1059 lines
28 KiB
C
1059 lines
28 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
|
||
|
* Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
||
|
*
|
||
|
* KVM Xen emulation
|
||
|
*/
|
||
|
|
||
|
#include "x86.h"
|
||
|
#include "xen.h"
|
||
|
#include "hyperv.h"
|
||
|
|
||
|
#include <linux/kvm_host.h>
|
||
|
#include <linux/sched/stat.h>
|
||
|
|
||
|
#include <trace/events/kvm.h>
|
||
|
#include <xen/interface/xen.h>
|
||
|
#include <xen/interface/vcpu.h>
|
||
|
#include <xen/interface/event_channel.h>
|
||
|
|
||
|
#include "trace.h"
|
||
|
|
||
|
DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
|
||
|
|
||
|
static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
|
||
|
{
|
||
|
struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
|
||
|
struct pvclock_wall_clock *wc;
|
||
|
gpa_t gpa = gfn_to_gpa(gfn);
|
||
|
u32 *wc_sec_hi;
|
||
|
u32 wc_version;
|
||
|
u64 wall_nsec;
|
||
|
int ret = 0;
|
||
|
int idx = srcu_read_lock(&kvm->srcu);
|
||
|
|
||
|
if (gfn == GPA_INVALID) {
|
||
|
kvm_gfn_to_pfn_cache_destroy(kvm, gpc);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
do {
|
||
|
ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, KVM_HOST_USES_PFN,
|
||
|
gpa, PAGE_SIZE);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* This code mirrors kvm_write_wall_clock() except that it writes
|
||
|
* directly through the pfn cache and doesn't mark the page dirty.
|
||
|
*/
|
||
|
wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
|
||
|
|
||
|
/* It could be invalid again already, so we need to check */
|
||
|
read_lock_irq(&gpc->lock);
|
||
|
|
||
|
if (gpc->valid)
|
||
|
break;
|
||
|
|
||
|
read_unlock_irq(&gpc->lock);
|
||
|
} while (1);
|
||
|
|
||
|
/* Paranoia checks on the 32-bit struct layout */
|
||
|
BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
|
||
|
BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
|
||
|
BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
/* Paranoia checks on the 64-bit struct layout */
|
||
|
BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
|
||
|
BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
|
||
|
struct shared_info *shinfo = gpc->khva;
|
||
|
|
||
|
wc_sec_hi = &shinfo->wc_sec_hi;
|
||
|
wc = &shinfo->wc;
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
struct compat_shared_info *shinfo = gpc->khva;
|
||
|
|
||
|
wc_sec_hi = &shinfo->arch.wc_sec_hi;
|
||
|
wc = &shinfo->wc;
|
||
|
}
|
||
|
|
||
|
/* Increment and ensure an odd value */
|
||
|
wc_version = wc->version = (wc->version + 1) | 1;
|
||
|
smp_wmb();
|
||
|
|
||
|
wc->nsec = do_div(wall_nsec, 1000000000);
|
||
|
wc->sec = (u32)wall_nsec;
|
||
|
*wc_sec_hi = wall_nsec >> 32;
|
||
|
smp_wmb();
|
||
|
|
||
|
wc->version = wc_version + 1;
|
||
|
read_unlock_irq(&gpc->lock);
|
||
|
|
||
|
kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
|
||
|
|
||
|
out:
|
||
|
srcu_read_unlock(&kvm->srcu, idx);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
|
||
|
{
|
||
|
struct kvm_vcpu_xen *vx = &v->arch.xen;
|
||
|
u64 now = get_kvmclock_ns(v->kvm);
|
||
|
u64 delta_ns = now - vx->runstate_entry_time;
|
||
|
u64 run_delay = current->sched_info.run_delay;
|
||
|
|
||
|
if (unlikely(!vx->runstate_entry_time))
|
||
|
vx->current_runstate = RUNSTATE_offline;
|
||
|
|
||
|
/*
|
||
|
* Time waiting for the scheduler isn't "stolen" if the
|
||
|
* vCPU wasn't running anyway.
