linux/linux-5.18.11/drivers/counter/ftm-quaddec.c

328 lines
8.0 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Flex Timer Module Quadrature decoder
*
* This module implements a driver for decoding the FTM quadrature
* of ex. a LS1021A
*/
#include <linux/fsl/ftm.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/counter.h>
#include <linux/bitfield.h>
#include <linux/types.h>
#define FTM_FIELD_UPDATE(ftm, offset, mask, val) \
({ \
uint32_t flags; \
ftm_read(ftm, offset, &flags); \
flags &= ~mask; \
flags |= FIELD_PREP(mask, val); \
ftm_write(ftm, offset, flags); \
})
struct ftm_quaddec {
struct platform_device *pdev;
void __iomem *ftm_base;
bool big_endian;
struct mutex ftm_quaddec_mutex;
};
static void ftm_read(struct ftm_quaddec *ftm, uint32_t offset, uint32_t *data)
{
if (ftm->big_endian)
*data = ioread32be(ftm->ftm_base + offset);
else
*data = ioread32(ftm->ftm_base + offset);
}
static void ftm_write(struct ftm_quaddec *ftm, uint32_t offset, uint32_t data)
{
if (ftm->big_endian)
iowrite32be(data, ftm->ftm_base + offset);
else
iowrite32(data, ftm->ftm_base + offset);
}
/* Hold mutex before modifying write protection state */
static void ftm_clear_write_protection(struct ftm_quaddec *ftm)
{
uint32_t flag;
/* First see if it is enabled */
ftm_read(ftm, FTM_FMS, &flag);
if (flag & FTM_FMS_WPEN)
FTM_FIELD_UPDATE(ftm, FTM_MODE, FTM_MODE_WPDIS, 1);
}
static void ftm_set_write_protection(struct ftm_quaddec *ftm)
{
FTM_FIELD_UPDATE(ftm, FTM_FMS, FTM_FMS_WPEN, 1);
}
static void ftm_reset_counter(struct ftm_quaddec *ftm)
{
/* Reset hardware counter to CNTIN */
ftm_write(ftm, FTM_CNT, 0x0);
}
static void ftm_quaddec_init(struct ftm_quaddec *ftm)
{
ftm_clear_write_protection(ftm);
/*
* Do not write in the region from the CNTIN register through the
* PWMLOAD register when FTMEN = 0.
* Also reset other fields to zero
*/
ftm_write(ftm, FTM_MODE, FTM_MODE_FTMEN);
ftm_write(ftm, FTM_CNTIN, 0x0000);
ftm_write(ftm, FTM_MOD, 0xffff);
ftm_write(ftm, FTM_CNT, 0x0);
/* Set prescaler, reset other fields to zero */
ftm_write(ftm, FTM_SC, FTM_SC_PS_1);
/* Select quad mode, reset other fields to zero */
ftm_write(ftm, FTM_QDCTRL, FTM_QDCTRL_QUADEN);
/* Unused features and reset to default section */
ftm_write(ftm, FTM_POL, 0x0);
ftm_write(ftm, FTM_FLTCTRL, 0x0);
ftm_write(ftm, FTM_SYNCONF, 0x0);
ftm_write(ftm, FTM_SYNC, 0xffff);
/* Lock the FTM */
ftm_set_write_protection(ftm);
}
static void ftm_quaddec_disable(void *ftm)
{
struct ftm_quaddec *ftm_qua = ftm;
ftm_clear_write_protection(ftm_qua);
ftm_write(ftm_qua, FTM_MODE, 0);
ftm_write(ftm_qua, FTM_QDCTRL, 0);
/*
* This is enough to disable the counter. No clock has been
* selected by writing to FTM_SC in init()
*/
ftm_set_write_protection(ftm_qua);
}
static int ftm_quaddec_get_prescaler(struct counter_device *counter,
struct counter_count *count, u32 *cnt_mode)
{
struct ftm_quaddec *ftm = counter_priv(counter);
uint32_t scflags;
ftm_read(ftm, FTM_SC, &scflags);
*cnt_mode = FIELD_GET(FTM_SC_PS_MASK, scflags);
return 0;
}
static int ftm_quaddec_set_prescaler(struct counter_device *counter,
struct counter_count *count, u32 cnt_mode)
{
struct ftm_quaddec *ftm = counter_priv(counter);
mutex_lock(&ftm->ftm_quaddec_mutex);
ftm_clear_write_protection(ftm);
FTM_FIELD_UPDATE(ftm, FTM_SC, FTM_SC_PS_MASK, cnt_mode);
ftm_set_write_protection(ftm);
/* Also resets the counter as it is undefined anyway now */
ftm_reset_counter(ftm);
mutex_unlock(&ftm->ftm_quaddec_mutex);
return 0;
}
static const char * const ftm_quaddec_prescaler[] = {
"1", "2", "4", "8", "16", "32", "64", "128"
};
static const enum counter_synapse_action ftm_quaddec_synapse_actions[] = {
COUNTER_SYNAPSE_ACTION_BOTH_EDGES
};
static const enum counter_function ftm_quaddec_count_functions[] = {
