & 0x0f);
break;
case 2:
reg = (data->boost_hyst[1] & 0xf0) | (reg & 0x0f);
break;
case 3:
default:
reg = (reg << 4 & 0xf0) | (data->boost_hyst[1] & 0x0f);
break;
}
return reg;
}
/*
* PWM: 0-255 per sensors documentation
* REG: 0-13 as mapped below... right justified
*/
enum pwm_freq { LM93_PWM_MAP_HI_FREQ, LM93_PWM_MAP_LO_FREQ };
static int lm93_pwm_map[2][16] = {
{
0x00, /* 0.00% */ 0x40, /* 25.00% */
0x50, /* 31.25% */ 0x60, /* 37.50% */
0x70, /* 43.75% */ 0x80, /* 50.00% */
0x90, /* 56.25% */ 0xa0, /* 62.50% */
0xb0, /* 68.75% */ 0xc0, /* 75.00% */
0xd0, /* 81.25% */ 0xe0, /* 87.50% */
0xf0, /* 93.75% */ 0xff, /* 100.00% */
0xff, 0xff, /* 14, 15 are reserved and should never occur */
},
{
0x00, /* 0.00% */ 0x40, /* 25.00% */
0x49, /* 28.57% */ 0x52, /* 32.14% */
0x5b, /* 35.71% */ 0x64, /* 39.29% */
0x6d, /* 42.86% */ 0x76, /* 46.43% */
0x80, /* 50.00% */ 0x89, /* 53.57% */
0x92, /* 57.14% */ 0xb6, /* 71.43% */
0xdb, /* 85.71% */ 0xff, /* 100.00% */
0xff, 0xff, /* 14, 15 are reserved and should never occur */
},
};
static int LM93_PWM_FROM_REG(u8 reg, enum pwm_freq freq)
{
return lm93_pwm_map[freq][reg & 0x0f];
}
/* round up to nearest match */
static u8 LM93_PWM_TO_REG(int pwm, enum pwm_freq freq)
{
int i;
for (i = 0; i < 13; i++)
if (pwm <= lm93_pwm_map[freq][i])
break;
/* can fall through with i==13 */
return (u8)i;
}
static int LM93_FAN_FROM_REG(u16 regs)
{
const u16 count = le16_to_cpu(regs) >> 2;
return count == 0 ? -1 : count == 0x3fff ? 0 : 1350000 / count;
}
/*
* RPM: (82.5 to 1350000)
* REG: 14-bits, LE, *left* justified
*/
static u16 LM93_FAN_TO_REG(long rpm)
{
u16 count, regs;
if (rpm == 0) {
count = 0x3fff;
} else {
rpm = clamp_val(rpm, 1, 1000000);
count = clamp_val((1350000 + rpm) / rpm, 1, 0x3ffe);
}
regs = count << 2;
return cpu_to_le16(regs);
}
/*
* PWM FREQ: HZ
* REG: 0-7 as mapped below
*/
static int lm93_pwm_freq_map[8] = {
22500, 96, 84, 72, 60, 48, 36, 12
};
static int LM93_PWM_FREQ_FROM_REG(u8 reg)
{
return lm93_pwm_freq_map[reg & 0x07];
}
/* round up to nearest match */
static u8 LM93_PWM_FREQ_TO_REG(int freq)
{
int i;
for (i = 7; i > 0; i--)
if (freq <= lm93_pwm_freq_map[i])
break;
/* can fall through with i==0 */
return (u8)i;
}
/*
* TIME: 1/100 seconds
* REG: 0-7 as mapped below
*/
static int lm93_spinup_time_map[8] = {
0, 10, 25, 40, 70, 100, 200, 400,
};
static int LM93_SPINUP_TIME_FROM_REG(u8 reg)
{
return lm93_spinup_time_map[reg >> 5 & 0x07];
}
/* round up to nearest match */
static u8 LM93_SPINUP_TIME_TO_REG(int time)
{
int i;
for (i = 0; i < 7; i++)
if (time <= lm93_spinup_time_map[i])
break;
/* can fall through with i==8 */
return (u8)i;
}
#define LM93_RAMP_MIN 0
#define LM93_RAMP_MAX 75
static int LM93_RAMP_FROM_REG(u8 reg)
{
return (reg & 0x0f) * 5;
}
/*
* RAMP: 1/100 seconds
* REG: 50mS/bit 4-bits right justified
*/
static u8 LM93_RAMP_TO_REG(int ramp)
{
ramp = clamp_val(ramp, LM93_RAMP_MIN, LM93_RAMP_MAX);
return (u8)((ramp + 2) / 5);
}
/*
* PROCHOT: 0-255, 0 => 0%, 255 => > 96.6%
* REG: (same)
*/
static u8 LM93_PROCHOT_TO_REG(long prochot)
{
prochot = clamp_val(prochot, 0, 255);
return (u8)prochot;
}
/*
* PROCHOT-INTERVAL: 73 - 37200 (1/100 seconds)
* REG: 0-9 as mapped below
*/
static int lm93_interval_map[10] = {
73, 146, 290, 580, 1170, 2330, 4660, 9320, 18600, 37200,
};
static int LM93_INTERVAL_FROM_REG(u8 reg)
{
return lm93_interval_map[reg & 0x0f];
}
/* round up to nearest match */
static u8 LM93_INTERVAL_TO_REG(long interval)
{
int i;
for (i = 0; i < 9; i++)
if (interval <= lm93_interval_map[i])
break;
/* can fall through with i==9 */
return (u8)i;
}
/*
* GPIO: 0-255, GPIO0 is LSB
* REG: inverted
*/
static unsigned LM93_GPI_FROM_REG(u8 reg)
{
return ~reg & 0xff;
}
/*
* alarm bitmask definitions
* The LM93 has nearly 64 bits of error status... I've pared that down to
* what I think is a useful subset in order to fit it into 32 bits.
*
* Especially note that the #VRD_HOT alarms are missing because we provide
* that information as values in another sysfs file.
*
* If libsensors is extended to support 64 bit values, this could be revisited.
