linux/linux-5.18.11/drivers/edac/i10nm_base.c

666 lines
18 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Intel(R) 10nm server memory controller.
* Copyright (c) 2019, Intel Corporation.
*
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/mce.h>
#include "edac_module.h"
#include "skx_common.h"
#define I10NM_REVISION "v0.0.5"
#define EDAC_MOD_STR "i10nm_edac"
/* Debug macros */
#define i10nm_printk(level, fmt, arg...) \
edac_printk(level, "i10nm", fmt, ##arg)
#define I10NM_GET_SCK_BAR(d, reg) \
pci_read_config_dword((d)->uracu, 0xd0, &(reg))
#define I10NM_GET_IMC_BAR(d, i, reg) \
pci_read_config_dword((d)->uracu, 0xd8 + (i) * 4, &(reg))
#define I10NM_GET_SAD(d, offset, i, reg)\
pci_read_config_dword((d)->sad_all, (offset) + (i) * 8, &(reg))
#define I10NM_GET_HBM_IMC_BAR(d, reg) \
pci_read_config_dword((d)->uracu, 0xd4, &(reg))
#define I10NM_GET_CAPID3_CFG(d, reg) \
pci_read_config_dword((d)->pcu_cr3, 0x90, &(reg))
#define I10NM_GET_DIMMMTR(m, i, j) \
readl((m)->mbase + ((m)->hbm_mc ? 0x80c : 0x2080c) + \
(i) * (m)->chan_mmio_sz + (j) * 4)
#define I10NM_GET_MCDDRTCFG(m, i) \
readl((m)->mbase + ((m)->hbm_mc ? 0x970 : 0x20970) + \
(i) * (m)->chan_mmio_sz)
#define I10NM_GET_MCMTR(m, i) \
readl((m)->mbase + ((m)->hbm_mc ? 0xef8 : 0x20ef8) + \
(i) * (m)->chan_mmio_sz)
#define I10NM_GET_AMAP(m, i) \
readl((m)->mbase + ((m)->hbm_mc ? 0x814 : 0x20814) + \
(i) * (m)->chan_mmio_sz)
#define I10NM_GET_REG32(m, i, offset) \
readl((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_GET_REG64(m, i, offset) \
readq((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_SET_REG32(m, i, offset, v) \
writel(v, (m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_GET_SCK_MMIO_BASE(reg) (GET_BITFIELD(reg, 0, 28) << 23)
#define I10NM_GET_IMC_MMIO_OFFSET(reg) (GET_BITFIELD(reg, 0, 10) << 12)
#define I10NM_GET_IMC_MMIO_SIZE(reg) ((GET_BITFIELD(reg, 13, 23) - \
GET_BITFIELD(reg, 0, 10) + 1) << 12)
#define I10NM_GET_HBM_IMC_MMIO_OFFSET(reg) \
((GET_BITFIELD(reg, 0, 10) << 12) + 0x140000)
#define I10NM_HBM_IMC_MMIO_SIZE 0x9000
#define I10NM_IS_HBM_PRESENT(reg) GET_BITFIELD(reg, 27, 30)
#define I10NM_IS_HBM_IMC(reg) GET_BITFIELD(reg, 29, 29)
#define I10NM_MAX_SAD 16
#define I10NM_SAD_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
#define I10NM_SAD_NM_CACHEABLE(reg) GET_BITFIELD(reg, 5, 5)
#define RETRY_RD_ERR_LOG_UC BIT(1)
#define RETRY_RD_ERR_LOG_NOOVER BIT(14)
#define RETRY_RD_ERR_LOG_EN BIT(15)
#define RETRY_RD_ERR_LOG_NOOVER_UC (BIT(14) | BIT(1))
#define RETRY_RD_ERR_LOG_OVER_UC_V (BIT(2) | BIT(1) | BIT(0))
static struct list_head *i10nm_edac_list;