|
||
|
*/
|
||
|
if (vx->current_runstate == RUNSTATE_running) {
|
||
|
u64 steal_ns = run_delay - vx->last_steal;
|
||
|
|
||
|
delta_ns -= steal_ns;
|
||
|
|
||
|
vx->runstate_times[RUNSTATE_runnable] += steal_ns;
|
||
|
}
|
||
|
vx->last_steal = run_delay;
|
||
|
|
||
|
vx->runstate_times[vx->current_runstate] += delta_ns;
|
||
|
vx->current_runstate = state;
|
||
|
vx->runstate_entry_time = now;
|
||
|
}
|
||
|
|
||
|
void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
|
||
|
{
|
||
|
struct kvm_vcpu_xen *vx = &v->arch.xen;
|
||
|
struct gfn_to_hva_cache *ghc = &vx->runstate_cache;
|
||
|
struct kvm_memslots *slots = kvm_memslots(v->kvm);
|
||
|
bool atomic = (state == RUNSTATE_runnable);
|
||
|
uint64_t state_entry_time;
|
||
|
int __user *user_state;
|
||
|
uint64_t __user *user_times;
|
||
|
|
||
|
kvm_xen_update_runstate(v, state);
|
||
|
|
||
|
if (!vx->runstate_set)
|
||
|
return;
|
||
|
|
||
|
if (unlikely(slots->generation != ghc->generation || kvm_is_error_hva(ghc->hva)) &&
|
||
|
kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len))
|
||
|
return;
|
||
|
|
||
|
/* We made sure it fits in a single page */
|
||
|
BUG_ON(!ghc->memslot);
|
||
|
|
||
|
if (atomic)
|
||
|
pagefault_disable();
|
||
|
|
||
|
/*
|
||
|
* The only difference between 32-bit and 64-bit versions of the
|
||
|
* runstate struct us the alignment of uint64_t in 32-bit, which
|
||
|
* means that the 64-bit version has an additional 4 bytes of
|
||
|
* padding after the first field 'state'.
|
||
|
*
|
||
|
* So we use 'int __user *user_state' to point to the state field,
|
||
|
* and 'uint64_t __user *user_times' for runstate_entry_time. So
|
||
|
* the actual array of time[] in each state starts at user_times[1].
|
||
|
*/
|
||
|
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
|
||
|
BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
|
||
|
user_state = (int __user *)ghc->hva;
|
||
|
|
||
|
BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
|
||
|
|
||
|
user_times = (uint64_t __user *)(ghc->hva +
|
||
|
offsetof(struct compat_vcpu_runstate_info,
|
||
|
state_entry_time));
|
||
|
#ifdef CONFIG_X86_64
|
||
|
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
|
||
|
offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
|
||
|
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
|
||
|
offsetof(struct compat_vcpu_runstate_info, time) + 4);
|
||
|
|
||
|
if (v->kvm->arch.xen.long_mode)
|
||
|
user_times = (uint64_t __user *)(ghc->hva +
|
||
|
offsetof(struct vcpu_runstate_info,
|
||
|
state_entry_time));
|
||
|
#endif
|
||
|
/*
|
||
|
* First write the updated state_entry_time at the appropriate
|
||
|
* location determined by 'offset'.
|
||
|
*/
|
||
|
state_entry_time = vx->runstate_entry_time;
|
||
|
state_entry_time |= XEN_RUNSTATE_UPDATE;
|
||
|
|
||
|
BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
|
||
|
sizeof(state_entry_time));
|
||
|
BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
|
||
|
sizeof(state_entry_time));
|
||
|
|
||
|
if (__put_user(state_entry_time, user_times))
|
||
|
goto out;
|
||
|
smp_wmb();
|
||
|
|
||
|
/*
|
||
|
* Next, write the new runstate. This is in the *same* place
|
||
|
* for 32-bit and 64-bit guests, asserted here for paranoia.
|
||
|
*/
|
||
|
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
|
||
|
offsetof(struct compat_vcpu_runstate_info, state));
|
||
|
BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
|
||
|
sizeof(vx->current_runstate));
|
||
|
BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
|
||
|
sizeof(vx->current_runstate));
|
||
|
|
||
|
if (__put_user(vx->current_runstate, user_state))
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Write the actual runstate times immediately after the
|
||
|
* runstate_entry_time.
|
||
|
*/
|
||
|
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
|
||
|
offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
|
||
|
BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
|
||
|
offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
|
||
|
BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
|
||
|
sizeof_field(struct compat_vcpu_runstate_info, time));
|
||
|
BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
|
||
|
sizeof(vx->runstate_times));
|
||
|
|
||
|
if (__copy_to_user(user_times + 1, vx->runstate_times, sizeof(vx->runstate_times)))
|
||
|
goto out;
|
||
|
smp_wmb();
|
||
|
|
||
|
/*
|
||
|
* Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
|
||
|
* runstate_entry_time field.