*/
#define LM93_ALARM_IN1 0x00000001
#define LM93_ALARM_IN2 0x00000002
#define LM93_ALARM_IN3 0x00000004
#define LM93_ALARM_IN4 0x00000008
#define LM93_ALARM_IN5 0x00000010
#define LM93_ALARM_IN6 0x00000020
#define LM93_ALARM_IN7 0x00000040
#define LM93_ALARM_IN8 0x00000080
#define LM93_ALARM_IN9 0x00000100
#define LM93_ALARM_IN10 0x00000200
#define LM93_ALARM_IN11 0x00000400
#define LM93_ALARM_IN12 0x00000800
#define LM93_ALARM_IN13 0x00001000
#define LM93_ALARM_IN14 0x00002000
#define LM93_ALARM_IN15 0x00004000
#define LM93_ALARM_IN16 0x00008000
#define LM93_ALARM_FAN1 0x00010000
#define LM93_ALARM_FAN2 0x00020000
#define LM93_ALARM_FAN3 0x00040000
#define LM93_ALARM_FAN4 0x00080000
#define LM93_ALARM_PH1_ERR 0x00100000
#define LM93_ALARM_PH2_ERR 0x00200000
#define LM93_ALARM_SCSI1_ERR 0x00400000
#define LM93_ALARM_SCSI2_ERR 0x00800000
#define LM93_ALARM_DVDDP1_ERR 0x01000000
#define LM93_ALARM_DVDDP2_ERR 0x02000000
#define LM93_ALARM_D1_ERR 0x04000000
#define LM93_ALARM_D2_ERR 0x08000000
#define LM93_ALARM_TEMP1 0x10000000
#define LM93_ALARM_TEMP2 0x20000000
#define LM93_ALARM_TEMP3 0x40000000
static unsigned LM93_ALARMS_FROM_REG(struct block1_t b1)
{
unsigned result;
result = b1.host_status_2 & 0x3f;
if (vccp_limit_type[0])
result |= (b1.host_status_4 & 0x10) << 2;
else
result |= b1.host_status_2 & 0x40;
if (vccp_limit_type[1])
result |= (b1.host_status_4 & 0x20) << 2;
else
result |= b1.host_status_2 & 0x80;
result |= b1.host_status_3 << 8;
result |= (b1.fan_status & 0x0f) << 16;
result |= (b1.p1_prochot_status & 0x80) << 13;
result |= (b1.p2_prochot_status & 0x80) << 14;
result |= (b1.host_status_4 & 0xfc) << 20;
result |= (b1.host_status_1 & 0x07) << 28;
return result;
}
#define MAX_RETRIES 5
static u8 lm93_read_byte(struct i2c_client *client, u8 reg)
{
int value, i;
/* retry in case of read errors */
for (i = 1; i <= MAX_RETRIES; i++) {
value = i2c_smbus_read_byte_data(client, reg);
if (value >= 0) {
return value;
} else {
dev_warn(&client->dev,
"lm93: read byte data failed, address 0x%02x.\n",
reg);
mdelay(i + 3);
}
}
/* <TODO> what to return in case of error? */
dev_err(&client->dev, "lm93: All read byte retries failed!!\n");
return 0;
}
static int lm93_write_byte(struct i2c_client *client, u8 reg, u8 value)
{
int result;
/* <TODO> how to handle write errors? */
result = i2c_smbus_write_byte_data(client, reg, value);
if (result < 0)
dev_warn(&client->dev,
"lm93: write byte data failed, 0x%02x at address 0x%02x.\n",
value, reg);
return result;
}
static u16 lm93_read_word(struct i2c_client *client, u8 reg)
{
int value, i;
/* retry in case of read errors */
for (i = 1; i <= MAX_RETRIES; i++) {
value = i2c_smbus_read_word_data(client, reg);
if (value >= 0) {
return value;
} else {
dev_warn(&client->dev,
"lm93: read word data failed, address 0x%02x.\n",
reg);
mdelay(i + 3);
}
}
/* <TODO> what to return in case of error? */
dev_err(&client->dev, "lm93: All read word retries failed!!\n");
return 0;
}
static int lm93_write_word(struct i2c_client *client, u8 reg, u16 value)
{
int result;
/* <TODO> how to handle write errors? */
result = i2c_smbus_write_word_data(client, reg, value);
if (result < 0)
dev_warn(&client->dev,
"lm93: write word data failed, 0x%04x at address 0x%02x.\n",
value, reg);
return result;
}
static u8 lm93_block_buffer[I2C_SMBUS_BLOCK_MAX];
/*
* read block data into values, retry if not expected length
* fbn => index to lm93_block_read_cmds table
* (Fixed Block Number - section 14.5.2 of LM93 datasheet)
*/
static void lm93_read_block(struct i2c_client *client, u8 fbn, u8 *values)
{
int i, result = 0;
for (i = 1; i <= MAX_RETRIES; i++) {
result = i2c_smbus_read_block_data(client,
lm93_block_read_cmds[fbn].cmd, lm93_block_buffer);
if (result == lm93_block_read_cmds[fbn].len) {
break;
} else {
dev_warn(&client->dev,
"lm93: block read data failed, command 0x%02x.\n",
lm93_block_read_cmds[fbn].cmd);
mdelay(i + 3);
}
}
if (result == lm93_block_read_cmds[fbn].len) {
memcpy(values, lm93_block_buffer,
lm93_block_read_cmds[fbn].len);
} else {
/* <TODO> what to do in case of error? */
}
}
static struct lm93_data *lm93_update_device(struct device *dev)
{
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
const unsigned long interval = HZ + (HZ / 2);
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + interval) ||
!data->valid) {
data->update(data, client);
data->last_updated = jiffies;
data->valid = true;
}
mutex_unlock(&data->update_lock);
return data;
}
/* update routine for data that has no corresponding SMBus block command */
static void lm93_update_client_common(struct lm93_data *data,
struct i2c_client *client)
{
int i;
u8 *ptr;
/* temp1 - temp4: limits */
for (i = 0; i < 4; i++) {
data->temp_lim[i].min =
lm93_read_byte(client, LM93_REG_TEMP_MIN(i));
data->temp_lim[i].max =
lm93_read_byte(client, LM93_REG_TEMP_MAX(i));
}
/* config register */
data->config = lm93_read_byte(client, LM93_REG_CONFIG);
/* vid1 - vid2: values */
for (i = 0; i < 2; i++)
data->vid[i] = lm93_read_byte(client, LM93_REG_VID(i));
/* prochot1 - prochot2: limits */
for (i = 0; i < 2; i++)
data->prochot_max[i] = lm93_read_byte(client,
LM93_REG_PROCHOT_MAX(i));
/* vccp1 - vccp2: VID relative limits */
for (i = 0; i < 2; i++)
data->vccp_limits[i] = lm93_read_byte(client,
LM93_REG_VCCP_LIMIT_OFF(i));
/* GPIO input state */
data->gpi = lm93_read_byte(client, LM93_REG_GPI);
/* #PROCHOT override state */
data->prochot_override = lm93_read_byte(client,
LM93_REG_PROCHOT_OVERRIDE);
/* #PROCHOT intervals */
data->prochot_interval = lm93_read_byte(client,
LM93_REG_PROCHOT_INTERVAL);
/* Fan Boost Temperature registers */
for (i = 0; i < 4; i++)
data->boost[i] = lm93_read_byte(client, LM93_REG_BOOST(i));
/* Fan Boost Temperature Hyst. registers */
data->boost_hyst[0] = lm93_read_byte(client, LM93_REG_BOOST_HYST_12);
data->boost_hyst[1] = lm93_read_byte(client, LM93_REG_BOOST_HYST_34);
/* Temperature Zone Min. PWM & Hysteresis registers */
data->auto_pwm_min_hyst[0] =
lm93_read_byte(client, LM93_REG_PWM_MIN_HYST_12);
data->auto_pwm_min_hyst[1] =
lm93_read_byte(client, LM93_REG_PWM_MIN_HYST_34);
/* #PROCHOT & #VRDHOT PWM Ramp Control register */
data->pwm_ramp_ctl = lm93_read_byte(client, LM93_REG_PWM_RAMP_CTL);
/* misc setup registers */
data->sfc1 = lm93_read_byte(client, LM93_REG_SFC1);
data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
data->sf_tach_to_pwm = lm93_read_byte(client,
LM93_REG_SF_TACH_TO_PWM);
/* write back alarm values to clear */
for (i = 0, ptr = (u8 *)(&data->block1); i < 8; i++)
lm93_write_byte(client, LM93_REG_HOST_ERROR_1 + i, *(ptr + i));
}
/* update routine which uses SMBus block data commands */
static void lm93_update_client_full(struct lm93_data *data,
struct i2c_client *client)
{
dev_dbg(&client->dev, "starting device update (block data enabled)\n");
/* in1 - in16: values & limits */
