linux/linux-5.18.11/drivers/crypto/qat/qat_common/qat_algs.c

1580 lines
46 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2014 - 2020 Intel Corporation */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/crypto.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/cipher.h>
#include <crypto/internal/skcipher.h>
#include <crypto/aes.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/hash.h>
#include <crypto/hmac.h>
#include <crypto/algapi.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#include <crypto/xts.h>
#include <linux/dma-mapping.h>
#include "adf_accel_devices.h"
#include "adf_transport.h"
#include "adf_common_drv.h"
#include "qat_crypto.h"
#include "icp_qat_hw.h"
#include "icp_qat_fw.h"
#include "icp_qat_fw_la.h"
#define QAT_AES_HW_CONFIG_ENC(alg, mode) \
ICP_QAT_HW_CIPHER_CONFIG_BUILD(mode, alg, \
ICP_QAT_HW_CIPHER_NO_CONVERT, \
ICP_QAT_HW_CIPHER_ENCRYPT)
#define QAT_AES_HW_CONFIG_DEC(alg, mode) \
ICP_QAT_HW_CIPHER_CONFIG_BUILD(mode, alg, \
ICP_QAT_HW_CIPHER_KEY_CONVERT, \
ICP_QAT_HW_CIPHER_DECRYPT)
#define QAT_AES_HW_CONFIG_DEC_NO_CONV(alg, mode) \
ICP_QAT_HW_CIPHER_CONFIG_BUILD(mode, alg, \
ICP_QAT_HW_CIPHER_NO_CONVERT, \
ICP_QAT_HW_CIPHER_DECRYPT)
#define HW_CAP_AES_V2(accel_dev) \
(GET_HW_DATA(accel_dev)->accel_capabilities_mask & \
ICP_ACCEL_CAPABILITIES_AES_V2)
static DEFINE_MUTEX(algs_lock);
static unsigned int active_devs;
struct qat_alg_buf {
u32 len;
u32 resrvd;
u64 addr;
} __packed;
struct qat_alg_buf_list {
u64 resrvd;
u32 num_bufs;
u32 num_mapped_bufs;
struct qat_alg_buf bufers[];
} __packed __aligned(64);
/* Common content descriptor */
struct qat_alg_cd {
union {
struct qat_enc { /* Encrypt content desc */
struct icp_qat_hw_cipher_algo_blk cipher;
struct icp_qat_hw_auth_algo_blk hash;
} qat_enc_cd;
struct qat_dec { /* Decrypt content desc */
struct icp_qat_hw_auth_algo_blk hash;
struct icp_qat_hw_cipher_algo_blk cipher;
} qat_dec_cd;
};
} __aligned(64);
struct qat_alg_aead_ctx {
struct qat_alg_cd *enc_cd;
struct qat_alg_cd *dec_cd;
dma_addr_t enc_cd_paddr;
dma_addr_t dec_cd_paddr;
struct icp_qat_fw_la_bulk_req enc_fw_req;
struct icp_qat_fw_la_bulk_req dec_fw_req;
struct crypto_shash *hash_tfm;
enum icp_qat_hw_auth_algo qat_hash_alg;
struct qat_crypto_instance *inst;
union {
struct sha1_state sha1;
struct sha256_state sha256;
struct sha512_state sha512;
};
char ipad[SHA512_BLOCK_SIZE]; /* sufficient for SHA-1/SHA-256 as well */
char opad[SHA512_BLOCK_SIZE];
};
struct qat_alg_skcipher_ctx {
struct icp_qat_hw_cipher_algo_blk *enc_cd;
struct icp_qat_hw_cipher_algo_blk *dec_cd;
dma_addr_t enc_cd_paddr;
dma_addr_t dec_cd_paddr;
struct icp_qat_fw_la_bulk_req enc_fw_req;
struct icp_qat_fw_la_bulk_req dec_fw_req;
struct qat_crypto_instance *inst;
struct crypto_skcipher *ftfm;
struct crypto_cipher *tweak;
bool fallback;
int mode;
};
static int qat_get_inter_state_size(enum icp_qat_hw_auth_algo qat_hash_alg)
{
switch (qat_hash_alg) {
case ICP_QAT_HW_AUTH_ALGO_SHA1:
return ICP_QAT_HW_SHA1_STATE1_SZ;
case ICP_QAT_HW_AUTH_ALGO_SHA256:
return ICP_QAT_HW_SHA256_STATE1_SZ;
case ICP_QAT_HW_AUTH_ALGO_SHA512:
return ICP_QAT_HW_SHA512_STATE1_SZ;
default:
return -EFAULT;
}
return -EFAULT;
}
static int qat_alg_do_precomputes(struct icp_qat_hw_auth_algo_blk *hash,
struct qat_alg_aead_ctx *ctx,
const u8 *auth_key,
unsigned int auth_keylen)
{
SHASH_DESC_ON_STACK(shash, ctx->hash_tfm);
int block_size = crypto_shash_blocksize(ctx->hash_tfm);
int digest_size = crypto_shash_digestsize(ctx->hash_tfm);
__be32 *hash_state_out;
__be64 *hash512_state_out;
int i, offset;
memset(ctx->ipad, 0, block_size);
memset(ctx->opad, 0, block_size);
shash->tfm = ctx->hash_tfm;
if (auth_keylen > block_size) {
int ret = crypto_shash_digest(shash, auth_key,
auth_keylen, ctx->ipad);
if (ret)
return ret;
memcpy(ctx->opad, ctx->ipad, digest_size);
} else {
memcpy(ctx->ipad, auth_key, auth_keylen);
memcpy(ctx->opad, auth_key, auth_keylen);
}
for (i = 0; i < block_size; i++) {
char *ipad_ptr = ctx->ipad + i;
char *opad_ptr = ctx->opad + i;
*ipad_ptr ^= HMAC_IPAD_VALUE;
*opad_ptr ^= HMAC_OPAD_VALUE;
}
if (crypto_shash_init(shash))
return -EFAULT;
if (crypto_shash_update(shash, ctx->ipad, block_size))
return -EFAULT;
hash_state_out = (__be32 *)hash->sha.state1;
hash512_state_out = (__be64 *)hash_state_out;
switch (ctx->qat_hash_alg) {
case ICP_QAT_HW_AUTH_ALGO_SHA1:
if (crypto_shash_export(shash, &ctx->sha1))
return -EFAULT;
for (i = 0; i < digest_size >> 2; i++, hash_state_out++)
*hash_state_out = cpu_to_be32(ctx->sha1.state[i]);
break;
case ICP_QAT_HW_AUTH_ALGO_SHA256:
if (crypto_shash_export(shash, &ctx->sha256))
return -EFAULT;
for (i = 0; i < digest_size >> 2; i++, hash_state_out++)
*hash_state_out = cpu_to_be32(ctx->sha256.state[i]);
break;
case ICP_QAT_HW_AUTH_ALGO_SHA512:
if (crypto_shash_export(shash, &ctx->sha512))
return -EFAULT;
for (i = 0; i < digest_size >> 3; i++, hash512_state_out++)
*hash512_state_out = cpu_to_be64(ctx->sha512.state[i]);
break;
default:
return -EFAULT;
}
if (crypto_shash_init(shash))
return -EFAULT;
if (crypto_shash_update(shash, ctx->opad, block_size))
return -EFAULT;
offset = round_up(qat_get_inter_state_size(ctx->qat_hash_alg), 8);
if (offset < 0)
return -EFAULT;
hash_state_out = (__be32 *)(hash->sha.state1 + offset);
hash512_state_out = (__be64 *)hash_state_out;
switch (ctx->qat_hash_alg) {
case ICP_QAT_HW_AUTH_ALGO_SHA1:
if (crypto_shash_export(shash, &ctx->sha1))
return -EFAULT;