COUNTER_FUNCTION_QUADRATURE_X4
};
static int ftm_quaddec_count_read(struct counter_device *counter,
struct counter_count *count,
u64 *val)
{
struct ftm_quaddec *const ftm = counter_priv(counter);
uint32_t cntval;
ftm_read(ftm, FTM_CNT, &cntval);
*val = cntval;
return 0;
}
static int ftm_quaddec_count_write(struct counter_device *counter,
struct counter_count *count,
const u64 val)
{
struct ftm_quaddec *const ftm = counter_priv(counter);
if (val != 0) {
dev_warn(&ftm->pdev->dev, "Can only accept '0' as new counter value\n");
return -EINVAL;
}
ftm_reset_counter(ftm);
return 0;
}
static int ftm_quaddec_count_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
}
static int ftm_quaddec_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
}
static const struct counter_ops ftm_quaddec_cnt_ops = {
.count_read = ftm_quaddec_count_read,
.count_write = ftm_quaddec_count_write,
.function_read = ftm_quaddec_count_function_read,
.action_read = ftm_quaddec_action_read,
};
static struct counter_signal ftm_quaddec_signals[] = {
{
.id = 0,
.name = "Channel 1 Phase A"
},
{
.id = 1,
.name = "Channel 1 Phase B"
}
};
static struct counter_synapse ftm_quaddec_count_synapses[] = {
{
.actions_list = ftm_quaddec_synapse_actions,
.num_actions = ARRAY_SIZE(ftm_quaddec_synapse_actions),
.signal = &ftm_quaddec_signals[0]
},
{
.actions_list = ftm_quaddec_synapse_actions,
.num_actions = ARRAY_SIZE(ftm_quaddec_synapse_actions),
.signal = &ftm_quaddec_signals[1]
}
};
static DEFINE_COUNTER_ENUM(ftm_quaddec_prescaler_enum, ftm_quaddec_prescaler);
static struct counter_comp ftm_quaddec_count_ext[] = {
COUNTER_COMP_COUNT_ENUM("prescaler", ftm_quaddec_get_prescaler,
ftm_quaddec_set_prescaler,
ftm_quaddec_prescaler_enum),
};
static struct counter_count ftm_quaddec_counts = {
.id = 0,
.name = "Channel 1 Count",
.functions_list = ftm_quaddec_count_functions,
.num_functions = ARRAY_SIZE(ftm_quaddec_count_functions),
.synapses = ftm_quaddec_count_synapses,
.num_synapses = ARRAY_SIZE(ftm_quaddec_count_synapses),
.ext = ftm_quaddec_count_ext,
.num_ext = ARRAY_SIZE(ftm_quaddec_count_ext)
};
static int ftm_quaddec_probe(struct platform_device *pdev)
{
struct counter_device *counter;
struct ftm_quaddec *ftm;
struct device_node *node = pdev->dev.of_node;
struct resource *io;
int ret;
counter = devm_counter_alloc(&pdev->dev, sizeof(*ftm));
if (!counter)
return -ENOMEM;
ftm = counter_priv(counter);
io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!io) {
dev_err(&pdev->dev, "Failed to get memory region\n");
return -ENODEV;
}
ftm->pdev = pdev;
ftm->big_endian = of_property_read_bool(node, "big-endian");
ftm->ftm_base = devm_ioremap(&pdev->dev, io->start, resource_size(io));
if (!ftm->ftm_base) {
dev_err(&pdev->dev, "Failed to map memory region\n");
return -EINVAL;
}
counter->name = dev_name(&pdev->dev);
counter->parent = &pdev->dev;
counter->ops = &ftm_quaddec_cnt_ops;
counter->counts = &ftm_quaddec_counts;
counter->num_counts = 1;
counter->signals = ftm_quaddec_signals;
counter->num_signals = ARRAY_SIZE(ftm_quaddec_signals);
mutex_init(&ftm->ftm_quaddec_mutex);
ftm_quaddec_init(ftm);
ret = devm_add_action_or_reset(&pdev->dev, ftm_quaddec_disable, ftm);
if (ret)
return ret;
ret = devm_counter_add(&pdev->dev, counter);
if (ret)
return dev_err_probe(&pdev->dev, ret, "Failed to add counter\n");
return 0;
}
static const struct of_device_id ftm_quaddec_match[] = {
{ .compatible = "fsl,ftm-quaddec" },
{},
};
static struct platform_driver ftm_quaddec_driver = {
.driver = {
.name = "ftm-quaddec",
.of_match_table = ftm_quaddec_match,
},
.probe = ftm_quaddec_probe,
};
module_platform_driver(ftm_quaddec_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kjeld Flarup <kfa@deif.com>");
MODULE_AUTHOR("Patrick Havelange <patrick.havelange@essensium.com>");