lm93_read_block(client, 3, (u8 *)(data->block3));
lm93_read_block(client, 7, (u8 *)(data->block7));
/* temp1 - temp4: values */
lm93_read_block(client, 2, (u8 *)(data->block2));
/* prochot1 - prochot2: values */
lm93_read_block(client, 4, (u8 *)(data->block4));
/* fan1 - fan4: values & limits */
lm93_read_block(client, 5, (u8 *)(data->block5));
lm93_read_block(client, 8, (u8 *)(data->block8));
/* pmw control registers */
lm93_read_block(client, 9, (u8 *)(data->block9));
/* alarm values */
lm93_read_block(client, 1, (u8 *)(&data->block1));
/* auto/pwm registers */
lm93_read_block(client, 10, (u8 *)(&data->block10));
lm93_update_client_common(data, client);
}
/* update routine which uses SMBus byte/word data commands only */
static void lm93_update_client_min(struct lm93_data *data,
struct i2c_client *client)
{
int i, j;
u8 *ptr;
dev_dbg(&client->dev, "starting device update (block data disabled)\n");
/* in1 - in16: values & limits */
for (i = 0; i < 16; i++) {
data->block3[i] =
lm93_read_byte(client, LM93_REG_IN(i));
data->block7[i].min =
lm93_read_byte(client, LM93_REG_IN_MIN(i));
data->block7[i].max =
lm93_read_byte(client, LM93_REG_IN_MAX(i));
}
/* temp1 - temp4: values */
for (i = 0; i < 4; i++) {
data->block2[i] =
lm93_read_byte(client, LM93_REG_TEMP(i));
}
/* prochot1 - prochot2: values */
for (i = 0; i < 2; i++) {
data->block4[i].cur =
lm93_read_byte(client, LM93_REG_PROCHOT_CUR(i));
data->block4[i].avg =
lm93_read_byte(client, LM93_REG_PROCHOT_AVG(i));
}
/* fan1 - fan4: values & limits */
for (i = 0; i < 4; i++) {
data->block5[i] =
lm93_read_word(client, LM93_REG_FAN(i));
data->block8[i] =
lm93_read_word(client, LM93_REG_FAN_MIN(i));
}
/* pwm control registers */
for (i = 0; i < 2; i++) {
for (j = 0; j < 4; j++) {
data->block9[i][j] =
lm93_read_byte(client, LM93_REG_PWM_CTL(i, j));
}
}
/* alarm values */
for (i = 0, ptr = (u8 *)(&data->block1); i < 8; i++) {
*(ptr + i) =
lm93_read_byte(client, LM93_REG_HOST_ERROR_1 + i);
}
/* auto/pwm (base temp) registers */
for (i = 0; i < 4; i++) {
data->block10.base[i] =
lm93_read_byte(client, LM93_REG_TEMP_BASE(i));
}
/* auto/pwm (offset temp) registers */
for (i = 0; i < 12; i++) {
data->block10.offset[i] =
lm93_read_byte(client, LM93_REG_TEMP_OFFSET(i));
}
lm93_update_client_common(data, client);
}
/* following are the sysfs callback functions */
static ssize_t in_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_IN_FROM_REG(nr, data->block3[nr]));
}
static SENSOR_DEVICE_ATTR_RO(in1_input, in, 0);
static SENSOR_DEVICE_ATTR_RO(in2_input, in, 1);
static SENSOR_DEVICE_ATTR_RO(in3_input, in, 2);
static SENSOR_DEVICE_ATTR_RO(in4_input, in, 3);
static SENSOR_DEVICE_ATTR_RO(in5_input, in, 4);
static SENSOR_DEVICE_ATTR_RO(in6_input, in, 5);
static SENSOR_DEVICE_ATTR_RO(in7_input, in, 6);
static SENSOR_DEVICE_ATTR_RO(in8_input, in, 7);
static SENSOR_DEVICE_ATTR_RO(in9_input, in, 8);
static SENSOR_DEVICE_ATTR_RO(in10_input, in, 9);
static SENSOR_DEVICE_ATTR_RO(in11_input, in, 10);
static SENSOR_DEVICE_ATTR_RO(in12_input, in, 11);
static SENSOR_DEVICE_ATTR_RO(in13_input, in, 12);
static SENSOR_DEVICE_ATTR_RO(in14_input, in, 13);
static SENSOR_DEVICE_ATTR_RO(in15_input, in, 14);
static SENSOR_DEVICE_ATTR_RO(in16_input, in, 15);
static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
int vccp = nr - 6;
long rc, vid;
if ((nr == 6 || nr == 7) && vccp_limit_type[vccp]) {
vid = LM93_VID_FROM_REG(data->vid[vccp]);
rc = LM93_IN_MIN_FROM_REG(data->vccp_limits[vccp], vid);
} else {
rc = LM93_IN_FROM_REG(nr, data->block7[nr].min);
}
return sprintf(buf, "%ld\n", rc);
}
static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int vccp = nr - 6;
long vid;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
if ((nr == 6 || nr == 7) && vccp_limit_type[vccp]) {
vid = LM93_VID_FROM_REG(data->vid[vccp]);
data->vccp_limits[vccp] = (data->vccp_limits[vccp] & 0xf0) |
LM93_IN_REL_TO_REG(val, 0, vid);
lm93_write_byte(client, LM93_REG_VCCP_LIMIT_OFF(vccp),
data->vccp_limits[vccp]);
} else {
data->block7[nr].min = LM93_IN_TO_REG(nr, val);
lm93_write_byte(client, LM93_REG_IN_MIN(nr),
data->block7[nr].min);
}
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 0);
static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 1);
static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 2);
static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 3);
static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 4);
static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 5);
static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 6);
static SENSOR_DEVICE_ATTR_RW(in8_min, in_min, 7);
static SENSOR_DEVICE_ATTR_RW(in9_min, in_min, 8);
static SENSOR_DEVICE_ATTR_RW(in10_min, in_min, 9);
static SENSOR_DEVICE_ATTR_RW(in11_min, in_min, 10);
static SENSOR_DEVICE_ATTR_RW(in12_min, in_min, 11);
static SENSOR_DEVICE_ATTR_RW(in13_min, in_min, 12);
static SENSOR_DEVICE_ATTR_RW(in14_min, in_min, 13);
static SENSOR_DEVICE_ATTR_RW(in15_min, in_min, 14);
static SENSOR_DEVICE_ATTR_RW(in16_min, in_min, 15);
static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
int vccp = nr - 6;
long rc, vid;
if ((nr == 6 || nr == 7) && vccp_limit_type[vccp]) {
vid = LM93_VID_FROM_REG(data->vid[vccp]);
rc = LM93_IN_MAX_FROM_REG(data->vccp_limits[vccp], vid);
} else {
rc = LM93_IN_FROM_REG(nr, data->block7[nr].max);
}
return sprintf(buf, "%ld\n", rc);
}
static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int vccp = nr - 6;
long vid;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
if ((nr == 6 || nr == 7) && vccp_limit_type[vccp]) {
vid = LM93_VID_FROM_REG(data->vid[vccp]);
data->vccp_limits[vccp] = (data->vccp_limits[vccp] & 0x0f) |
LM93_IN_REL_TO_REG(val, 1, vid);
lm93_write_byte(client, LM93_REG_VCCP_LIMIT_OFF(vccp),
data->vccp_limits[vccp]);
} else {
data->block7[nr].max = LM93_IN_TO_REG(nr, val);
lm93_write_byte(client, LM93_REG_IN_MAX(nr),
data->block7[nr].max);
}
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 0);
static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 1);
static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 2);
static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 3);
static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 4);
static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 5);
static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 6);
static SENSOR_DEVICE_ATTR_RW(in8_max, in_max, 7);
static SENSOR_DEVICE_ATTR_RW(in9_max, in_max, 8);
static SENSOR_DEVICE_ATTR_RW(in10_max, in_max, 9);
static SENSOR_DEVICE_ATTR_RW(in11_max, in_max, 10);
static SENSOR_DEVICE_ATTR_RW(in12_max, in_max, 11);
static SENSOR_DEVICE_ATTR_RW(in13_max, in_max, 12);
static SENSOR_DEVICE_ATTR_RW(in14_max, in_max, 13);
static SENSOR_DEVICE_ATTR_RW(in15_max, in_max, 14);
static SENSOR_DEVICE_ATTR_RW(in16_max, in_max, 15);
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->block2[nr]));