|
||
|
*/
|
||
|
state_entry_time &= ~XEN_RUNSTATE_UPDATE;
|
||
|
__put_user(state_entry_time, user_times);
|
||
|
smp_wmb();
|
||
|
|
||
|
out:
|
||
|
mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
|
||
|
|
||
|
if (atomic)
|
||
|
pagefault_enable();
|
||
|
}
|
||
|
|
||
|
int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
|
||
|
{
|
||
|
unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
|
||
|
bool atomic = in_atomic() || !task_is_running(current);
|
||
|
int err;
|
||
|
u8 rc = 0;
|
||
|
|
||
|
/*
|
||
|
* If the global upcall vector (HVMIRQ_callback_vector) is set and
|
||
|
* the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
|
||
|
*/
|
||
|
struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache;
|
||
|
struct kvm_memslots *slots = kvm_memslots(v->kvm);
|
||
|
bool ghc_valid = slots->generation == ghc->generation &&
|
||
|
!kvm_is_error_hva(ghc->hva) && ghc->memslot;
|
||
|
|
||
|
unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending);
|
||
|
|
||
|
/* No need for compat handling here */
|
||
|
BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
|
||
|
offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
|
||
|
BUILD_BUG_ON(sizeof(rc) !=
|
||
|
sizeof_field(struct vcpu_info, evtchn_upcall_pending));
|
||
|
BUILD_BUG_ON(sizeof(rc) !=
|
||
|
sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
|
||
|
|
||
|
/*
|
||
|
* For efficiency, this mirrors the checks for using the valid
|
||
|
* cache in kvm_read_guest_offset_cached(), but just uses
|
||
|
* __get_user() instead. And falls back to the slow path.
|
||
|
*/
|
||
|
if (!evtchn_pending_sel && ghc_valid) {
|
||
|
/* Fast path */
|
||
|
pagefault_disable();
|
||
|
err = __get_user(rc, (u8 __user *)ghc->hva + offset);
|
||
|
pagefault_enable();
|
||
|
if (!err)
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Slow path */
|
||
|
|
||
|
/*
|
||
|
* This function gets called from kvm_vcpu_block() after setting the
|
||
|
* task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
|
||
|
* from a HLT. So we really mustn't sleep. If the page ended up absent
|
||
|
* at that point, just return 1 in order to trigger an immediate wake,
|
||
|
* and we'll end up getting called again from a context where we *can*
|
||
|
* fault in the page and wait for it.
|
||
|
*/
|
||
|
if (atomic)
|
||
|
return 1;
|
||
|
|
||
|
if (!ghc_valid) {
|
||
|
err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len);
|
||
|
if (err || !ghc->memslot) {
|
||
|
/*
|
||
|
* If this failed, userspace has screwed up the
|
||
|
* vcpu_info mapping. No interrupts for you.
|
||
|
*/
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now we have a valid (protected by srcu) userspace HVA in
|
||
|
* ghc->hva which points to the struct vcpu_info. If there
|
||
|
* are any bits in the in-kernel evtchn_pending_sel then
|
||
|
* we need to write those to the guest vcpu_info and set
|
||
|
* its evtchn_upcall_pending flag. If there aren't any bits
|
||
|
* to add, we only want to *check* evtchn_upcall_pending.