for (i = 0; i < digest_size >> 2; i++, hash_state_out++)
*hash_state_out = cpu_to_be32(ctx->sha1.state[i]);
break;
case ICP_QAT_HW_AUTH_ALGO_SHA256:
if (crypto_shash_export(shash, &ctx->sha256))
return -EFAULT;
for (i = 0; i < digest_size >> 2; i++, hash_state_out++)
*hash_state_out = cpu_to_be32(ctx->sha256.state[i]);
break;
case ICP_QAT_HW_AUTH_ALGO_SHA512:
if (crypto_shash_export(shash, &ctx->sha512))
return -EFAULT;
for (i = 0; i < digest_size >> 3; i++, hash512_state_out++)
*hash512_state_out = cpu_to_be64(ctx->sha512.state[i]);
break;
default:
return -EFAULT;
}
memzero_explicit(ctx->ipad, block_size);
memzero_explicit(ctx->opad, block_size);
return 0;
}
static void qat_alg_init_common_hdr(struct icp_qat_fw_comn_req_hdr *header)
{
header->hdr_flags =
ICP_QAT_FW_COMN_HDR_FLAGS_BUILD(ICP_QAT_FW_COMN_REQ_FLAG_SET);
header->service_type = ICP_QAT_FW_COMN_REQ_CPM_FW_LA;
header->comn_req_flags =
ICP_QAT_FW_COMN_FLAGS_BUILD(QAT_COMN_CD_FLD_TYPE_64BIT_ADR,
QAT_COMN_PTR_TYPE_SGL);
ICP_QAT_FW_LA_PARTIAL_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_PARTIAL_NONE);
ICP_QAT_FW_LA_CIPH_IV_FLD_FLAG_SET(header->serv_specif_flags,
ICP_QAT_FW_CIPH_IV_16BYTE_DATA);
ICP_QAT_FW_LA_PROTO_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_NO_PROTO);
ICP_QAT_FW_LA_UPDATE_STATE_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_NO_UPDATE_STATE);
}
static int qat_alg_aead_init_enc_session(struct crypto_aead *aead_tfm,
int alg,
struct crypto_authenc_keys *keys,
int mode)
{
struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(aead_tfm);
unsigned int digestsize = crypto_aead_authsize(aead_tfm);
struct qat_enc *enc_ctx = &ctx->enc_cd->qat_enc_cd;
struct icp_qat_hw_cipher_algo_blk *cipher = &enc_ctx->cipher;
struct icp_qat_hw_auth_algo_blk *hash =
(struct icp_qat_hw_auth_algo_blk *)((char *)enc_ctx +
sizeof(struct icp_qat_hw_auth_setup) + keys->enckeylen);
struct icp_qat_fw_la_bulk_req *req_tmpl = &ctx->enc_fw_req;
struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req_tmpl->cd_pars;
struct icp_qat_fw_comn_req_hdr *header = &req_tmpl->comn_hdr;
void *ptr = &req_tmpl->cd_ctrl;
struct icp_qat_fw_cipher_cd_ctrl_hdr *cipher_cd_ctrl = ptr;
struct icp_qat_fw_auth_cd_ctrl_hdr *hash_cd_ctrl = ptr;
/* CD setup */
cipher->aes.cipher_config.val = QAT_AES_HW_CONFIG_ENC(alg, mode);
memcpy(cipher->aes.key, keys->enckey, keys->enckeylen);
hash->sha.inner_setup.auth_config.config =
ICP_QAT_HW_AUTH_CONFIG_BUILD(ICP_QAT_HW_AUTH_MODE1,
ctx->qat_hash_alg, digestsize);
hash->sha.inner_setup.auth_counter.counter =
cpu_to_be32(crypto_shash_blocksize(ctx->hash_tfm));
if (qat_alg_do_precomputes(hash, ctx, keys->authkey, keys->authkeylen))
return -EFAULT;
/* Request setup */
qat_alg_init_common_hdr(header);
header->service_cmd_id = ICP_QAT_FW_LA_CMD_CIPHER_HASH;
ICP_QAT_FW_LA_DIGEST_IN_BUFFER_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_DIGEST_IN_BUFFER);
ICP_QAT_FW_LA_RET_AUTH_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_RET_AUTH_RES);
ICP_QAT_FW_LA_CMP_AUTH_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_NO_CMP_AUTH_RES);
cd_pars->u.s.content_desc_addr = ctx->enc_cd_paddr;
cd_pars->u.s.content_desc_params_sz = sizeof(struct qat_alg_cd) >> 3;
/* Cipher CD config setup */
cipher_cd_ctrl->cipher_key_sz = keys->enckeylen >> 3;
cipher_cd_ctrl->cipher_state_sz = AES_BLOCK_SIZE >> 3;
cipher_cd_ctrl->cipher_cfg_offset = 0;
ICP_QAT_FW_COMN_CURR_ID_SET(cipher_cd_ctrl, ICP_QAT_FW_SLICE_CIPHER);
ICP_QAT_FW_COMN_NEXT_ID_SET(cipher_cd_ctrl, ICP_QAT_FW_SLICE_AUTH);
/* Auth CD config setup */
hash_cd_ctrl->hash_cfg_offset = ((char *)hash - (char *)cipher) >> 3;
hash_cd_ctrl->hash_flags = ICP_QAT_FW_AUTH_HDR_FLAG_NO_NESTED;
hash_cd_ctrl->inner_res_sz = digestsize;
hash_cd_ctrl->final_sz = digestsize;
switch (ctx->qat_hash_alg) {
case ICP_QAT_HW_AUTH_ALGO_SHA1:
hash_cd_ctrl->inner_state1_sz =
round_up(ICP_QAT_HW_SHA1_STATE1_SZ, 8);
hash_cd_ctrl->inner_state2_sz =
round_up(ICP_QAT_HW_SHA1_STATE2_SZ, 8);
break;
case ICP_QAT_HW_AUTH_ALGO_SHA256:
hash_cd_ctrl->inner_state1_sz = ICP_QAT_HW_SHA256_STATE1_SZ;
hash_cd_ctrl->inner_state2_sz = ICP_QAT_HW_SHA256_STATE2_SZ;
break;
case ICP_QAT_HW_AUTH_ALGO_SHA512:
hash_cd_ctrl->inner_state1_sz = ICP_QAT_HW_SHA512_STATE1_SZ;
hash_cd_ctrl->inner_state2_sz = ICP_QAT_HW_SHA512_STATE2_SZ;
break;
default:
break;
}
hash_cd_ctrl->inner_state2_offset = hash_cd_ctrl->hash_cfg_offset +
((sizeof(struct icp_qat_hw_auth_setup) +
round_up(hash_cd_ctrl->inner_state1_sz, 8)) >> 3);
ICP_QAT_FW_COMN_CURR_ID_SET(hash_cd_ctrl, ICP_QAT_FW_SLICE_AUTH);
ICP_QAT_FW_COMN_NEXT_ID_SET(hash_cd_ctrl, ICP_QAT_FW_SLICE_DRAM_WR);
return 0;
}
static int qat_alg_aead_init_dec_session(struct crypto_aead *aead_tfm,
int alg,
struct crypto_authenc_keys *keys,
int mode)
{
struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(aead_tfm);
unsigned int digestsize = crypto_aead_authsize(aead_tfm);
struct qat_dec *dec_ctx = &ctx->dec_cd->qat_dec_cd;
struct icp_qat_hw_auth_algo_blk *hash = &dec_ctx->hash;
struct icp_qat_hw_cipher_algo_blk *cipher =
(struct icp_qat_hw_cipher_algo_blk *)((char *)dec_ctx +
sizeof(struct icp_qat_hw_auth_setup) +
roundup(crypto_shash_digestsize(ctx->hash_tfm), 8) * 2);
struct icp_qat_fw_la_bulk_req *req_tmpl = &ctx->dec_fw_req;
struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req_tmpl->cd_pars;
struct icp_qat_fw_comn_req_hdr *header = &req_tmpl->comn_hdr;
void *ptr = &req_tmpl->cd_ctrl;