}
static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
static ssize_t temp_min_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->temp_lim[nr].min));
}
static ssize_t temp_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_lim[nr].min = LM93_TEMP_TO_REG(val);
lm93_write_byte(client, LM93_REG_TEMP_MIN(nr), data->temp_lim[nr].min);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
static ssize_t temp_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->temp_lim[nr].max));
}
static ssize_t temp_max_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_lim[nr].max = LM93_TEMP_TO_REG(val);
lm93_write_byte(client, LM93_REG_TEMP_MAX(nr), data->temp_lim[nr].max);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
static ssize_t temp_auto_base_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->block10.base[nr]));
}
static ssize_t temp_auto_base_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->block10.base[nr] = LM93_TEMP_TO_REG(val);
lm93_write_byte(client, LM93_REG_TEMP_BASE(nr), data->block10.base[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_auto_base, temp_auto_base, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_base, temp_auto_base, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_base, temp_auto_base, 2);
static ssize_t temp_auto_boost_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->boost[nr]));
}
static ssize_t temp_auto_boost_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->boost[nr] = LM93_TEMP_TO_REG(val);
lm93_write_byte(client, LM93_REG_BOOST(nr), data->boost[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_auto_boost, temp_auto_boost, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_boost, temp_auto_boost, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_boost, temp_auto_boost, 2);
static ssize_t temp_auto_boost_hyst_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
int mode = LM93_TEMP_OFFSET_MODE_FROM_REG(data->sfc2, nr);
return sprintf(buf, "%d\n",
LM93_AUTO_BOOST_HYST_FROM_REGS(data, nr, mode));
}
static ssize_t temp_auto_boost_hyst_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
/* force 0.5C/bit mode */
data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
data->sfc2 |= ((nr < 2) ? 0x10 : 0x20);
lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
data->boost_hyst[nr/2] = LM93_AUTO_BOOST_HYST_TO_REG(data, val, nr, 1);
lm93_write_byte(client, LM93_REG_BOOST_HYST(nr),
data->boost_hyst[nr/2]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_auto_boost_hyst, temp_auto_boost_hyst, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_boost_hyst, temp_auto_boost_hyst, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_boost_hyst, temp_auto_boost_hyst, 2);
static ssize_t temp_auto_offset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute_2 *s_attr = to_sensor_dev_attr_2(attr);
int nr = s_attr->index;
int ofs = s_attr->nr;
struct lm93_data *data = lm93_update_device(dev);
int mode = LM93_TEMP_OFFSET_MODE_FROM_REG(data->sfc2, nr);
return sprintf(buf, "%d\n",
LM93_TEMP_AUTO_OFFSET_FROM_REG(data->block10.offset[ofs],
nr, mode));
}
static ssize_t temp_auto_offset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *s_attr = to_sensor_dev_attr_2(attr);
int nr = s_attr->index;
int ofs = s_attr->nr;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
/* force 0.5C/bit mode */
data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
data->sfc2 |= ((nr < 2) ? 0x10 : 0x20);
lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
data->block10.offset[ofs] = LM93_TEMP_AUTO_OFFSET_TO_REG(
data->block10.offset[ofs], val, nr, 1);
lm93_write_byte(client, LM93_REG_TEMP_OFFSET(ofs),
data->block10.offset[ofs]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset1, temp_auto_offset, 0, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset2, temp_auto_offset, 1, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset3, temp_auto_offset, 2, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset4, temp_auto_offset, 3, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset5, temp_auto_offset, 4, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset6, temp_auto_offset, 5, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset7, temp_auto_offset, 6, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset8, temp_auto_offset, 7, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset9, temp_auto_offset, 8, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset10, temp_auto_offset, 9, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset11, temp_auto_offset, 10, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_offset12, temp_auto_offset, 11, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset1, temp_auto_offset, 0, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset2, temp_auto_offset, 1, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset3, temp_auto_offset, 2, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset4, temp_auto_offset, 3, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset5, temp_auto_offset, 4, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset6, temp_auto_offset, 5, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset7, temp_auto_offset, 6, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset8, temp_auto_offset, 7, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset9, temp_auto_offset, 8, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset10, temp_auto_offset, 9, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset11, temp_auto_offset, 10, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_offset12, temp_auto_offset, 11, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset1, temp_auto_offset, 0, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset2, temp_auto_offset, 1, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset3, temp_auto_offset, 2, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset4, temp_auto_offset, 3, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset5, temp_auto_offset, 4, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset6, temp_auto_offset, 5, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset7, temp_auto_offset, 6, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset8, temp_auto_offset, 7, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset9, temp_auto_offset, 8, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset10, temp_auto_offset, 9, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset11, temp_auto_offset, 10, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_offset12, temp_auto_offset, 11, 2);
static ssize_t temp_auto_pwm_min_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
u8 reg, ctl4;
struct lm93_data *data = lm93_update_device(dev);
reg = data->auto_pwm_min_hyst[nr/2] >> 4 & 0x0f;
ctl4 = data->block9[nr][LM93_PWM_CTL4];
return sprintf(buf, "%d\n", LM93_PWM_FROM_REG(reg, (ctl4 & 0x07) ?
LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ));
}
static ssize_t temp_auto_pwm_min_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 reg, ctl4;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
reg = lm93_read_byte(client, LM93_REG_PWM_MIN_HYST(nr));
ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4));
reg = (reg & 0x0f) |
LM93_PWM_TO_REG(val, (ctl4 & 0x07) ?
LM93_PWM_MAP_LO_FREQ :
LM93_PWM_MAP_HI_FREQ) << 4;
data->auto_pwm_min_hyst[nr/2] = reg;
lm93_write_byte(client, LM93_REG_PWM_MIN_HYST(nr), reg);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_auto_pwm_min, temp_auto_pwm_min, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_pwm_min, temp_auto_pwm_min, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_pwm_min, temp_auto_pwm_min, 2);
static ssize_t temp_auto_offset_hyst_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
int mode = LM93_TEMP_OFFSET_MODE_FROM_REG(data->sfc2, nr);
return sprintf(buf, "%d\n", LM93_TEMP_OFFSET_FROM_REG(
data->auto_pwm_min_hyst[nr / 2], mode));
}
static ssize_t temp_auto_offset_hyst_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 reg;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
/* force 0.5C/bit mode */
data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
data->sfc2 |= ((nr < 2) ? 0x10 : 0x20);
lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
reg = data->auto_pwm_min_hyst[nr/2];
reg = (reg & 0xf0) | (LM93_TEMP_OFFSET_TO_REG(val, 1) & 0x0f);
data->auto_pwm_min_hyst[nr/2] = reg;
lm93_write_byte(client, LM93_REG_PWM_MIN_HYST(nr), reg);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_auto_offset_hyst, temp_auto_offset_hyst, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_offset_hyst, temp_auto_offset_hyst, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_offset_hyst, temp_auto_offset_hyst, 2);
static ssize_t fan_input_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *s_attr = to_sensor_dev_attr(attr);
int nr = s_attr->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_FAN_FROM_REG(data->block5[nr]));
}
static SENSOR_DEVICE_ATTR_RO(fan1_input, fan_input, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan_input, 1);
static SENSOR_DEVICE_ATTR_RO(fan3_input, fan_input, 2);
static SENSOR_DEVICE_ATTR_RO(fan4_input, fan_input, 3);
static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_FAN_FROM_REG(data->block8[nr]));
}
static ssize_t fan_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->block8[nr] = LM93_FAN_TO_REG(val);
lm93_write_word(client, LM93_REG_FAN_MIN(nr), data->block8[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
/*
* some tedious bit-twiddling here to deal with the register format:
*
* data->sf_tach_to_pwm: (tach to pwm mapping bits)
*
* bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
* T4:P2 T4:P1 T3:P2 T3:P1 T2:P2 T2:P1 T1:P2 T1:P1
*
* data->sfc2: (enable bits)
*
* bit | 3 | 2 | 1 | 0
* T4 T3 T2 T1
*/
static ssize_t fan_smart_tach_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
long rc = 0;
int mapping;
/* extract the relevant mapping */
mapping = (data->sf_tach_to_pwm >> (nr * 2)) & 0x03;
/* if there's a mapping and it's enabled */
if (mapping && ((data->sfc2 >> nr) & 0x01))
rc = mapping;
return sprintf(buf, "%ld\n", rc);
}
/*
* helper function - must grab data->update_lock before calling
* fan is 0-3, indicating fan1-fan4
*/
static void lm93_write_fan_smart_tach(struct i2c_client *client,
struct lm93_data *data, int fan, long value)
{
/* insert the new mapping and write it out */
data->sf_tach_to_pwm = lm93_read_byte(client, LM93_REG_SF_TACH_TO_PWM);
data->sf_tach_to_pwm &= ~(0x3 << fan * 2);
data->sf_tach_to_pwm |= value << fan * 2;
lm93_write_byte(client, LM93_REG_SF_TACH_TO_PWM, data->sf_tach_to_pwm);
/* insert the enable bit and write it out */
data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
if (value)
data->sfc2 |= 1 << fan;
else
data->sfc2 &= ~(1 << fan);
lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
}
static ssize_t fan_smart_tach_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
/* sanity test, ignore the write otherwise */
if (val <= 2) {
/* can't enable if pwm freq is 22.5KHz */
if (val) {
u8 ctl4 = lm93_read_byte(client,
LM93_REG_PWM_CTL(val - 1, LM93_PWM_CTL4));
if ((ctl4 & 0x07) == 0)
val = 0;
}
lm93_write_fan_smart_tach(client, data, nr, val);
}
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(fan1_smart_tach, fan_smart_tach, 0);
static SENSOR_DEVICE_ATTR_RW(fan2_smart_tach, fan_smart_tach, 1);
static SENSOR_DEVICE_ATTR_RW(fan3_smart_tach, fan_smart_tach, 2);
static SENSOR_DEVICE_ATTR_RW(fan4_smart_tach, fan_smart_tach, 3);
static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
u8 ctl2, ctl4;
long rc;
ctl2 = data->block9[nr][LM93_PWM_CTL2];
ctl4 = data->block9[nr][LM93_PWM_CTL4];
if (ctl2 & 0x01) /* show user commanded value if enabled */
rc = data->pwm_override[nr];
else /* show present h/w value if manual pwm disabled */
rc = LM93_PWM_FROM_REG(ctl2 >> 4, (ctl4 & 0x07) ?
LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ);
return sprintf(buf, "%ld\n", rc);
}
static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 ctl2, ctl4;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
ctl2 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL2));
ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4));
ctl2 = (ctl2 & 0x0f) | LM93_PWM_TO_REG(val, (ctl4 & 0x07) ?
LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ) << 4;
/* save user commanded value */
data->pwm_override[nr] = LM93_PWM_FROM_REG(ctl2 >> 4,
(ctl4 & 0x07) ? LM93_PWM_MAP_LO_FREQ :
LM93_PWM_MAP_HI_FREQ);
lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL2), ctl2);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
static ssize_t pwm_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
u8 ctl2;
long rc;
ctl2 = data->block9[nr][LM93_PWM_CTL2];
if (ctl2 & 0x01) /* manual override enabled ? */
rc = ((ctl2 & 0xF0) == 0xF0) ? 0 : 1;
else
rc = 2;
return sprintf(buf, "%ld\n", rc);
}
static ssize_t pwm_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 ctl2;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
ctl2 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL2));
switch (val) {
case 0:
ctl2 |= 0xF1; /* enable manual override, set PWM to max */
break;
case 1:
ctl2 |= 0x01; /* enable manual override */
break;
case 2:
ctl2 &= ~0x01; /* disable manual override */
break;
default:
mutex_unlock(&data->update_lock);
return -EINVAL;
}
lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL2), ctl2);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
static ssize_t pwm_freq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
u8 ctl4;
ctl4 = data->block9[nr][LM93_PWM_CTL4];
return sprintf(buf, "%d\n", LM93_PWM_FREQ_FROM_REG(ctl4));
}
/*
* helper function - must grab data->update_lock before calling
* pwm is 0-1, indicating pwm1-pwm2
* this disables smart tach for all tach channels bound to the given pwm
*/
static void lm93_disable_fan_smart_tach(struct i2c_client *client,
struct lm93_data *data, int pwm)
{
int mapping = lm93_read_byte(client, LM93_REG_SF_TACH_TO_PWM);
int mask;
/* collapse the mapping into a mask of enable bits */
mapping = (mapping >> pwm) & 0x55;
mask = mapping & 0x01;
mask |= (mapping & 0x04) >> 1;
mask |= (mapping & 0x10) >> 2;
mask |= (mapping & 0x40) >> 3;
/* disable smart tach according to the mask */
data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
data->sfc2 &= ~mask;
lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
}
static ssize_t pwm_freq_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 ctl4;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4));
ctl4 = (ctl4 & 0xf8) | LM93_PWM_FREQ_TO_REG(val);
data->block9[nr][LM93_PWM_CTL4] = ctl4;
/* ctl4 == 0 -> 22.5KHz -> disable smart tach */
if (!ctl4)
lm93_disable_fan_smart_tach(client, data, nr);
lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4), ctl4);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
static ssize_t pwm_auto_channels_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", data->block9[nr][LM93_PWM_CTL1]);
}
static ssize_t pwm_auto_channels_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->block9[nr][LM93_PWM_CTL1] = clamp_val(val, 0, 255);
lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL1),
data->block9[nr][LM93_PWM_CTL1]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
static ssize_t pwm_auto_spinup_min_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
u8 ctl3, ctl4;
ctl3 = data->block9[nr][LM93_PWM_CTL3];
ctl4 = data->block9[nr][LM93_PWM_CTL4];
return sprintf(buf, "%d\n",
LM93_PWM_FROM_REG(ctl3 & 0x0f, (ctl4 & 0x07) ?
LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ));
}
static ssize_t pwm_auto_spinup_min_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 ctl3, ctl4;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
ctl3 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3));
ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4));
ctl3 = (ctl3 & 0xf0) | LM93_PWM_TO_REG(val, (ctl4 & 0x07) ?
LM93_PWM_MAP_LO_FREQ :
LM93_PWM_MAP_HI_FREQ);
data->block9[nr][LM93_PWM_CTL3] = ctl3;
lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3), ctl3);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_spinup_min, pwm_auto_spinup_min, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_spinup_min, pwm_auto_spinup_min, 1);
static ssize_t pwm_auto_spinup_time_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_SPINUP_TIME_FROM_REG(
data->block9[nr][LM93_PWM_CTL3]));
}
static ssize_t pwm_auto_spinup_time_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 ctl3;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
ctl3 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3));
ctl3 = (ctl3 & 0x1f) | (LM93_SPINUP_TIME_TO_REG(val) << 5 & 0xe0);
data->block9[nr][LM93_PWM_CTL3] = ctl3;
lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3), ctl3);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_spinup_time, pwm_auto_spinup_time, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_spinup_time, pwm_auto_spinup_time, 1);
static ssize_t pwm_auto_prochot_ramp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n",
LM93_RAMP_FROM_REG(data->pwm_ramp_ctl >> 4 & 0x0f));
}
static ssize_t pwm_auto_prochot_ramp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 ramp;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
ramp = lm93_read_byte(client, LM93_REG_PWM_RAMP_CTL);
ramp = (ramp & 0x0f) | (LM93_RAMP_TO_REG(val) << 4 & 0xf0);
lm93_write_byte(client, LM93_REG_PWM_RAMP_CTL, ramp);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR_RW(pwm_auto_prochot_ramp);
static ssize_t pwm_auto_vrdhot_ramp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n",
LM93_RAMP_FROM_REG(data->pwm_ramp_ctl & 0x0f));
}
static ssize_t pwm_auto_vrdhot_ramp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 ramp;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
ramp = lm93_read_byte(client, LM93_REG_PWM_RAMP_CTL);
ramp = (ramp & 0xf0) | (LM93_RAMP_TO_REG(val) & 0x0f);
lm93_write_byte(client, LM93_REG_PWM_RAMP_CTL, ramp);
mutex_unlock(&data->update_lock);
return 0;
}
static DEVICE_ATTR_RW(pwm_auto_vrdhot_ramp);
static ssize_t vid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_VID_FROM_REG(data->vid[nr]));
}
static SENSOR_DEVICE_ATTR_RO(cpu0_vid, vid, 0);
static SENSOR_DEVICE_ATTR_RO(cpu1_vid, vid, 1);
static ssize_t prochot_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", data->block4[nr].cur);
}
static SENSOR_DEVICE_ATTR_RO(prochot1, prochot, 0);
static SENSOR_DEVICE_ATTR_RO(prochot2, prochot, 1);