|
||
|
*/
|
||
|
if (evtchn_pending_sel) {
|
||
|
bool long_mode = v->kvm->arch.xen.long_mode;
|
||
|
|
||
|
if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info)))
|
||
|
return 0;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_64BIT) && long_mode) {
|
||
|
struct vcpu_info __user *vi = (void __user *)ghc->hva;
|
||
|
|
||
|
/* Attempt to set the evtchn_pending_sel bits in the
|
||
|
* guest, and if that succeeds then clear the same
|
||
|
* bits in the in-kernel version. */
|
||
|
asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n"
|
||
|
"\tnotq %0\n"
|
||
|
"\t" LOCK_PREFIX "andq %0, %2\n"
|
||
|
"2:\n"
|
||
|
_ASM_EXTABLE_UA(1b, 2b)
|
||
|
: "=r" (evtchn_pending_sel),
|
||
|
"+m" (vi->evtchn_pending_sel),
|
||
|
"+m" (v->arch.xen.evtchn_pending_sel)
|
||
|
: "0" (evtchn_pending_sel));
|
||
|
} else {
|
||
|
struct compat_vcpu_info __user *vi = (void __user *)ghc->hva;
|
||
|
u32 evtchn_pending_sel32 = evtchn_pending_sel;
|
||
|
|
||
|
/* Attempt to set the evtchn_pending_sel bits in the
|
||
|
* guest, and if that succeeds then clear the same
|
||
|
* bits in the in-kernel version. */
|
||
|
asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n"
|
||
|
"\tnotl %0\n"
|
||
|
"\t" LOCK_PREFIX "andl %0, %2\n"
|
||
|
"2:\n"
|
||
|
_ASM_EXTABLE_UA(1b, 2b)
|
||
|
: "=r" (evtchn_pending_sel32),
|
||
|
"+m" (vi->evtchn_pending_sel),
|
||
|
"+m" (v->arch.xen.evtchn_pending_sel)
|
||
|
: "0" (evtchn_pending_sel32));
|
||
|
}
|
||
|
rc = 1;
|
||
|
unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err);
|
||
|
|
||
|
err:
|
||
|
user_access_end();
|
||
|
|
||
|
mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
|
||
|
} else {
|
||
|
__get_user(rc, (u8 __user *)ghc->hva + offset);
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
|
||
|
{
|
||
|
int r = -ENOENT;
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
|
||
|
switch (data->type) {
|
||
|
case KVM_XEN_ATTR_TYPE_LONG_MODE:
|
||
|
if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
|
||
|
r = -EINVAL;
|
||
|
} else {
|
||
|
kvm->arch.xen.long_mode = !!data->u.long_mode;
|
||
|
r = 0;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_ATTR_TYPE_SHARED_INFO:
|
||
|
r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
|
||
|
if (data->u.vector && data->u.vector < 0x10)
|
||
|
r = -EINVAL;
|
||
|
else {
|
||
|
kvm->arch.xen.upcall_vector = data->u.vector;
|
||
|
r = 0;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
|
||
|
{
|
||
|
int r = -ENOENT;
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
|
||
|
switch (data->type) {
|
||
|
case KVM_XEN_ATTR_TYPE_LONG_MODE:
|
||
|
data->u.long_mode = kvm->arch.xen.long_mode;
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_ATTR_TYPE_SHARED_INFO:
|
||
|
if (kvm->arch.xen.shinfo_cache.active)
|
||
|
data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
|
||
|
else
|
||
|
data->u.shared_info.gfn = GPA_INVALID;
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
|
||
|
data->u.vector = kvm->arch.xen.upcall_vector;
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
|
||
|
{
|
||
|
int idx, r = -ENOENT;
|
||
|
|
||
|
mutex_lock(&vcpu->kvm->lock);
|
||
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
||
|
|
||
|
switch (data->type) {
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
|
||
|
/* No compat necessary here. */
|
||
|
BUILD_BUG_ON(sizeof(struct vcpu_info) !=
|
||
|
sizeof(struct compat_vcpu_info));
|
||
|
BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
|
||
|
offsetof(struct compat_vcpu_info, time));
|
||
|
|
||
|
if (data->u.gpa == GPA_INVALID) {
|
||
|
vcpu->arch.xen.vcpu_info_set = false;
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* It must fit within a single page */
|
||
|
if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_info) > PAGE_SIZE) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
|
||
|
&vcpu->arch.xen.vcpu_info_cache,
|
||
|
data->u.gpa,
|
||
|
sizeof(struct vcpu_info));
|
||
|
if (!r) {
|
||
|
vcpu->arch.xen.vcpu_info_set = true;
|
||
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
|
||
|
if (data->u.gpa == GPA_INVALID) {
|
||
|
vcpu->arch.xen.vcpu_time_info_set = false;
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* It must fit within a single page */
|
||
|
if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct pvclock_vcpu_time_info) > PAGE_SIZE) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
|
||
|
&vcpu->arch.xen.vcpu_time_info_cache,
|
||
|
data->u.gpa,
|
||
|
sizeof(struct pvclock_vcpu_time_info));
|
||
|
if (!r) {
|
||
|
vcpu->arch.xen.vcpu_time_info_set = true;
|
||
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
|
||
|
if (!sched_info_on()) {
|
||
|
r = -EOPNOTSUPP;
|
||
|
break;
|
||
|
}
|
||
|
if (data->u.gpa == GPA_INVALID) {
|
||
|
vcpu->arch.xen.runstate_set = false;
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* It must fit within a single page */
|
||
|
if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_runstate_info) > PAGE_SIZE) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
|
||
|
&vcpu->arch.xen.runstate_cache,
|
||
|
data->u.gpa,
|
||
|
sizeof(struct vcpu_runstate_info));
|
||
|
if (!r) {
|
||
|
vcpu->arch.xen.runstate_set = true;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
|
||
|