static struct res_config *res_cfg;
static int retry_rd_err_log;
static u32 offsets_scrub_icx[] = {0x22c60, 0x22c54, 0x22c5c, 0x22c58, 0x22c28, 0x20ed8};
static u32 offsets_scrub_spr[] = {0x22c60, 0x22c54, 0x22f08, 0x22c58, 0x22c28, 0x20ed8};
static u32 offsets_demand_icx[] = {0x22e54, 0x22e60, 0x22e64, 0x22e58, 0x22e5c, 0x20ee0};
static u32 offsets_demand_spr[] = {0x22e54, 0x22e60, 0x22f10, 0x22e58, 0x22e5c, 0x20ee0};
static void __enable_retry_rd_err_log(struct skx_imc *imc, int chan, bool enable)
{
u32 s, d;
if (!imc->mbase)
return;
s = I10NM_GET_REG32(imc, chan, res_cfg->offsets_scrub[0]);
d = I10NM_GET_REG32(imc, chan, res_cfg->offsets_demand[0]);
if (enable) {
/* Save default configurations */
imc->chan[chan].retry_rd_err_log_s = s;
imc->chan[chan].retry_rd_err_log_d = d;
s &= ~RETRY_RD_ERR_LOG_NOOVER_UC;
s |= RETRY_RD_ERR_LOG_EN;
d &= ~RETRY_RD_ERR_LOG_NOOVER_UC;
d |= RETRY_RD_ERR_LOG_EN;
} else {
/* Restore default configurations */
if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_UC)
s |= RETRY_RD_ERR_LOG_UC;
if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_NOOVER)
s |= RETRY_RD_ERR_LOG_NOOVER;
if (!(imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_EN))
s &= ~RETRY_RD_ERR_LOG_EN;
if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_UC)
d |= RETRY_RD_ERR_LOG_UC;
if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_NOOVER)
d |= RETRY_RD_ERR_LOG_NOOVER;
if (!(imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_EN))
d &= ~RETRY_RD_ERR_LOG_EN;
}
I10NM_SET_REG32(imc, chan, res_cfg->offsets_scrub[0], s);
I10NM_SET_REG32(imc, chan, res_cfg->offsets_demand[0], d);
}
static void enable_retry_rd_err_log(bool enable)
{
struct skx_dev *d;
int i, j;
edac_dbg(2, "\n");
list_for_each_entry(d, i10nm_edac_list, list)
for (i = 0; i < I10NM_NUM_IMC; i++)
for (j = 0; j < I10NM_NUM_CHANNELS; j++)
__enable_retry_rd_err_log(&d->imc[i], j, enable);
}
static void show_retry_rd_err_log(struct decoded_addr *res, char *msg,
int len, bool scrub_err)
{
struct skx_imc *imc = &res->dev->imc[res->imc];
u32 log0, log1, log2, log3, log4;
u32 corr0, corr1, corr2, corr3;
u64 log2a, log5;
u32 *offsets;
int n;
if (!imc->mbase)
return;
offsets = scrub_err ? res_cfg->offsets_scrub : res_cfg->offsets_demand;
log0 = I10NM_GET_REG32(imc, res->channel, offsets[0]);
log1 = I10NM_GET_REG32(imc, res->channel, offsets[1]);
log3 = I10NM_GET_REG32(imc, res->channel, offsets[3]);
log4 = I10NM_GET_REG32(imc, res->channel, offsets[4]);
log5 = I10NM_GET_REG64(imc, res->channel, offsets[5]);
if (res_cfg->type == SPR) {
log2a = I10NM_GET_REG64(imc, res->channel, offsets[2]);