static ssize_t prochot_avg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", data->block4[nr].avg);
}
static SENSOR_DEVICE_ATTR_RO(prochot1_avg, prochot_avg, 0);
static SENSOR_DEVICE_ATTR_RO(prochot2_avg, prochot_avg, 1);
static ssize_t prochot_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", data->prochot_max[nr]);
}
static ssize_t prochot_max_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->prochot_max[nr] = LM93_PROCHOT_TO_REG(val);
lm93_write_byte(client, LM93_REG_PROCHOT_MAX(nr),
data->prochot_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(prochot1_max, prochot_max, 0);
static SENSOR_DEVICE_ATTR_RW(prochot2_max, prochot_max, 1);
static const u8 prochot_override_mask[] = { 0x80, 0x40 };
static ssize_t prochot_override_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n",
(data->prochot_override & prochot_override_mask[nr]) ? 1 : 0);
}
static ssize_t prochot_override_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
if (val)
data->prochot_override |= prochot_override_mask[nr];
else
data->prochot_override &= (~prochot_override_mask[nr]);
lm93_write_byte(client, LM93_REG_PROCHOT_OVERRIDE,
data->prochot_override);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(prochot1_override, prochot_override, 0);
static SENSOR_DEVICE_ATTR_RW(prochot2_override, prochot_override, 1);
static ssize_t prochot_interval_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
u8 tmp;
if (nr == 1)
tmp = (data->prochot_interval & 0xf0) >> 4;
else
tmp = data->prochot_interval & 0x0f;
return sprintf(buf, "%d\n", LM93_INTERVAL_FROM_REG(tmp));
}
static ssize_t prochot_interval_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 tmp;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
tmp = lm93_read_byte(client, LM93_REG_PROCHOT_INTERVAL);
if (nr == 1)
tmp = (tmp & 0x0f) | (LM93_INTERVAL_TO_REG(val) << 4);
else
tmp = (tmp & 0xf0) | LM93_INTERVAL_TO_REG(val);
data->prochot_interval = tmp;
lm93_write_byte(client, LM93_REG_PROCHOT_INTERVAL, tmp);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(prochot1_interval, prochot_interval, 0);
static SENSOR_DEVICE_ATTR_RW(prochot2_interval, prochot_interval, 1);
static ssize_t prochot_override_duty_cycle_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", data->prochot_override & 0x0f);
}
static ssize_t prochot_override_duty_cycle_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->prochot_override = (data->prochot_override & 0xf0) |
clamp_val(val, 0, 15);
lm93_write_byte(client, LM93_REG_PROCHOT_OVERRIDE,
data->prochot_override);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR_RW(prochot_override_duty_cycle);
static ssize_t prochot_short_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", (data->config & 0x10) ? 1 : 0);
}
static ssize_t prochot_short_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm93_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
if (val)
data->config |= 0x10;
else
data->config &= ~0x10;
lm93_write_byte(client, LM93_REG_CONFIG, data->config);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR_RW(prochot_short);
static ssize_t vrdhot_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = (to_sensor_dev_attr(attr))->index;
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n",
data->block1.host_status_1 & (1 << (nr + 4)) ? 1 : 0);
}
static SENSOR_DEVICE_ATTR_RO(vrdhot1, vrdhot, 0);
static SENSOR_DEVICE_ATTR_RO(vrdhot2, vrdhot, 1);
static ssize_t gpio_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_GPI_FROM_REG(data->gpi));
}
static DEVICE_ATTR_RO(gpio);
static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct lm93_data *data = lm93_update_device(dev);
return sprintf(buf, "%d\n", LM93_ALARMS_FROM_REG(data->block1));
}
static DEVICE_ATTR_RO(alarms);
static struct attribute *lm93_attrs[] = {
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in8_input.dev_attr.attr,
&sensor_dev_attr_in9_input.dev_attr.attr,
&sensor_dev_attr_in10_input.dev_attr.attr,
&sensor_dev_attr_in11_input.dev_attr.attr,
&sensor_dev_attr_in12_input.dev_attr.attr,
&sensor_dev_attr_in13_input.dev_attr.attr,
&sensor_dev_attr_in14_input.dev_attr.attr,
&sensor_dev_attr_in15_input.dev_attr.attr,
&sensor_dev_attr_in16_input.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in7_min.dev_attr.attr,
&sensor_dev_attr_in8_min.dev_attr.attr,
&sensor_dev_attr_in9_min.dev_attr.attr,
&sensor_dev_attr_in10_min.dev_attr.attr,
&sensor_dev_attr_in11_min.dev_attr.attr,
&sensor_dev_attr_in12_min.dev_attr.attr,
&sensor_dev_attr_in13_min.dev_attr.attr,
&sensor_dev_attr_in14_min.dev_attr.attr,
&sensor_dev_attr_in15_min.dev_attr.attr,
&sensor_dev_attr_in16_min.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in7_max.dev_attr.attr,
&sensor_dev_attr_in8_max.dev_attr.attr,
&sensor_dev_attr_in9_max.dev_attr.attr,
&sensor_dev_attr_in10_max.dev_attr.attr,
&sensor_dev_attr_in11_max.dev_attr.attr,
&sensor_dev_attr_in12_max.dev_attr.attr,
&sensor_dev_attr_in13_max.dev_attr.attr,
&sensor_dev_attr_in14_max.dev_attr.attr,
&sensor_dev_attr_in15_max.dev_attr.attr,
&sensor_dev_attr_in16_max.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp1_auto_base.dev_attr.attr,
&sensor_dev_attr_temp2_auto_base.dev_attr.attr,
&sensor_dev_attr_temp3_auto_base.dev_attr.attr,
&sensor_dev_attr_temp1_auto_boost.dev_attr.attr,
&sensor_dev_attr_temp2_auto_boost.dev_attr.attr,
&sensor_dev_attr_temp3_auto_boost.dev_attr.attr,
&sensor_dev_attr_temp1_auto_boost_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_auto_boost_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_auto_boost_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset1.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset2.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset3.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset4.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset5.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset6.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset7.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset8.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset9.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset10.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset11.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset12.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset1.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset2.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset3.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset4.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset5.