struct icp_qat_fw_cipher_cd_ctrl_hdr *cipher_cd_ctrl = ptr;
struct icp_qat_fw_auth_cd_ctrl_hdr *hash_cd_ctrl = ptr;
struct icp_qat_fw_la_auth_req_params *auth_param =
(struct icp_qat_fw_la_auth_req_params *)
((char *)&req_tmpl->serv_specif_rqpars +
sizeof(struct icp_qat_fw_la_cipher_req_params));
/* CD setup */
cipher->aes.cipher_config.val = QAT_AES_HW_CONFIG_DEC(alg, mode);
memcpy(cipher->aes.key, keys->enckey, keys->enckeylen);
hash->sha.inner_setup.auth_config.config =
ICP_QAT_HW_AUTH_CONFIG_BUILD(ICP_QAT_HW_AUTH_MODE1,
ctx->qat_hash_alg,
digestsize);
hash->sha.inner_setup.auth_counter.counter =
cpu_to_be32(crypto_shash_blocksize(ctx->hash_tfm));
if (qat_alg_do_precomputes(hash, ctx, keys->authkey, keys->authkeylen))
return -EFAULT;
/* Request setup */
qat_alg_init_common_hdr(header);
header->service_cmd_id = ICP_QAT_FW_LA_CMD_HASH_CIPHER;
ICP_QAT_FW_LA_DIGEST_IN_BUFFER_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_DIGEST_IN_BUFFER);
ICP_QAT_FW_LA_RET_AUTH_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_NO_RET_AUTH_RES);
ICP_QAT_FW_LA_CMP_AUTH_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_CMP_AUTH_RES);
cd_pars->u.s.content_desc_addr = ctx->dec_cd_paddr;
cd_pars->u.s.content_desc_params_sz = sizeof(struct qat_alg_cd) >> 3;
/* Cipher CD config setup */
cipher_cd_ctrl->cipher_key_sz = keys->enckeylen >> 3;
cipher_cd_ctrl->cipher_state_sz = AES_BLOCK_SIZE >> 3;
cipher_cd_ctrl->cipher_cfg_offset =
(sizeof(struct icp_qat_hw_auth_setup) +
roundup(crypto_shash_digestsize(ctx->hash_tfm), 8) * 2) >> 3;
ICP_QAT_FW_COMN_CURR_ID_SET(cipher_cd_ctrl, ICP_QAT_FW_SLICE_CIPHER);
ICP_QAT_FW_COMN_NEXT_ID_SET(cipher_cd_ctrl, ICP_QAT_FW_SLICE_DRAM_WR);
/* Auth CD config setup */
hash_cd_ctrl->hash_cfg_offset = 0;
hash_cd_ctrl->hash_flags = ICP_QAT_FW_AUTH_HDR_FLAG_NO_NESTED;
hash_cd_ctrl->inner_res_sz = digestsize;
hash_cd_ctrl->final_sz = digestsize;
switch (ctx->qat_hash_alg) {
case ICP_QAT_HW_AUTH_ALGO_SHA1:
hash_cd_ctrl->inner_state1_sz =
round_up(ICP_QAT_HW_SHA1_STATE1_SZ, 8);
hash_cd_ctrl->inner_state2_sz =
round_up(ICP_QAT_HW_SHA1_STATE2_SZ, 8);
break;
case ICP_QAT_HW_AUTH_ALGO_SHA256:
hash_cd_ctrl->inner_state1_sz = ICP_QAT_HW_SHA256_STATE1_SZ;
hash_cd_ctrl->inner_state2_sz = ICP_QAT_HW_SHA256_STATE2_SZ;
break;
case ICP_QAT_HW_AUTH_ALGO_SHA512:
hash_cd_ctrl->inner_state1_sz = ICP_QAT_HW_SHA512_STATE1_SZ;
hash_cd_ctrl->inner_state2_sz = ICP_QAT_HW_SHA512_STATE2_SZ;
break;
default:
break;
}
hash_cd_ctrl->inner_state2_offset = hash_cd_ctrl->hash_cfg_offset +
((sizeof(struct icp_qat_hw_auth_setup) +
round_up(hash_cd_ctrl->inner_state1_sz, 8)) >> 3);
auth_param->auth_res_sz = digestsize;
ICP_QAT_FW_COMN_CURR_ID_SET(hash_cd_ctrl, ICP_QAT_FW_SLICE_AUTH);
ICP_QAT_FW_COMN_NEXT_ID_SET(hash_cd_ctrl, ICP_QAT_FW_SLICE_CIPHER);
return 0;
}
static void qat_alg_skcipher_init_com(struct qat_alg_skcipher_ctx *ctx,
struct icp_qat_fw_la_bulk_req *req,
struct icp_qat_hw_cipher_algo_blk *cd,
const u8 *key, unsigned int keylen)
{
struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req->cd_pars;
struct icp_qat_fw_comn_req_hdr *header = &req->comn_hdr;
struct icp_qat_fw_cipher_cd_ctrl_hdr *cd_ctrl = (void *)&req->cd_ctrl;
bool aes_v2_capable = HW_CAP_AES_V2(ctx->inst->accel_dev);
int mode = ctx->mode;
qat_alg_init_common_hdr(header);
header->service_cmd_id = ICP_QAT_FW_LA_CMD_CIPHER;
cd_pars->u.s.content_desc_params_sz =
sizeof(struct icp_qat_hw_cipher_algo_blk) >> 3;
if (aes_v2_capable && mode == ICP_QAT_HW_CIPHER_XTS_MODE) {
ICP_QAT_FW_LA_SLICE_TYPE_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_USE_UCS_SLICE_TYPE);
/* Store both XTS keys in CD, only the first key is sent
* to the HW, the second key is used for tweak calculation
*/
memcpy(cd->ucs_aes.key, key, keylen);
keylen = keylen / 2;
} else if (aes_v2_capable && mode == ICP_QAT_HW_CIPHER_CTR_MODE) {
ICP_QAT_FW_LA_SLICE_TYPE_SET(header->serv_specif_flags,
ICP_QAT_FW_LA_USE_UCS_SLICE_TYPE);
keylen = round_up(keylen, 16);
memcpy(cd->ucs_aes.key, key, keylen);
} else {
memcpy(cd->aes.key, key, keylen);
}
/* Cipher CD config setup */
cd_ctrl->cipher_key_sz = keylen >> 3;
cd_ctrl->cipher_state_sz = AES_BLOCK_SIZE >> 3;
cd_ctrl->cipher_cfg_offset = 0;
ICP_QAT_FW_COMN_CURR_ID_SET(cd_ctrl, ICP_QAT_FW_SLICE_CIPHER);
ICP_QAT_FW_COMN_NEXT_ID_SET(cd_ctrl, ICP_QAT_FW_SLICE_DRAM_WR);
}
static void qat_alg_skcipher_init_enc(struct qat_alg_skcipher_ctx *ctx,
int alg, const u8 *key,
unsigned int keylen, int mode)
{
struct icp_qat_hw_cipher_algo_blk *enc_cd = ctx->enc_cd;
struct icp_qat_fw_la_bulk_req *req = &ctx->enc_fw_req;
struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req->cd_pars;
qat_alg_skcipher_init_com(ctx, req, enc_cd, key, keylen);
cd_pars->u.s.content_desc_addr = ctx->enc_cd_paddr;
enc_cd->aes.cipher_config.val = QAT_AES_HW_CONFIG_ENC(alg, mode);
}
static void qat_alg_xts_reverse_key(const u8 *key_forward, unsigned int keylen,
u8 *key_reverse)
{
struct crypto_aes_ctx aes_expanded;
int nrounds;
u8 *key;
aes_expandkey(&aes_expanded, key_forward, keylen);
if (keylen == AES_KEYSIZE_128) {
nrounds = 10;
key = (u8 *)aes_expanded.key_enc + (AES_BLOCK_SIZE * nrounds);
memcpy(key_reverse, key, AES_BLOCK_SIZE);
} else {
/* AES_KEYSIZE_256 */
nrounds = 14;
key = (u8 *)aes_expanded.key_enc + (AES_BLOCK_SIZE * nrounds);
memcpy(key_reverse, key, AES_BLOCK_SIZE);
memcpy(key_reverse + AES_BLOCK_SIZE, key - AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
}