n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.16llx %.8x %.8x %.16llx]",
log0, log1, log2a, log3, log4, log5);
} else {
log2 = I10NM_GET_REG32(imc, res->channel, offsets[2]);
n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x %.16llx]",
log0, log1, log2, log3, log4, log5);
}
corr0 = I10NM_GET_REG32(imc, res->channel, 0x22c18);
corr1 = I10NM_GET_REG32(imc, res->channel, 0x22c1c);
corr2 = I10NM_GET_REG32(imc, res->channel, 0x22c20);
corr3 = I10NM_GET_REG32(imc, res->channel, 0x22c24);
if (len - n > 0)
snprintf(msg + n, len - n,
" correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
corr0 & 0xffff, corr0 >> 16,
corr1 & 0xffff, corr1 >> 16,
corr2 & 0xffff, corr2 >> 16,
corr3 & 0xffff, corr3 >> 16);
/* Clear status bits */
if (retry_rd_err_log == 2 && (log0 & RETRY_RD_ERR_LOG_OVER_UC_V)) {
log0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V;
I10NM_SET_REG32(imc, res->channel, offsets[0], log0);
}
}
static struct pci_dev *pci_get_dev_wrapper(int dom, unsigned int bus,
unsigned int dev, unsigned int fun)
{
struct pci_dev *pdev;
pdev = pci_get_domain_bus_and_slot(dom, bus, PCI_DEVFN(dev, fun));
if (!pdev) {
edac_dbg(2, "No device %02x:%02x.%x\n",
bus, dev, fun);
return NULL;
}
if (unlikely(pci_enable_device(pdev) < 0)) {
edac_dbg(2, "Failed to enable device %02x:%02x.%x\n",
bus, dev, fun);
return NULL;
}
pci_dev_get(pdev);
return pdev;
}
static bool i10nm_check_2lm(struct res_config *cfg)
{
struct skx_dev *d;
u32 reg;
int i;
list_for_each_entry(d, i10nm_edac_list, list) {
d->sad_all = pci_get_dev_wrapper(d->seg, d->bus[1],
PCI_SLOT(cfg->sad_all_devfn),
PCI_FUNC(cfg->sad_all_devfn));
if (!d->sad_all)
continue;
for (i = 0; i < I10NM_MAX_SAD; i++) {
I10NM_GET_SAD(d, cfg->sad_all_offset, i, reg);
if (I10NM_SAD_ENABLE(reg) && I10NM_SAD_NM_CACHEABLE(reg)) {
edac_dbg(2, "2-level memory configuration.\n");
return true;
}
}
}
return false;
}
static int i10nm_get_ddr_munits(void)
{
struct pci_dev *mdev;
void __iomem *mbase;
unsigned long size;
struct skx_dev *d;
int i, j = 0;
u32 reg, off;
u64 base;
list_for_each_entry(d, i10nm_edac_list, list) {
d->util_all = pci_get_dev_wrapper(d->seg, d->bus[1], 29, 1);
if (!d->util_all)
return -ENODEV;
d->uracu = pci_get_dev_wrapper(d->seg, d->bus[0], 0, 1);
if (!d->uracu)
return -ENODEV;
if (I10NM_GET_SCK_BAR(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to socket bar\n");
return -ENODEV;
}
base = I10NM_GET_SCK_MMIO_BASE(reg);
edac_dbg(2, "socket%d mmio base 0x%llx (reg 0x%x)\n",
j++, base, reg);
for (i = 0; i < I10NM_NUM_DDR_IMC; i++) {
mdev = pci_get_dev_wrapper(d->seg, d->bus[0],
12 + i, 0);