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset6.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset7.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset8.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset9.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset10.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset11.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset12.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset1.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset2.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset3.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset4.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset5.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset6.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset7.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset8.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset9.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset10.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset11.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset12.dev_attr.attr,
&sensor_dev_attr_temp1_auto_pwm_min.dev_attr.attr,
&sensor_dev_attr_temp2_auto_pwm_min.dev_attr.attr,
&sensor_dev_attr_temp3_auto_pwm_min.dev_attr.attr,
&sensor_dev_attr_temp1_auto_offset_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_auto_offset_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_auto_offset_hyst.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan1_smart_tach.dev_attr.attr,
&sensor_dev_attr_fan2_smart_tach.dev_attr.attr,
&sensor_dev_attr_fan3_smart_tach.dev_attr.attr,
&sensor_dev_attr_fan4_smart_tach.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_freq.dev_attr.attr,
&sensor_dev_attr_pwm2_freq.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_spinup_min.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_spinup_min.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_spinup_time.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_spinup_time.dev_attr.attr,
&dev_attr_pwm_auto_prochot_ramp.attr,
&dev_attr_pwm_auto_vrdhot_ramp.attr,
&sensor_dev_attr_cpu0_vid.dev_attr.attr,
&sensor_dev_attr_cpu1_vid.dev_attr.attr,
&sensor_dev_attr_prochot1.dev_attr.attr,
&sensor_dev_attr_prochot2.dev_attr.attr,
&sensor_dev_attr_prochot1_avg.dev_attr.attr,
&sensor_dev_attr_prochot2_avg.dev_attr.attr,
&sensor_dev_attr_prochot1_max.dev_attr.attr,
&sensor_dev_attr_prochot2_max.dev_attr.attr,
&sensor_dev_attr_prochot1_override.dev_attr.attr,
&sensor_dev_attr_prochot2_override.dev_attr.attr,
&sensor_dev_attr_prochot1_interval.dev_attr.attr,
&sensor_dev_attr_prochot2_interval.dev_attr.attr,
&dev_attr_prochot_override_duty_cycle.attr,
&dev_attr_prochot_short.attr,
&sensor_dev_attr_vrdhot1.dev_attr.attr,
&sensor_dev_attr_vrdhot2.dev_attr.attr,
&dev_attr_gpio.attr,
&dev_attr_alarms.attr,
NULL
};
ATTRIBUTE_GROUPS(lm93);
static void lm93_init_client(struct i2c_client *client)
{
int i;
u8 reg;
/* configure VID pin input thresholds */
reg = lm93_read_byte(client, LM93_REG_GPI_VID_CTL);
lm93_write_byte(client, LM93_REG_GPI_VID_CTL,
reg | (vid_agtl ? 0x03 : 0x00));
if (init) {
/* enable #ALERT pin */
reg = lm93_read_byte(client, LM93_REG_CONFIG);
lm93_write_byte(client, LM93_REG_CONFIG, reg | 0x08);
/* enable ASF mode for BMC status registers */
reg = lm93_read_byte(client, LM93_REG_STATUS_CONTROL);
lm93_write_byte(client, LM93_REG_STATUS_CONTROL, reg | 0x02);
/* set sleep state to S0 */
lm93_write_byte(client, LM93_REG_SLEEP_CONTROL, 0);
/* unmask #VRDHOT and dynamic VCCP (if nec) error events */
reg = lm93_read_byte(client, LM93_REG_MISC_ERR_MASK);
reg &= ~0x03;
reg &= ~(vccp_limit_type[0] ? 0x10 : 0);
reg &= ~(vccp_limit_type[1] ? 0x20 : 0);
lm93_write_byte(client, LM93_REG_MISC_ERR_MASK, reg);
}
/* start monitoring */
reg = lm93_read_byte(client, LM93_REG_CONFIG);
lm93_write_byte(client, LM93_REG_CONFIG, reg | 0x01);
/* spin until ready */
for (i = 0; i < 20; i++) {
msleep(10);
if ((lm93_read_byte(client, LM93_REG_CONFIG) & 0x80) == 0x80)
return;
}
dev_warn(&client->dev,
"timed out waiting for sensor chip to signal ready!\n");
}
/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm93_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int mfr, ver;
const char *name;
if (!i2c_check_functionality(adapter, LM93_SMBUS_FUNC_MIN))
return -ENODEV;
/* detection */
mfr = lm93_read_byte(client, LM93_REG_MFR_ID);
if (mfr != 0x01) {
dev_dbg(&adapter->dev,
"detect failed, bad manufacturer id 0x%02x!\n", mfr);
return -ENODEV;
}
ver = lm93_read_byte(client, LM93_REG_VER);
switch (ver) {
case LM93_MFR_ID:
case LM93_MFR_ID_PROTOTYPE:
name = "lm93";
break;
case LM94_MFR_ID_2:
case LM94_MFR_ID:
case LM94_MFR_ID_PROTOTYPE:
name = "lm94";
break;
default:
dev_dbg(&adapter->dev,
"detect failed, bad version id 0x%02x!\n", ver);
return -ENODEV;
}
strlcpy(info->type, name, I2C_NAME_SIZE);
dev_dbg(&adapter->dev, "loading %s at %d, 0x%02x\n",
client->name, i2c_adapter_id(client->adapter),
client->addr);
return 0;
}
static int lm93_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct lm93_data *data;
struct device *hwmon_dev;
int func;
void (*update)(struct lm93_data *, struct i2c_client *);
/* choose update routine based on bus capabilities */
func = i2c_get_functionality(client->adapter);
if (((LM93_SMBUS_FUNC_FULL & func) == LM93_SMBUS_FUNC_FULL) &&
(!disable_block)) {
dev_dbg(dev, "using SMBus block data transactions\n");
update = lm93_update_client_full;
} else if ((LM93_SMBUS_FUNC_MIN & func) == LM93_SMBUS_FUNC_MIN) {
dev_dbg(dev, "disabled SMBus block data transactions\n");
update = lm93_update_client_min;
} else {
dev_dbg(dev, "detect failed, smbus byte and/or word data not supported!\n");
return -ENODEV;
}
data = devm_kzalloc(dev, sizeof(struct lm93_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
/* housekeeping */
data->client = client;
data->update = update;
mutex_init(&data->update_lock);
/* initialize the chip */
lm93_init_client(client);
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data,
lm93_groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id lm93_id[] = {
{ "lm93", 0 },
{ "lm94", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, lm93_id);
static struct i2c_driver lm93_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "lm93",
},
.probe_new = lm93_probe,
.id_table = lm93_id,
.detect = lm93_detect,
.address_list = normal_i2c,
};
module_i2c_driver(lm93_driver);
MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>, "
"Hans J. Koch <hjk@hansjkoch.de>");
MODULE_DESCRIPTION("LM93 driver");
MODULE_LICENSE("GPL");