}
static void qat_alg_skcipher_init_dec(struct qat_alg_skcipher_ctx *ctx,
int alg, const u8 *key,
unsigned int keylen, int mode)
{
struct icp_qat_hw_cipher_algo_blk *dec_cd = ctx->dec_cd;
struct icp_qat_fw_la_bulk_req *req = &ctx->dec_fw_req;
struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req->cd_pars;
bool aes_v2_capable = HW_CAP_AES_V2(ctx->inst->accel_dev);
qat_alg_skcipher_init_com(ctx, req, dec_cd, key, keylen);
cd_pars->u.s.content_desc_addr = ctx->dec_cd_paddr;
if (aes_v2_capable && mode == ICP_QAT_HW_CIPHER_XTS_MODE) {
/* Key reversing not supported, set no convert */
dec_cd->aes.cipher_config.val =
QAT_AES_HW_CONFIG_DEC_NO_CONV(alg, mode);
/* In-place key reversal */
qat_alg_xts_reverse_key(dec_cd->ucs_aes.key, keylen / 2,
dec_cd->ucs_aes.key);
} else if (mode != ICP_QAT_HW_CIPHER_CTR_MODE) {
dec_cd->aes.cipher_config.val =
QAT_AES_HW_CONFIG_DEC(alg, mode);
} else {
dec_cd->aes.cipher_config.val =
QAT_AES_HW_CONFIG_ENC(alg, mode);
}
}
static int qat_alg_validate_key(int key_len, int *alg, int mode)
{
if (mode != ICP_QAT_HW_CIPHER_XTS_MODE) {
switch (key_len) {
case AES_KEYSIZE_128:
*alg = ICP_QAT_HW_CIPHER_ALGO_AES128;
break;
case AES_KEYSIZE_192:
*alg = ICP_QAT_HW_CIPHER_ALGO_AES192;
break;
case AES_KEYSIZE_256:
*alg = ICP_QAT_HW_CIPHER_ALGO_AES256;
break;
default:
return -EINVAL;
}
} else {
switch (key_len) {
case AES_KEYSIZE_128 << 1:
*alg = ICP_QAT_HW_CIPHER_ALGO_AES128;
break;
case AES_KEYSIZE_256 << 1:
*alg = ICP_QAT_HW_CIPHER_ALGO_AES256;
break;
default:
return -EINVAL;
}
}
return 0;
}
static int qat_alg_aead_init_sessions(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen, int mode)
{
struct crypto_authenc_keys keys;
int alg;
if (crypto_authenc_extractkeys(&keys, key, keylen))
goto bad_key;
if (qat_alg_validate_key(keys.enckeylen, &alg, mode))
goto bad_key;
if (qat_alg_aead_init_enc_session(tfm, alg, &keys, mode))
goto error;
if (qat_alg_aead_init_dec_session(tfm, alg, &keys, mode))
goto error;
memzero_explicit(&keys, sizeof(keys));
return 0;
bad_key:
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
error:
memzero_explicit(&keys, sizeof(keys));
return -EFAULT;
}
static int qat_alg_skcipher_init_sessions(struct qat_alg_skcipher_ctx *ctx,
const u8 *key,
unsigned int keylen,
int mode)
{
int alg;
if (qat_alg_validate_key(keylen, &alg, mode))
return -EINVAL;
qat_alg_skcipher_init_enc(ctx, alg, key, keylen, mode);
qat_alg_skcipher_init_dec(ctx, alg, key, keylen, mode);
return 0;
}
static int qat_alg_aead_rekey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm);
memset(ctx->enc_cd, 0, sizeof(*ctx->enc_cd));
memset(ctx->dec_cd, 0, sizeof(*ctx->dec_cd));
memset(&ctx->enc_fw_req, 0, sizeof(ctx->enc_fw_req));
memset(&ctx->dec_fw_req, 0, sizeof(ctx->dec_fw_req));
return qat_alg_aead_init_sessions(tfm, key, keylen,
ICP_QAT_HW_CIPHER_CBC_MODE);
}
static int qat_alg_aead_newkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct qat_crypto_instance *inst = NULL;
int node = get_current_node();
struct device *dev;
int ret;
inst = qat_crypto_get_instance_node(node);
if (!inst)
return -EINVAL;
dev = &GET_DEV(inst->accel_dev);
ctx->inst = inst;
ctx->enc_cd = dma_alloc_coherent(dev, sizeof(*ctx->enc_cd),
&ctx->enc_cd_paddr,
GFP_ATOMIC);
if (!ctx->enc_cd) {
ret = -ENOMEM;
goto out_free_inst;
}
ctx->dec_cd = dma_alloc_coherent(dev, sizeof(*ctx->dec_cd),
&ctx->dec_cd_paddr,
GFP_ATOMIC);
if (!ctx->dec_cd) {
ret = -ENOMEM;
goto out_free_enc;
}
ret = qat_alg_aead_init_sessions(tfm, key, keylen,
ICP_QAT_HW_CIPHER_CBC_MODE);
if (ret)
goto out_free_all;
return 0;
out_free_all:
memset(ctx->dec_cd, 0, sizeof(struct qat_alg_cd));
dma_free_coherent(dev, sizeof(struct qat_alg_cd),
ctx->dec_cd, ctx->dec_cd_paddr);
ctx->dec_cd = NULL;
out_free_enc:
memset(ctx->enc_cd, 0, sizeof(struct qat_alg_cd));
dma_free_coherent(dev, sizeof(struct qat_alg_cd),
ctx->enc_cd, ctx->enc_cd_paddr);
ctx->enc_cd = NULL;
out_free_inst:
ctx->inst = NULL;
qat_crypto_put_instance(inst);
return ret;
}
static int qat_alg_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm);
if (ctx->enc_cd)
return qat_alg_aead_rekey(tfm, key, keylen);
else
return qat_alg_aead_newkey(tfm, key, keylen);
}
static void qat_alg_free_bufl(struct qat_crypto_instance *inst,
struct qat_crypto_request *qat_req)
{
struct device *dev = &GET_DEV(inst->accel_dev);
struct qat_alg_buf_list *bl = qat_req->buf.bl;
struct qat_alg_buf_list *blout = qat_req->buf.blout;
dma_addr_t blp = qat_req->buf.blp;
dma_addr_t blpout = qat_req->buf.bloutp;
size_t sz = qat_req->buf.sz;
size_t sz_out = qat_req->buf.sz_out;
int i;
for (i = 0; i < bl->num_bufs; i++)
dma_unmap_single(dev, bl->bufers[i].addr,
bl->bufers[i].len, DMA_BIDIRECTIONAL);
dma_unmap_single(dev, blp, sz, DMA_TO_DEVICE);
kfree(bl);
if (blp != blpout) {
/* If out of place operation dma unmap only data */
int bufless = blout->num_bufs - blout->num_mapped_bufs;
for (i = bufless; i < blout->num_bufs; i++) {
dma_unmap_single(dev, blout->bufers[i].addr,
blout->bufers[i].len,
DMA_BIDIRECTIONAL);
}
dma_unmap_single(dev, blpout, sz_out, DMA_TO_DEVICE);
kfree(blout);
}
}
static int qat_alg_sgl_to_bufl(struct qat_crypto_instance *inst,
struct scatterlist *sgl,
struct scatterlist *sglout,
struct qat_crypto_request *qat_req)
{
struct device *dev = &GET_DEV(inst->accel_dev);
int i, sg_nctr = 0;
int n = sg_nents(sgl);
struct qat_alg_buf_list *bufl;
struct qat_alg_buf_list *buflout = NULL;
dma_addr_t blp = DMA_MAPPING_ERROR;