if (i == 0 && !mdev) {
i10nm_printk(KERN_ERR, "No IMC found\n");
return -ENODEV;
}
if (!mdev)
continue;
d->imc[i].mdev = mdev;
if (I10NM_GET_IMC_BAR(d, i, reg)) {
i10nm_printk(KERN_ERR, "Failed to get mc bar\n");
return -ENODEV;
}
off = I10NM_GET_IMC_MMIO_OFFSET(reg);
size = I10NM_GET_IMC_MMIO_SIZE(reg);
edac_dbg(2, "mc%d mmio base 0x%llx size 0x%lx (reg 0x%x)\n",
i, base + off, size, reg);
mbase = ioremap(base + off, size);
if (!mbase) {
i10nm_printk(KERN_ERR, "Failed to ioremap 0x%llx\n",
base + off);
return -ENODEV;
}
d->imc[i].mbase = mbase;
}
}
return 0;
}
static bool i10nm_check_hbm_imc(struct skx_dev *d)
{
u32 reg;
if (I10NM_GET_CAPID3_CFG(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to get capid3_cfg\n");
return false;
}
return I10NM_IS_HBM_PRESENT(reg) != 0;
}
static int i10nm_get_hbm_munits(void)
{
struct pci_dev *mdev;
void __iomem *mbase;
u32 reg, off, mcmtr;
struct skx_dev *d;
int i, lmc;
u64 base;
list_for_each_entry(d, i10nm_edac_list, list) {
d->pcu_cr3 = pci_get_dev_wrapper(d->seg, d->bus[1], 30, 3);
if (!d->pcu_cr3)
return -ENODEV;
if (!i10nm_check_hbm_imc(d)) {
i10nm_printk(KERN_DEBUG, "No hbm memory\n");
return -ENODEV;
}
if (I10NM_GET_SCK_BAR(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to get socket bar\n");
return -ENODEV;
}
base = I10NM_GET_SCK_MMIO_BASE(reg);
if (I10NM_GET_HBM_IMC_BAR(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to get hbm mc bar\n");
return -ENODEV;
}
base += I10NM_GET_HBM_IMC_MMIO_OFFSET(reg);
lmc = I10NM_NUM_DDR_IMC;
for (i = 0; i < I10NM_NUM_HBM_IMC; i++) {
mdev = pci_get_dev_wrapper(d->seg, d->bus[0],
12 + i / 4, 1 + i % 4);
if (i == 0 && !mdev) {
i10nm_printk(KERN_ERR, "No hbm mc found\n");
return -ENODEV;
}
if (!mdev)
continue;
d->imc[lmc].mdev = mdev;
off = i * I10NM_HBM_IMC_MMIO_SIZE;
edac_dbg(2, "hbm mc%d mmio base 0x%llx size 0x%x\n",
lmc, base + off, I10NM_HBM_IMC_MMIO_SIZE);
mbase = ioremap(base + off, I10NM_HBM_IMC_MMIO_SIZE);
if (!mbase) {
pci_dev_put(d->imc[lmc].mdev);
d->imc[lmc].mdev = NULL;
i10nm_printk(KERN_ERR, "Failed to ioremap for hbm mc 0x%llx\n",
base + off);
return -ENOMEM;
}
d->imc[lmc].mbase = mbase;
d->imc[lmc].hbm_mc = true;
mcmtr = I10NM_GET_MCMTR(&d->imc[lmc], 0);
if (!I10NM_IS_HBM_IMC(mcmtr)) {
iounmap(d->imc[lmc].mbase);
d->imc[lmc].mbase = NULL;
d->imc[lmc].hbm_mc = false;
pci_dev_put(d->imc[lmc].mdev);
d->imc[lmc].mdev = NULL;
i10nm_printk(KERN_ERR, "This isn't an hbm mc!\n");
return -ENODEV;
}
lmc++;
}
}
return 0;
}
static struct res_config i10nm_cfg0 = {
.type = I10NM,
.decs_did = 0x3452,
.busno_cfg_offset = 0xcc,
.ddr_chan_mmio_sz = 0x4000,
.sad_all_devfn = PCI_DEVFN(29, 0),