if (!sched_info_on()) {
|
||
|
r = -EOPNOTSUPP;
|
||
|
break;
|
||
|
}
|
||
|
if (data->u.runstate.state > RUNSTATE_offline) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
kvm_xen_update_runstate(vcpu, data->u.runstate.state);
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
|
||
|
if (!sched_info_on()) {
|
||
|
r = -EOPNOTSUPP;
|
||
|
break;
|
||
|
}
|
||
|
if (data->u.runstate.state > RUNSTATE_offline) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
if (data->u.runstate.state_entry_time !=
|
||
|
(data->u.runstate.time_running +
|
||
|
data->u.runstate.time_runnable +
|
||
|
data->u.runstate.time_blocked +
|
||
|
data->u.runstate.time_offline)) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
if (get_kvmclock_ns(vcpu->kvm) <
|
||
|
data->u.runstate.state_entry_time) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
vcpu->arch.xen.current_runstate = data->u.runstate.state;
|
||
|
vcpu->arch.xen.runstate_entry_time =
|
||
|
data->u.runstate.state_entry_time;
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_running] =
|
||
|
data->u.runstate.time_running;
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
|
||
|
data->u.runstate.time_runnable;
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
|
||
|
data->u.runstate.time_blocked;
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
|
||
|
data->u.runstate.time_offline;
|
||
|
vcpu->arch.xen.last_steal = current->sched_info.run_delay;
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
|
||
|
if (!sched_info_on()) {
|
||
|
r = -EOPNOTSUPP;
|
||
|
break;
|
||
|
}
|
||
|
if (data->u.runstate.state > RUNSTATE_offline &&
|
||
|
data->u.runstate.state != (u64)-1) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
/* The adjustment must add up */
|
||
|
if (data->u.runstate.state_entry_time !=
|
||
|
(data->u.runstate.time_running +
|
||
|
data->u.runstate.time_runnable +
|
||
|
data->u.runstate.time_blocked +
|
||
|
data->u.runstate.time_offline)) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (get_kvmclock_ns(vcpu->kvm) <
|
||
|
(vcpu->arch.xen.runstate_entry_time +
|
||
|
data->u.runstate.state_entry_time)) {
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
vcpu->arch.xen.runstate_entry_time +=
|
||
|
data->u.runstate.state_entry_time;
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
|
||
|
data->u.runstate.time_running;
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
|
||
|
data->u.runstate.time_runnable;
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
|
||
|
data->u.runstate.time_blocked;
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
|
||
|
data->u.runstate.time_offline;
|
||
|
|
||
|
if (data->u.runstate.state <= RUNSTATE_offline)
|
||
|
kvm_xen_update_runstate(vcpu, data->u.runstate.state);
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
||
|
mutex_unlock(&vcpu->kvm->lock);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
|
||
|
{
|
||
|
int r = -ENOENT;
|
||
|
|
||
|
mutex_lock(&vcpu->kvm->lock);
|
||
|
|
||
|
switch (data->type) {
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
|
||
|
if (vcpu->arch.xen.vcpu_info_set)
|
||
|
data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
|
||
|
else
|
||
|
data->u.gpa = GPA_INVALID;
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
|
||
|
if (vcpu->arch.xen.vcpu_time_info_set)
|
||
|
data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
|
||
|
else
|
||
|
data->u.gpa = GPA_INVALID;
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
|
||
|
if (!sched_info_on()) {
|
||
|
r = -EOPNOTSUPP;
|
||
|
break;
|
||
|
}
|
||
|
if (vcpu->arch.xen.runstate_set) {
|
||
|
data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
|
||
|
r = 0;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
|
||
|
if (!sched_info_on()) {
|
||
|
r = -EOPNOTSUPP;
|
||
|
break;
|
||
|
}
|
||
|
data->u.runstate.state = vcpu->arch.xen.current_runstate;
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
|
||
|
if (!sched_info_on()) {
|
||
|
r = -EOPNOTSUPP;
|
||
|
break;
|
||
|
}
|
||
|
data->u.runstate.state = vcpu->arch.xen.current_runstate;
|
||
|
data->u.runstate.state_entry_time =
|
||
|
vcpu->arch.xen.runstate_entry_time;
|
||
|
data->u.runstate.time_running =
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_running];
|
||
|
data->u.runstate.time_runnable =
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
|
||
|
data->u.runstate.time_blocked =
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
|
||
|
data->u.runstate.time_offline =
|
||
|
vcpu->arch.xen.runstate_times[RUNSTATE_offline];
|
||
|
r = 0;
|
||
|
break;
|
||
|
|
||
|
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&vcpu->kvm->lock);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
|
||
|
{
|
||
|
struct kvm *kvm = vcpu->kvm;
|
||
|
u32 page_num = data & ~PAGE_MASK;
|
||
|
u64 page_addr = data & PAGE_MASK;
|
||
|
bool lm = is_long_mode(vcpu);
|
||
|
|
||
|
/* Latch long_mode for shared_info pages etc. */
|
||
|
vcpu->kvm->arch.xen.long_mode = lm;
|
||
|
|
||
|
/*
|
||
|
* If Xen hypercall intercept is enabled, fill the hypercall
|
||
|
* page with VMCALL/VMMCALL instructions since that's what
|
||
|
* we catch. Else the VMM has provided the hypercall pages
|
||
|
* with instructions of its own choosing, so use those.