dma_addr_t bloutp = DMA_MAPPING_ERROR;
struct scatterlist *sg;
size_t sz_out, sz = struct_size(bufl, bufers, n + 1);
if (unlikely(!n))
return -EINVAL;
bufl = kzalloc_node(sz, GFP_ATOMIC,
dev_to_node(&GET_DEV(inst->accel_dev)));
if (unlikely(!bufl))
return -ENOMEM;
for_each_sg(sgl, sg, n, i)
bufl->bufers[i].addr = DMA_MAPPING_ERROR;
for_each_sg(sgl, sg, n, i) {
int y = sg_nctr;
if (!sg->length)
continue;
bufl->bufers[y].addr = dma_map_single(dev, sg_virt(sg),
sg->length,
DMA_BIDIRECTIONAL);
bufl->bufers[y].len = sg->length;
if (unlikely(dma_mapping_error(dev, bufl->bufers[y].addr)))
goto err_in;
sg_nctr++;
}
bufl->num_bufs = sg_nctr;
blp = dma_map_single(dev, bufl, sz, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, blp)))
goto err_in;
qat_req->buf.bl = bufl;
qat_req->buf.blp = blp;
qat_req->buf.sz = sz;
/* Handle out of place operation */
if (sgl != sglout) {
struct qat_alg_buf *bufers;
n = sg_nents(sglout);
sz_out = struct_size(buflout, bufers, n + 1);
sg_nctr = 0;
buflout = kzalloc_node(sz_out, GFP_ATOMIC,
dev_to_node(&GET_DEV(inst->accel_dev)));
if (unlikely(!buflout))
goto err_in;
bufers = buflout->bufers;
for_each_sg(sglout, sg, n, i)
bufers[i].addr = DMA_MAPPING_ERROR;
for_each_sg(sglout, sg, n, i) {
int y = sg_nctr;
if (!sg->length)
continue;
bufers[y].addr = dma_map_single(dev, sg_virt(sg),
sg->length,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(dev, bufers[y].addr)))
goto err_out;
bufers[y].len = sg->length;
sg_nctr++;
}
buflout->num_bufs = sg_nctr;
buflout->num_mapped_bufs = sg_nctr;
bloutp = dma_map_single(dev, buflout, sz_out, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, bloutp)))
goto err_out;
qat_req->buf.blout = buflout;
qat_req->buf.bloutp = bloutp;
qat_req->buf.sz_out = sz_out;
} else {
/* Otherwise set the src and dst to the same address */
qat_req->buf.bloutp = qat_req->buf.blp;
qat_req->buf.sz_out = 0;
}
return 0;
err_out:
if (!dma_mapping_error(dev, bloutp))
dma_unmap_single(dev, bloutp, sz_out, DMA_TO_DEVICE);
n = sg_nents(sglout);
for (i = 0; i < n; i++)
if (!dma_mapping_error(dev, buflout->bufers[i].addr))
dma_unmap_single(dev, buflout->bufers[i].addr,
buflout->bufers[i].len,
DMA_BIDIRECTIONAL);
kfree(buflout);
err_in:
if (!dma_mapping_error(dev, blp))
dma_unmap_single(dev, blp, sz, DMA_TO_DEVICE);
n = sg_nents(sgl);
for (i = 0; i < n; i++)
if (!dma_mapping_error(dev, bufl->bufers[i].addr))
dma_unmap_single(dev, bufl->bufers[i].addr,
bufl->bufers[i].len,
DMA_BIDIRECTIONAL);
kfree(bufl);
dev_err(dev, "Failed to map buf for dma\n");
return -ENOMEM;
}
static void qat_aead_alg_callback(struct icp_qat_fw_la_resp *qat_resp,
struct qat_crypto_request *qat_req)
{
struct qat_alg_aead_ctx *ctx = qat_req->aead_ctx;
struct qat_crypto_instance *inst = ctx->inst;
struct aead_request *areq = qat_req->aead_req;
u8 stat_filed = qat_resp->comn_resp.comn_status;
int res = 0, qat_res = ICP_QAT_FW_COMN_RESP_CRYPTO_STAT_GET(stat_filed);
qat_alg_free_bufl(inst, qat_req);
if (unlikely(qat_res != ICP_QAT_FW_COMN_STATUS_FLAG_OK))
res = -EBADMSG;
areq->base.complete(&areq->base, res);
}
static void qat_alg_update_iv_ctr_mode(struct qat_crypto_request *qat_req)
{
struct skcipher_request *sreq = qat_req->skcipher_req;
u64 iv_lo_prev;
u64 iv_lo;
u64 iv_hi;
memcpy(qat_req->iv, sreq->iv, AES_BLOCK_SIZE);
iv_lo = be64_to_cpu(qat_req->iv_lo);
iv_hi = be64_to_cpu(qat_req->iv_hi);
iv_lo_prev = iv_lo;
iv_lo += DIV_ROUND_UP(sreq->cryptlen, AES_BLOCK_SIZE);
if (iv_lo < iv_lo_prev)
iv_hi++;
qat_req->iv_lo = cpu_to_be64(iv_lo);
qat_req->iv_hi = cpu_to_be64(iv_hi);
}
static void qat_alg_update_iv_cbc_mode(struct qat_crypto_request *qat_req)
{
struct skcipher_request *sreq = qat_req->skcipher_req;
int offset = sreq->cryptlen - AES_BLOCK_SIZE;
struct scatterlist *sgl;
if (qat_req->encryption)
sgl = sreq->dst;
else
sgl = sreq->src;
scatterwalk_map_and_copy(qat_req->iv, sgl, offset, AES_BLOCK_SIZE, 0);
}
static void qat_alg_update_iv(struct qat_crypto_request *qat_req)
{
struct qat_alg_skcipher_ctx *ctx = qat_req->skcipher_ctx;
struct device *dev = &GET_DEV(ctx->inst->accel_dev);
switch (ctx->mode) {
case ICP_QAT_HW_CIPHER_CTR_MODE:
qat_alg_update_iv_ctr_mode(qat_req);
break;
case ICP_QAT_HW_CIPHER_CBC_MODE:
qat_alg_update_iv_cbc_mode(qat_req);
break;
case ICP_QAT_HW_CIPHER_XTS_MODE:
break;
default:
dev_warn(dev, "Unsupported IV update for cipher mode %d\n",
ctx->mode);
}
}
static void qat_skcipher_alg_callback(struct icp_qat_fw_la_resp *qat_resp,
struct qat_crypto_request *qat_req)
{
struct qat_alg_skcipher_ctx *ctx = qat_req->skcipher_ctx;
struct qat_crypto_instance *inst = ctx->inst;
struct skcipher_request *sreq = qat_req->skcipher_req;
u8 stat_filed = qat_resp->comn_resp.comn_status;
int res = 0, qat_res = ICP_QAT_FW_COMN_RESP_CRYPTO_STAT_GET(stat_filed);
qat_alg_free_bufl(inst, qat_req);
if (unlikely(qat_res != ICP_QAT_FW_COMN_STATUS_FLAG_OK))
res = -EINVAL;
if (qat_req->encryption)
qat_alg_update_iv(qat_req);
memcpy(sreq->iv, qat_req->iv, AES_BLOCK_SIZE);
sreq->base.complete(&sreq->base, res);
}
void qat_alg_callback(void *resp)
{
struct icp_qat_fw_la_resp *qat_resp = resp;
struct qat_crypto_request *qat_req =
(void *)(__force long)qat_resp->opaque_data;
qat_req->cb(qat_resp, qat_req);
}
static int qat_alg_aead_dec(struct aead_request *areq)
{
struct crypto_aead *aead_tfm = crypto_aead_reqtfm(areq);
struct crypto_tfm *tfm = crypto_aead_tfm(aead_tfm);
struct qat_alg_aead_ctx *ctx = crypto_tfm_ctx(tfm);