.sad_all_offset = 0x108,
.offsets_scrub = offsets_scrub_icx,
.offsets_demand = offsets_demand_icx,
};
static struct res_config i10nm_cfg1 = {
.type = I10NM,
.decs_did = 0x3452,
.busno_cfg_offset = 0xd0,
.ddr_chan_mmio_sz = 0x4000,
.sad_all_devfn = PCI_DEVFN(29, 0),
.sad_all_offset = 0x108,
.offsets_scrub = offsets_scrub_icx,
.offsets_demand = offsets_demand_icx,
};
static struct res_config spr_cfg = {
.type = SPR,
.decs_did = 0x3252,
.busno_cfg_offset = 0xd0,
.ddr_chan_mmio_sz = 0x8000,
.hbm_chan_mmio_sz = 0x4000,
.support_ddr5 = true,
.sad_all_devfn = PCI_DEVFN(10, 0),
.sad_all_offset = 0x300,
.offsets_scrub = offsets_scrub_spr,
.offsets_demand = offsets_demand_spr,
};
static const struct x86_cpu_id i10nm_cpuids[] = {
X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0),
X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1),
X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0),
X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1),
X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_D, X86_STEPPINGS(0x0, 0xf), &i10nm_cfg1),
X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SAPPHIRERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg),
{}
};
MODULE_DEVICE_TABLE(x86cpu, i10nm_cpuids);
static bool i10nm_check_ecc(struct skx_imc *imc, int chan)
{
u32 mcmtr;
mcmtr = I10NM_GET_MCMTR(imc, chan);
edac_dbg(1, "ch%d mcmtr reg %x\n", chan, mcmtr);
return !!GET_BITFIELD(mcmtr, 2, 2);
}
static int i10nm_get_dimm_config(struct mem_ctl_info *mci,
struct res_config *cfg)
{
struct skx_pvt *pvt = mci->pvt_info;
struct skx_imc *imc = pvt->imc;
u32 mtr, amap, mcddrtcfg;
struct dimm_info *dimm;
int i, j, ndimms;
for (i = 0; i < imc->num_channels; i++) {
if (!imc->mbase)
continue;
ndimms = 0;
amap = I10NM_GET_AMAP(imc, i);
mcddrtcfg = I10NM_GET_MCDDRTCFG(imc, i);
for (j = 0; j < imc->num_dimms; j++) {
dimm = edac_get_dimm(mci, i, j, 0);
mtr = I10NM_GET_DIMMMTR(imc, i, j);
edac_dbg(1, "dimmmtr 0x%x mcddrtcfg 0x%x (mc%d ch%d dimm%d)\n",
mtr, mcddrtcfg, imc->mc, i, j);
if (IS_DIMM_PRESENT(mtr))
ndimms += skx_get_dimm_info(mtr, 0, amap, dimm,
imc, i, j, cfg);
else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
EDAC_MOD_STR);
}
if (ndimms && !i10nm_check_ecc(imc, i)) {
i10nm_printk(KERN_ERR, "ECC is disabled on imc %d channel %d\n",
imc->mc, i);
return -ENODEV;
}
}
return 0;
}
static struct notifier_block i10nm_mce_dec = {
.notifier_call = skx_mce_check_error,
.priority = MCE_PRIO_EDAC,
};
#ifdef CONFIG_EDAC_DEBUG
/*
* Debug feature.
* Exercise the address decode logic by writing an address to
* /sys/kernel/debug/edac/i10nm_test/addr.