|
||
|
*/
|
||
|
if (kvm_xen_hypercall_enabled(kvm)) {
|
||
|
u8 instructions[32];
|
||
|
int i;
|
||
|
|
||
|
if (page_num)
|
||
|
return 1;
|
||
|
|
||
|
/* mov imm32, %eax */
|
||
|
instructions[0] = 0xb8;
|
||
|
|
||
|
/* vmcall / vmmcall */
|
||
|
static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
|
||
|
|
||
|
/* ret */
|
||
|
instructions[8] = 0xc3;
|
||
|
|
||
|
/* int3 to pad */
|
||
|
memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
|
||
|
|
||
|
for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
|
||
|
*(u32 *)&instructions[1] = i;
|
||
|
if (kvm_vcpu_write_guest(vcpu,
|
||
|
page_addr + (i * sizeof(instructions)),
|
||
|
instructions, sizeof(instructions)))
|
||
|
return 1;
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* Note, truncation is a non-issue as 'lm' is guaranteed to be
|
||
|
* false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
|
||
|
*/
|
||
|
hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
|
||
|
: kvm->arch.xen_hvm_config.blob_addr_32;
|
||
|
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
|
||
|
: kvm->arch.xen_hvm_config.blob_size_32;
|
||
|
u8 *page;
|
||
|
|
||
|
if (page_num >= blob_size)
|
||
|
return 1;
|
||
|
|
||
|
blob_addr += page_num * PAGE_SIZE;
|
||
|
|
||
|
page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
|
||
|
if (IS_ERR(page))
|
||
|
return PTR_ERR(page);
|
||
|
|
||
|
if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
|
||
|
kfree(page);
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
|
||
|
{
|
||
|
if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* With hypercall interception the kernel generates its own
|
||
|
* hypercall page so it must not be provided.
|
||
|
*/
|
||
|
if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
|
||
|
(xhc->blob_addr_32 || xhc->blob_addr_64 ||
|
||
|
xhc->blob_size_32 || xhc->blob_size_64))
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
|
||
|
if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
|
||
|
static_branch_inc(&kvm_xen_enabled.key);
|
||
|
else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
|
||
|
static_branch_slow_dec_deferred(&kvm_xen_enabled);
|
||
|
|
||
|
memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
|
||
|
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void kvm_xen_init_vm(struct kvm *kvm)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void kvm_xen_destroy_vm(struct kvm *kvm)
|
||
|
{
|
||
|
kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache);
|
||
|
|
||
|
if (kvm->arch.xen_hvm_config.msr)
|
||
|
static_branch_slow_dec_deferred(&kvm_xen_enabled);
|
||
|
}
|
||
|
|
||
|
static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
|
||
|
{
|
||
|
kvm_rax_write(vcpu, result);
|
||
|
return kvm_skip_emulated_instruction(vcpu);
|
||
|
}
|
||
|
|
||
|
static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_run *run = vcpu->run;
|
||
|
|
||
|
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
|
||
|
return 1;
|
||
|
|
||
|
return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
|
||
|
}
|
||
|
|
||
|
int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
bool longmode;
|
||
|
u64 input, params[6];
|
||
|
|
||
|
input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
|
||
|
|
||
|
/* Hyper-V hypercalls get bit 31 set in EAX */
|
||
|
if ((input & 0x80000000) &&
|
||
|
kvm_hv_hypercall_enabled(vcpu))
|
||
|
return kvm_hv_hypercall(vcpu);
|
||
|
|
||
|
longmode = is_64_bit_hypercall(vcpu);
|
||
|
if (!longmode) {
|
||
|
params[0] = (u32)kvm_rbx_read(vcpu);
|
||
|
params[1] = (u32)kvm_rcx_read(vcpu);
|
||
|