struct qat_crypto_request *qat_req = aead_request_ctx(areq);
struct icp_qat_fw_la_cipher_req_params *cipher_param;
struct icp_qat_fw_la_auth_req_params *auth_param;
struct icp_qat_fw_la_bulk_req *msg;
int digst_size = crypto_aead_authsize(aead_tfm);
int ret, ctr = 0;
u32 cipher_len;
cipher_len = areq->cryptlen - digst_size;
if (cipher_len % AES_BLOCK_SIZE != 0)
return -EINVAL;
ret = qat_alg_sgl_to_bufl(ctx->inst, areq->src, areq->dst, qat_req);
if (unlikely(ret))
return ret;
msg = &qat_req->req;
*msg = ctx->dec_fw_req;
qat_req->aead_ctx = ctx;
qat_req->aead_req = areq;
qat_req->cb = qat_aead_alg_callback;
qat_req->req.comn_mid.opaque_data = (u64)(__force long)qat_req;
qat_req->req.comn_mid.src_data_addr = qat_req->buf.blp;
qat_req->req.comn_mid.dest_data_addr = qat_req->buf.bloutp;
cipher_param = (void *)&qat_req->req.serv_specif_rqpars;
cipher_param->cipher_length = cipher_len;
cipher_param->cipher_offset = areq->assoclen;
memcpy(cipher_param->u.cipher_IV_array, areq->iv, AES_BLOCK_SIZE);
auth_param = (void *)((u8 *)cipher_param + sizeof(*cipher_param));
auth_param->auth_off = 0;
auth_param->auth_len = areq->assoclen + cipher_param->cipher_length;
do {
ret = adf_send_message(ctx->inst->sym_tx, (u32 *)msg);
} while (ret == -EAGAIN && ctr++ < 10);
if (ret == -EAGAIN) {
qat_alg_free_bufl(ctx->inst, qat_req);
return -EBUSY;
}
return -EINPROGRESS;
}
static int qat_alg_aead_enc(struct aead_request *areq)
{
struct crypto_aead *aead_tfm = crypto_aead_reqtfm(areq);
struct crypto_tfm *tfm = crypto_aead_tfm(aead_tfm);
struct qat_alg_aead_ctx *ctx = crypto_tfm_ctx(tfm);
struct qat_crypto_request *qat_req = aead_request_ctx(areq);
struct icp_qat_fw_la_cipher_req_params *cipher_param;
struct icp_qat_fw_la_auth_req_params *auth_param;
struct icp_qat_fw_la_bulk_req *msg;
u8 *iv = areq->iv;
int ret, ctr = 0;
if (areq->cryptlen % AES_BLOCK_SIZE != 0)
return -EINVAL;
ret = qat_alg_sgl_to_bufl(ctx->inst, areq->src, areq->dst, qat_req);
if (unlikely(ret))
return ret;
msg = &qat_req->req;
*msg = ctx->enc_fw_req;
qat_req->aead_ctx = ctx;
qat_req->aead_req = areq;
qat_req->cb = qat_aead_alg_callback;
qat_req->req.comn_mid.opaque_data = (u64)(__force long)qat_req;
qat_req->req.comn_mid.src_data_addr = qat_req->buf.blp;
qat_req->req.comn_mid.dest_data_addr = qat_req->buf.bloutp;
cipher_param = (void *)&qat_req->req.serv_specif_rqpars;
auth_param = (void *)((u8 *)cipher_param + sizeof(*cipher_param));
memcpy(cipher_param->u.cipher_IV_array, iv, AES_BLOCK_SIZE);
cipher_param->cipher_length = areq->cryptlen;
cipher_param->cipher_offset = areq->assoclen;
auth_param->auth_off = 0;
auth_param->auth_len = areq->assoclen + areq->cryptlen;
do {
ret = adf_send_message(ctx->inst->sym_tx, (u32 *)msg);
} while (ret == -EAGAIN && ctr++ < 10);
if (ret == -EAGAIN) {
qat_alg_free_bufl(ctx->inst, qat_req);
return -EBUSY;
}
return -EINPROGRESS;
}
static int qat_alg_skcipher_rekey(struct qat_alg_skcipher_ctx *ctx,
const u8 *key, unsigned int keylen,
int mode)
{
memset(ctx->enc_cd, 0, sizeof(*ctx->enc_cd));
memset(ctx->dec_cd, 0, sizeof(*ctx->dec_cd));
memset(&ctx->enc_fw_req, 0, sizeof(ctx->enc_fw_req));
memset(&ctx->dec_fw_req, 0, sizeof(ctx->dec_fw_req));
return qat_alg_skcipher_init_sessions(ctx, key, keylen, mode);
}
static int qat_alg_skcipher_newkey(struct qat_alg_skcipher_ctx *ctx,
const u8 *key, unsigned int keylen,
int mode)
{
struct qat_crypto_instance *inst = NULL;
struct device *dev;
int node = get_current_node();
int ret;
inst = qat_crypto_get_instance_node(node);
if (!inst)
return -EINVAL;
dev = &GET_DEV(inst->accel_dev);
ctx->inst = inst;
ctx->enc_cd = dma_alloc_coherent(dev, sizeof(*ctx->enc_cd),
&ctx->enc_cd_paddr,
GFP_ATOMIC);
if (!ctx->enc_cd) {
ret = -ENOMEM;
goto out_free_instance;
}
ctx->dec_cd = dma_alloc_coherent(dev, sizeof(*ctx->dec_cd),
&ctx->dec_cd_paddr,
GFP_ATOMIC);
if (!ctx->dec_cd) {
ret = -ENOMEM;
goto out_free_enc;
}
ret = qat_alg_skcipher_init_sessions(ctx, key, keylen, mode);
if (ret)
goto out_free_all;
return 0;
out_free_all:
memset(ctx->dec_cd, 0, sizeof(*ctx->dec_cd));
dma_free_coherent(dev, sizeof(*ctx->dec_cd),
ctx->dec_cd, ctx->dec_cd_paddr);
ctx->dec_cd = NULL;
out_free_enc:
memset(ctx->enc_cd, 0, sizeof(*ctx->enc_cd));
dma_free_coherent(dev, sizeof(*ctx->enc_cd),
ctx->enc_cd, ctx->enc_cd_paddr);
ctx->enc_cd = NULL;
out_free_instance:
ctx->inst = NULL;
qat_crypto_put_instance(inst);
return ret;
}
static int qat_alg_skcipher_setkey(struct crypto_skcipher *tfm,
const u8 *key, unsigned int keylen,
int mode)
{
struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->mode = mode;
if (ctx->enc_cd)
return qat_alg_skcipher_rekey(ctx, key, keylen, mode);
else
return qat_alg_skcipher_newkey(ctx, key, keylen, mode);
}
static int qat_alg_skcipher_cbc_setkey(struct crypto_skcipher *tfm,
const u8 *key, unsigned int keylen)
{
return qat_alg_skcipher_setkey(tfm, key, keylen,
ICP_QAT_HW_CIPHER_CBC_MODE);
}
static int qat_alg_skcipher_ctr_setkey(struct crypto_skcipher *tfm,
const u8 *key, unsigned int keylen)
{
return qat_alg_skcipher_setkey(tfm, key, keylen,
ICP_QAT_HW_CIPHER_CTR_MODE);
}
static int qat_alg_skcipher_xts_setkey(struct crypto_skcipher *tfm,
const u8 *key, unsigned int keylen)
{
struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ret = xts_verify_key(tfm, key, keylen);
if (ret)
return ret;
if (keylen >> 1 == AES_KEYSIZE_192) {
ret = crypto_skcipher_setkey(ctx->ftfm, key, keylen);
if (ret)