*/
static struct dentry *i10nm_test;
static int debugfs_u64_set(void *data, u64 val)
{
struct mce m;
pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
memset(&m, 0, sizeof(m));
/* ADDRV + MemRd + Unknown channel */
m.status = MCI_STATUS_ADDRV + 0x90;
/* One corrected error */
m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
m.addr = val;
skx_mce_check_error(NULL, 0, &m);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
static void setup_i10nm_debug(void)
{
i10nm_test = edac_debugfs_create_dir("i10nm_test");
if (!i10nm_test)
return;
if (!edac_debugfs_create_file("addr", 0200, i10nm_test,
NULL, &fops_u64_wo)) {
debugfs_remove(i10nm_test);
i10nm_test = NULL;
}
}
static void teardown_i10nm_debug(void)
{
debugfs_remove_recursive(i10nm_test);
}
#else
static inline void setup_i10nm_debug(void) {}
static inline void teardown_i10nm_debug(void) {}
#endif /*CONFIG_EDAC_DEBUG*/
static int __init i10nm_init(void)
{
u8 mc = 0, src_id = 0, node_id = 0;
const struct x86_cpu_id *id;
struct res_config *cfg;
const char *owner;
struct skx_dev *d;
int rc, i, off[3] = {0xd0, 0xc8, 0xcc};
u64 tolm, tohm;
edac_dbg(2, "\n");
owner = edac_get_owner();
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
return -ENODEV;
id = x86_match_cpu(i10nm_cpuids);
if (!id)
return -ENODEV;
cfg = (struct res_config *)id->driver_data;
res_cfg = cfg;
rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm);
if (rc)
return rc;
rc = skx_get_all_bus_mappings(cfg, &i10nm_edac_list);
if (rc < 0)
goto fail;
if (rc == 0) {
i10nm_printk(KERN_ERR, "No memory controllers found\n");
return -ENODEV;
}
skx_set_mem_cfg(i10nm_check_2lm(cfg));
rc = i10nm_get_ddr_munits();
if (i10nm_get_hbm_munits() && rc)
goto fail;
list_for_each_entry(d, i10nm_edac_list, list) {
rc = skx_get_src_id(d, 0xf8, &src_id);
if (rc < 0)
goto fail;
rc = skx_get_node_id(d, &node_id);
if (rc < 0)
goto fail;
edac_dbg(2, "src_id = %d node_id = %d\n", src_id, node_id);
for (i = 0; i < I10NM_NUM_IMC; i++) {
if (!d->imc[i].mdev)
continue;
d->imc[i].mc = mc++;
d->imc[i].lmc = i;
d->imc[i].src_id = src_id;
d->imc[i].node_id = node_id;
if (d->imc[i].hbm_mc) {
d->imc[i].chan_mmio_sz = cfg->hbm_chan_mmio_sz;
d->imc[i].num_channels = I10NM_NUM_HBM_CHANNELS;
d->imc[i].num_dimms = I10NM_NUM_HBM_DIMMS;
} else {
d->imc[i].chan_mmio_sz = cfg->ddr_chan_mmio_sz;
d->imc[i].num_channels = I10NM_NUM_DDR_CHANNELS;
d->imc[i].num_dimms = I10NM_NUM_DDR_DIMMS;
}
rc = skx_register_mci(&d->imc[i], d->imc[i].mdev,
"Intel_10nm Socket", EDAC_MOD_STR,
i10nm_get_dimm_config, cfg);
if (rc < 0)
goto fail;
}
}
rc = skx_adxl_get();
if (rc)
goto fail;
opstate_init();
mce_register_decode_chain(&i10nm_mce_dec);
setup_i10nm_debug();
if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) {
skx_set_decode(NULL, show_retry_rd_err_log);
if (retry_rd_err_log == 2)
enable_retry_rd_err_log(true);
}
i10nm_printk(KERN_INFO, "%s\n", I10NM_REVISION);
return 0;
fail:
skx_remove();
return rc;
}
static void __exit i10nm_exit(void)
{
edac_dbg(2, "\n");
if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) {
skx_set_decode(NULL, NULL);
if (retry_rd_err_log == 2)
enable_retry_rd_err_log(false);
}
teardown_i10nm_debug();
mce_unregister_decode_chain(&i10nm_mce_dec);
skx_adxl_put();
skx_remove();
}
module_init(i10nm_init);
module_exit(i10nm_exit);
module_param(retry_rd_err_log, int, 0444);
MODULE_PARM_DESC(retry_rd_err_log, "retry_rd_err_log: 0=off(default), 1=bios(Linux doesn't reset any control bits, but just reports values.), 2=linux(Linux tries to take control and resets mode bits, clear valid/UC bits after reading.)");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MC Driver for Intel 10nm server processors");