params[2] = (u32)kvm_rdx_read(vcpu);
|
||
|
params[3] = (u32)kvm_rsi_read(vcpu);
|
||
|
params[4] = (u32)kvm_rdi_read(vcpu);
|
||
|
params[5] = (u32)kvm_rbp_read(vcpu);
|
||
|
}
|
||
|
#ifdef CONFIG_X86_64
|
||
|
else {
|
||
|
params[0] = (u64)kvm_rdi_read(vcpu);
|
||
|
params[1] = (u64)kvm_rsi_read(vcpu);
|
||
|
params[2] = (u64)kvm_rdx_read(vcpu);
|
||
|
params[3] = (u64)kvm_r10_read(vcpu);
|
||
|
params[4] = (u64)kvm_r8_read(vcpu);
|
||
|
params[5] = (u64)kvm_r9_read(vcpu);
|
||
|
}
|
||
|
#endif
|
||
|
trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
|
||
|
params[3], params[4], params[5]);
|
||
|
|
||
|
vcpu->run->exit_reason = KVM_EXIT_XEN;
|
||
|
vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
|
||
|
vcpu->run->xen.u.hcall.longmode = longmode;
|
||
|
vcpu->run->xen.u.hcall.cpl = static_call(kvm_x86_get_cpl)(vcpu);
|
||
|
vcpu->run->xen.u.hcall.input = input;
|
||
|
vcpu->run->xen.u.hcall.params[0] = params[0];
|
||
|
vcpu->run->xen.u.hcall.params[1] = params[1];
|
||
|
vcpu->run->xen.u.hcall.params[2] = params[2];
|
||
|
vcpu->run->xen.u.hcall.params[3] = params[3];
|
||
|
vcpu->run->xen.u.hcall.params[4] = params[4];
|
||
|
vcpu->run->xen.u.hcall.params[5] = params[5];
|
||
|
vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
|
||
|
vcpu->arch.complete_userspace_io =
|
||
|
kvm_xen_hypercall_complete_userspace;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int max_evtchn_port(struct kvm *kvm)
|
||
|
{
|
||
|
if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
|
||
|
return EVTCHN_2L_NR_CHANNELS;
|
||
|
else
|
||
|
return COMPAT_EVTCHN_2L_NR_CHANNELS;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This follows the kvm_set_irq() API, so it returns:
|
||
|
* < 0 Interrupt was ignored (masked or not delivered for other reasons)
|
||
|
* = 0 Interrupt was coalesced (previous irq is still pending)
|
||
|
* > 0 Number of CPUs interrupt was delivered to
|
||
|
*/
|
||
|
int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e,
|
||
|
struct kvm *kvm)
|
||
|
{
|
||
|
struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
unsigned long *pending_bits, *mask_bits;
|
||
|
unsigned long flags;
|
||
|
int port_word_bit;
|
||
|
bool kick_vcpu = false;
|
||
|
int idx;
|
||
|
int rc;
|
||
|
|
||
|
vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu);
|
||
|
if (!vcpu)
|
||
|
return -1;
|
||
|
|
||
|
if (!vcpu->arch.xen.vcpu_info_set)
|
||
|
return -1;
|
||
|
|
||
|
if (e->xen_evtchn.port >= max_evtchn_port(kvm))
|
||
|
return -1;
|
||
|
|
||
|
rc = -EWOULDBLOCK;
|
||
|
read_lock_irqsave(&gpc->lock, flags);
|
||
|
|
||
|
idx = srcu_read_lock(&kvm->srcu);
|
||
|
if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
|
||
|
goto out_rcu;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
|
||
|
struct shared_info *shinfo = gpc->khva;
|
||
|
pending_bits = (unsigned long *)&shinfo->evtchn_pending;
|
||
|
mask_bits = (unsigned long *)&shinfo->evtchn_mask;
|
||
|
port_word_bit = e->xen_evtchn.port / 64;
|
||
|
} else {
|
||
|
struct compat_shared_info *shinfo = gpc->khva;
|
||
|
pending_bits = (unsigned long *)&shinfo->evtchn_pending;
|
||
|
mask_bits = (unsigned long *)&shinfo->evtchn_mask;
|
||
|
port_word_bit = e->xen_evtchn.port / 32;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If this port wasn't already set, and if it isn't masked, then
|
||
|
* we try to set the corresponding bit in the in-kernel shadow of
|
||
|
* evtchn_pending_sel for the target vCPU. And if *that* wasn't
|
||
|
* already set, then we kick the vCPU in question to write to the
|
||
|
* *real* evtchn_pending_sel in its own guest vcpu_info struct.