return ret;
ctx->fallback = true;
return 0;
}
ctx->fallback = false;
ret = qat_alg_skcipher_setkey(tfm, key, keylen,
ICP_QAT_HW_CIPHER_XTS_MODE);
if (ret)
return ret;
if (HW_CAP_AES_V2(ctx->inst->accel_dev))
ret = crypto_cipher_setkey(ctx->tweak, key + (keylen / 2),
keylen / 2);
return ret;
}
static void qat_alg_set_req_iv(struct qat_crypto_request *qat_req)
{
struct icp_qat_fw_la_cipher_req_params *cipher_param;
struct qat_alg_skcipher_ctx *ctx = qat_req->skcipher_ctx;
bool aes_v2_capable = HW_CAP_AES_V2(ctx->inst->accel_dev);
u8 *iv = qat_req->skcipher_req->iv;
cipher_param = (void *)&qat_req->req.serv_specif_rqpars;
if (aes_v2_capable && ctx->mode == ICP_QAT_HW_CIPHER_XTS_MODE)
crypto_cipher_encrypt_one(ctx->tweak,
(u8 *)cipher_param->u.cipher_IV_array,
iv);
else
memcpy(cipher_param->u.cipher_IV_array, iv, AES_BLOCK_SIZE);
}
static int qat_alg_skcipher_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm);
struct qat_alg_skcipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct qat_crypto_request *qat_req = skcipher_request_ctx(req);
struct icp_qat_fw_la_cipher_req_params *cipher_param;
struct icp_qat_fw_la_bulk_req *msg;
int ret, ctr = 0;
if (req->cryptlen == 0)
return 0;
ret = qat_alg_sgl_to_bufl(ctx->inst, req->src, req->dst, qat_req);
if (unlikely(ret))
return ret;
msg = &qat_req->req;
*msg = ctx->enc_fw_req;
qat_req->skcipher_ctx = ctx;
qat_req->skcipher_req = req;
qat_req->cb = qat_skcipher_alg_callback;
qat_req->req.comn_mid.opaque_data = (u64)(__force long)qat_req;
qat_req->req.comn_mid.src_data_addr = qat_req->buf.blp;
qat_req->req.comn_mid.dest_data_addr = qat_req->buf.bloutp;
qat_req->encryption = true;
cipher_param = (void *)&qat_req->req.serv_specif_rqpars;
cipher_param->cipher_length = req->cryptlen;
cipher_param->cipher_offset = 0;
qat_alg_set_req_iv(qat_req);
do {
ret = adf_send_message(ctx->inst->sym_tx, (u32 *)msg);
} while (ret == -EAGAIN && ctr++ < 10);
if (ret == -EAGAIN) {
qat_alg_free_bufl(ctx->inst, qat_req);
return -EBUSY;
}
return -EINPROGRESS;
}
static int qat_alg_skcipher_blk_encrypt(struct skcipher_request *req)
{
if (req->cryptlen % AES_BLOCK_SIZE != 0)
return -EINVAL;
return qat_alg_skcipher_encrypt(req);
}
static int qat_alg_skcipher_xts_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(stfm);
struct skcipher_request *nreq = skcipher_request_ctx(req);
if (req->cryptlen < XTS_BLOCK_SIZE)
return -EINVAL;
if (ctx->fallback) {
memcpy(nreq, req, sizeof(*req));
skcipher_request_set_tfm(nreq, ctx->ftfm);
return crypto_skcipher_encrypt(nreq);
}
return qat_alg_skcipher_encrypt(req);
}
static int qat_alg_skcipher_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm);
struct qat_alg_skcipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct qat_crypto_request *qat_req = skcipher_request_ctx(req);
struct icp_qat_fw_la_cipher_req_params *cipher_param;
struct icp_qat_fw_la_bulk_req *msg;
int ret, ctr = 0;
if (req->cryptlen == 0)
return 0;
ret = qat_alg_sgl_to_bufl(ctx->inst, req->src, req->dst, qat_req);
if (unlikely(ret))
return ret;
msg = &qat_req->req;
*msg = ctx->dec_fw_req;
qat_req->skcipher_ctx = ctx;
qat_req->skcipher_req = req;
qat_req->cb = qat_skcipher_alg_callback;
qat_req->req.comn_mid.opaque_data = (u64)(__force long)qat_req;
qat_req->req.comn_mid.src_data_addr = qat_req->buf.blp;
qat_req->req.comn_mid.dest_data_addr = qat_req->buf.bloutp;
qat_req->encryption = false;
cipher_param = (void *)&qat_req->req.serv_specif_rqpars;
cipher_param->cipher_length = req->cryptlen;
cipher_param->cipher_offset = 0;
qat_alg_set_req_iv(qat_req);
qat_alg_update_iv(qat_req);
do {
ret = adf_send_message(ctx->inst->sym_tx, (u32 *)msg);
} while (ret == -EAGAIN && ctr++ < 10);
if (ret == -EAGAIN) {
qat_alg_free_bufl(ctx->inst, qat_req);
return -EBUSY;
}
return -EINPROGRESS;
}
static int qat_alg_skcipher_blk_decrypt(struct skcipher_request *req)
{
if (req->cryptlen % AES_BLOCK_SIZE != 0)
return -EINVAL;
return qat_alg_skcipher_decrypt(req);
}
static int qat_alg_skcipher_xts_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(stfm);
struct skcipher_request *nreq = skcipher_request_ctx(req);
if (req->cryptlen < XTS_BLOCK_SIZE)
return -EINVAL;
if (ctx->fallback) {
memcpy(nreq, req, sizeof(*req));
skcipher_request_set_tfm(nreq, ctx->ftfm);
return crypto_skcipher_decrypt(nreq);
}
return qat_alg_skcipher_decrypt(req);
}
static int qat_alg_aead_init(struct crypto_aead *tfm,
enum icp_qat_hw_auth_algo hash,
const char *hash_name)
{
struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm);
ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
if (IS_ERR(ctx->hash_tfm))
return PTR_ERR(ctx->hash_tfm);
ctx->qat_hash_alg = hash;
crypto_aead_set_reqsize(tfm, sizeof(struct qat_crypto_request));
return 0;
}
static int qat_alg_aead_sha1_init(struct crypto_aead *tfm)
{
return qat_alg_aead_init(tfm, ICP_QAT_HW_AUTH_ALGO_SHA1, "sha1");
}
static int qat_alg_aead_sha256_init(struct crypto_aead *tfm)
{
return qat_alg_aead_init(tfm, ICP_QAT_HW_AUTH_ALGO_SHA256, "sha256");
}
static int qat_alg_aead_sha512_init(struct crypto_aead *tfm)
{
return qat_alg_aead_init(tfm, ICP_QAT_HW_AUTH_ALGO_SHA512, "sha512");
}
static void qat_alg_aead_exit(struct crypto_aead *tfm)
{
struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct qat_crypto_instance *inst = ctx->inst;
struct device *dev;
crypto_free_shash(ctx->hash_tfm);
if (!inst)
return;
dev = &GET_DEV(inst->accel_dev);
if (ctx->enc_cd) {
memset(ctx->enc_cd, 0, sizeof(struct qat_alg_cd));
dma_free_coherent(dev, sizeof(struct qat_alg_cd),
ctx->enc_cd, ctx->enc_cd_paddr);
}
if (ctx->dec_cd) {
memset(ctx->dec_cd, 0, sizeof(struct qat_alg_cd));
dma_free_coherent(dev, sizeof(struct qat_alg_cd),
ctx->dec_cd, ctx->dec_cd_paddr);
}
qat_crypto_put_instance(inst);
}
static int qat_alg_skcipher_init_tfm(struct crypto_skcipher *tfm)
{
crypto_skcipher_set_reqsize(tfm, sizeof(struct qat_crypto_request));
return 0;
}
static int qat_alg_skcipher_init_xts_tfm(struct crypto_skcipher *tfm)
{
struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
int reqsize;
ctx->ftfm = crypto_alloc_skcipher("xts(aes)", 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->ftfm))
return PTR_ERR(ctx->ftfm);
ctx->tweak = crypto_alloc_cipher("aes", 0, 0);
if (IS_ERR(ctx->tweak)) {
crypto_free_skcipher(ctx->ftfm);
return PTR_ERR(ctx->tweak);
}
reqsize = max(sizeof(struct qat_crypto_request),
sizeof(struct skcipher_request) +
crypto_skcipher_reqsize(ctx->ftfm));
crypto_skcipher_set_reqsize(tfm, reqsize);
return 0;
}
static void qat_alg_skcipher_exit_tfm(struct crypto_skcipher *tfm)
{
struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct qat_crypto_instance *inst = ctx->inst;
struct device *dev;
if (!inst)
return;
dev = &GET_DEV(inst->accel_dev);
if (ctx->enc_cd) {
memset(ctx->enc_cd, 0,
sizeof(struct icp_qat_hw_cipher_algo_blk));
dma_free_coherent(dev,
sizeof(struct icp_qat_hw_cipher_algo_blk),
ctx->enc_cd, ctx->enc_cd_paddr);
}
if (ctx->dec_cd) {
memset(ctx->dec_cd, 0,
sizeof(struct icp_qat_hw_cipher_algo_blk));
dma_free_coherent(dev,
sizeof(struct icp_qat_hw_cipher_algo_blk),
ctx->dec_cd, ctx->dec_cd_paddr);
}
qat_crypto_put_instance(inst);
}
static void qat_alg_skcipher_exit_xts_tfm(struct crypto_skcipher *tfm)
{
struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
if (ctx->ftfm)
crypto_free_skcipher(ctx->ftfm);
if (ctx->tweak)
crypto_free_cipher(ctx->tweak);
qat_alg_skcipher_exit_tfm(tfm);
}
static struct aead_alg qat_aeads[] = { {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "qat_aes_cbc_hmac_sha1",
.cra_priority = 4001,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qat_alg_aead_ctx),
.cra_module = THIS_MODULE,
},
.init = qat_alg_aead_sha1_init,
.exit = qat_alg_aead_exit,
.setkey = qat_alg_aead_setkey,
.decrypt = qat_alg_aead_dec,
.encrypt = qat_alg_aead_enc,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
}, {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "qat_aes_cbc_hmac_sha256",
.cra_priority = 4001,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qat_alg_aead_ctx),
.cra_module = THIS_MODULE,
},
.init = qat_alg_aead_sha256_init,
.exit = qat_alg_aead_exit,
.setkey = qat_alg_aead_setkey,
.decrypt = qat_alg_aead_dec,
.encrypt = qat_alg_aead_enc,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
}, {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "qat_aes_cbc_hmac_sha512",
.cra_priority = 4001,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qat_alg_aead_ctx),
.cra_module = THIS_MODULE,
},
.init = qat_alg_aead_sha512_init,
.exit = qat_alg_aead_exit,
.setkey = qat_alg_aead_setkey,
.decrypt = qat_alg_aead_dec,
.encrypt = qat_alg_aead_enc,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
} };
static struct skcipher_alg qat_skciphers[] = { {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "qat_aes_cbc",
.base.cra_priority = 4001,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct qat_alg_skcipher_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = qat_alg_skcipher_init_tfm,
.exit = qat_alg_skcipher_exit_tfm,
.setkey = qat_alg_skcipher_cbc_setkey,
.decrypt = qat_alg_skcipher_blk_decrypt,
.encrypt = qat_alg_skcipher_blk_encrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
}, {
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "qat_aes_ctr",
.base.cra_priority = 4001,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct qat_alg_skcipher_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = qat_alg_skcipher_init_tfm,
.exit = qat_alg_skcipher_exit_tfm,
.setkey = qat_alg_skcipher_ctr_setkey,
.decrypt = qat_alg_skcipher_decrypt,
.encrypt = qat_alg_skcipher_encrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
}, {
.base.cra_name = "xts(aes)",
.base.cra_driver_name = "qat_aes_xts",
.base.cra_priority = 4001,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ALLOCATES_MEMORY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct qat_alg_skcipher_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = qat_alg_skcipher_init_xts_tfm,
.exit = qat_alg_skcipher_exit_xts_tfm,
.setkey = qat_alg_skcipher_xts_setkey,
.decrypt = qat_alg_skcipher_xts_decrypt,
.encrypt = qat_alg_skcipher_xts_encrypt,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
} };
int qat_algs_register(void)
{
int ret = 0;
mutex_lock(&algs_lock);
if (++active_devs != 1)
goto unlock;
ret = crypto_register_skciphers(qat_skciphers,
ARRAY_SIZE(qat_skciphers));
if (ret)
goto unlock;
ret = crypto_register_aeads(qat_aeads, ARRAY_SIZE(qat_aeads));
if (ret)
goto unreg_algs;
unlock:
mutex_unlock(&algs_lock);
return ret;
unreg_algs:
crypto_unregister_skciphers(qat_skciphers, ARRAY_SIZE(qat_skciphers));
goto unlock;
}
void qat_algs_unregister(void)
{
mutex_lock(&algs_lock);
if (--active_devs != 0)
goto unlock;
crypto_unregister_aeads(qat_aeads, ARRAY_SIZE(qat_aeads));
crypto_unregister_skciphers(qat_skciphers, ARRAY_SIZE(qat_skciphers));
unlock:
mutex_unlock(&algs_lock);
}