|
||
|
*/
|
||
|
if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) {
|
||
|
rc = 0; /* It was already raised */
|
||
|
} else if (test_bit(e->xen_evtchn.port, mask_bits)) {
|
||
|
rc = -1; /* Masked */
|
||
|
} else {
|
||
|
rc = 1; /* Delivered. But was the vCPU waking already? */
|
||
|
if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
|
||
|
kick_vcpu = true;
|
||
|
}
|
||
|
|
||
|
out_rcu:
|
||
|
srcu_read_unlock(&kvm->srcu, idx);
|
||
|
read_unlock_irqrestore(&gpc->lock, flags);
|
||
|
|
||
|
if (kick_vcpu) {
|
||
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
||
|
kvm_vcpu_kick(vcpu);
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* This is the version called from kvm_set_irq() as the .set function */
|
||
|
static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
|
||
|
int irq_source_id, int level, bool line_status)
|
||
|
{
|
||
|
bool mm_borrowed = false;
|
||
|
int rc;
|
||
|
|
||
|
if (!level)
|
||
|
return -1;
|
||
|
|
||
|
rc = kvm_xen_set_evtchn_fast(e, kvm);
|
||
|
if (rc != -EWOULDBLOCK)
|
||
|
return rc;
|
||
|
|
||
|
if (current->mm != kvm->mm) {
|
||
|
/*
|
||
|
* If not on a thread which already belongs to this KVM,
|
||
|
* we'd better be in the irqfd workqueue.
|
||
|
*/
|
||
|
if (WARN_ON_ONCE(current->mm))
|
||
|
return -EINVAL;
|
||
|
|
||
|
kthread_use_mm(kvm->mm);
|
||
|
mm_borrowed = true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For the irqfd workqueue, using the main kvm->lock mutex is
|
||
|
* fine since this function is invoked from kvm_set_irq() with
|
||
|
* no other lock held, no srcu. In future if it will be called
|
||
|
* directly from a vCPU thread (e.g. on hypercall for an IPI)
|
||
|
* then it may need to switch to using a leaf-node mutex for
|
||
|
* serializing the shared_info mapping.
|
||
|
*/
|
||
|
mutex_lock(&kvm->lock);
|
||
|
|
||
|
/*
|
||
|
* It is theoretically possible for the page to be unmapped
|
||
|
* and the MMU notifier to invalidate the shared_info before
|
||
|
* we even get to use it. In that case, this looks like an
|
||
|
* infinite loop. It was tempting to do it via the userspace
|
||
|
* HVA instead... but that just *hides* the fact that it's
|
||
|
* an infinite loop, because if a fault occurs and it waits
|
||
|
* for the page to come back, it can *still* immediately
|
||
|
* fault and have to wait again, repeatedly.
|
||
|
*
|
||
|
* Conversely, the page could also have been reinstated by
|
||
|
* another thread before we even obtain the mutex above, so
|
||
|
* check again *first* before remapping it.
|
||
|
*/
|
||
|
do {
|
||
|
struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
|
||
|
int idx;
|
||
|
|
||
|
rc = kvm_xen_set_evtchn_fast(e, kvm);
|
||
|
if (rc != -EWOULDBLOCK)
|
||
|
break;
|
||
|
|
||
|
idx = srcu_read_lock(&kvm->srcu);
|
||
|
rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, PAGE_SIZE);
|
||
|
srcu_read_unlock(&kvm->srcu, idx);
|
||
|
} while(!rc);
|
||
|
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
|
||
|
if (mm_borrowed)
|
||
|
kthread_unuse_mm(kvm->mm);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int kvm_xen_setup_evtchn(struct kvm *kvm,
|
||
|
struct kvm_kernel_irq_routing_entry *e,
|
||
|
const struct kvm_irq_routing_entry *ue)
|
||
|
|
||
|
{
|
||
|
if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* We only support 2 level event channels for now */
|
||
|
if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
e->xen_evtchn.port = ue->u.xen_evtchn.port;
|
||
|
e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu;
|
||
|
e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
|
||
|
e->set = evtchn_set_fn;
|
||
|
|
||
|
return 0;
|
||
|
}
|