543 lines
15 KiB
C
543 lines
15 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* FPU signal frame handling routines.
|
||
|
*/
|
||
|
|
||
|
#include <linux/compat.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
|
||
|
#include <asm/fpu/signal.h>
|
||
|
#include <asm/fpu/regset.h>
|
||
|
#include <asm/fpu/xstate.h>
|
||
|
|
||
|
#include <asm/sigframe.h>
|
||
|
#include <asm/trapnr.h>
|
||
|
#include <asm/trace/fpu.h>
|
||
|
|
||
|
#include "context.h"
|
||
|
#include "internal.h"
|
||
|
#include "legacy.h"
|
||
|
#include "xstate.h"
|
||
|
|
||
|
/*
|
||
|
* Check for the presence of extended state information in the
|
||
|
* user fpstate pointer in the sigcontext.
|
||
|
*/
|
||
|
static inline bool check_xstate_in_sigframe(struct fxregs_state __user *fxbuf,
|
||
|
struct _fpx_sw_bytes *fx_sw)
|
||
|
{
|
||
|
int min_xstate_size = sizeof(struct fxregs_state) +
|
||
|
sizeof(struct xstate_header);
|
||
|
void __user *fpstate = fxbuf;
|
||
|
unsigned int magic2;
|
||
|
|
||
|
if (__copy_from_user(fx_sw, &fxbuf->sw_reserved[0], sizeof(*fx_sw)))
|
||
|
return false;
|
||
|
|
||
|
/* Check for the first magic field and other error scenarios. */
|
||
|
if (fx_sw->magic1 != FP_XSTATE_MAGIC1 ||
|
||
|
fx_sw->xstate_size < min_xstate_size ||
|
||
|
fx_sw->xstate_size > current->thread.fpu.fpstate->user_size ||
|
||
|
fx_sw->xstate_size > fx_sw->extended_size)
|
||
|
goto setfx;
|
||
|
|
||
|
/*
|
||
|
* Check for the presence of second magic word at the end of memory
|
||
|
* layout. This detects the case where the user just copied the legacy
|
||
|
* fpstate layout with out copying the extended state information
|
||
|
* in the memory layout.
|
||
|
*/
|
||
|
if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size)))
|
||
|
return false;
|
||
|
|
||
|
if (likely(magic2 == FP_XSTATE_MAGIC2))
|
||
|
return true;
|
||
|
setfx:
|
||
|
trace_x86_fpu_xstate_check_failed(¤t->thread.fpu);
|
||
|
|
||
|
/* Set the parameters for fx only state */
|
||
|
fx_sw->magic1 = 0;
|
||
|
fx_sw->xstate_size = sizeof(struct fxregs_state);
|
||
|
fx_sw->xfeatures = XFEATURE_MASK_FPSSE;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Signal frame handlers.
|
||
|
*/
|
||
|
static inline bool save_fsave_header(struct task_struct *tsk, void __user *buf)
|
||
|
{
|
||
|
if (use_fxsr()) {
|
||
|
struct xregs_state *xsave = &tsk->thread.fpu.fpstate->regs.xsave;
|
||
|
struct user_i387_ia32_struct env;
|
||
|
struct _fpstate_32 __user *fp = buf;
|
||
|
|
||
|
fpregs_lock();
|
||
|
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
|
||
|
fxsave(&tsk->thread.fpu.fpstate->regs.fxsave);
|
||
|
fpregs_unlock();
|
||
|
|
||
|
convert_from_fxsr(&env, tsk);
|
||
|
|
||
|
if (__copy_to_user(buf, &env, sizeof(env)) ||
|
||
|
__put_user(xsave->i387.swd, &fp->status) ||
|
||
|
__put_user(X86_FXSR_MAGIC, &fp->magic))
|
||
|
return false;
|
||
|
} else {
|
||
|
struct fregs_state __user *fp = buf;
|
||
|
u32 swd;
|
||
|
|
||
|
if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Prepare the SW reserved portion of the fxsave memory layout, indicating
|
||
|
* the presence of the extended state information in the memory layout
|
||
|
* pointed to by the fpstate pointer in the sigcontext.
|
||
|
* This is saved when ever the FP and extended state context is
|
||
|
* saved on the user stack during the signal handler delivery to the user.
|
||
|
*/
|
||
|
static inline void save_sw_bytes(struct _fpx_sw_bytes *sw_bytes, bool ia32_frame,
|
||
|
struct fpstate *fpstate)
|
||
|
{
|
||
|
sw_bytes->magic1 = FP_XSTATE_MAGIC1;
|
||
|
sw_bytes->extended_size = fpstate->user_size + FP_XSTATE_MAGIC2_SIZE;
|
||
|
sw_bytes->xfeatures = fpstate->user_xfeatures;
|
||
|
sw_bytes->xstate_size = fpstate->user_size;
|
||
|
|
||
|
if (ia32_frame)
|
||
|
sw_bytes->extended_size += sizeof(struct fregs_state);
|
||
|
}
|
||
|
|
||
|
static inline bool save_xstate_epilog(void __user *buf, int ia32_frame,
|
||
|
struct fpstate *fpstate)
|
||
|
{
|
||
|
struct xregs_state __user *x = buf;
|
||
|
struct _fpx_sw_bytes sw_bytes = {};
|
||
|
u32 xfeatures;
|
||
|
int err;
|
||
|
|
||
|
/* Setup the bytes not touched by the [f]xsave and reserved for SW. */
|
||
|
save_sw_bytes(&sw_bytes, ia32_frame, fpstate);
|
||
|
err = __copy_to_user(&x->i387.sw_reserved, &sw_bytes, sizeof(sw_bytes));
|
||
|
|
||
|
if (!use_xsave())
|
||
|
return !err;
|
||
|
|
||
|
err |= __put_user(FP_XSTATE_MAGIC2,
|
||
|
(__u32 __user *)(buf + fpstate->user_size));
|
||
|
|
||
|
/*
|
||
|
* Read the xfeatures which we copied (directly from the cpu or
|
||
|
* from the state in task struct) to the user buffers.
|
||
|
*/
|
||
|
err |= __get_user(xfeatures, (__u32 __user *)&x->header.xfeatures);
|
||
|
|
||
|
/*
|
||
|
* For legacy compatible, we always set FP/SSE bits in the bit
|
||
|
* vector while saving the state to the user context. This will
|
||
|
* enable us capturing any changes(during sigreturn) to
|
||
|
* the FP/SSE bits by the legacy applications which don't touch
|
||
|
* xfeatures in the xsave header.
|
||
|
*
|
||
|
* xsave aware apps can change the xfeatures in the xsave
|
||
|
* header as well as change any contents in the memory layout.
|
||
|
* xrestore as part of sigreturn will capture all the changes.
|
||
|
*/
|
||
|
xfeatures |= XFEATURE_MASK_FPSSE;
|
||
|
|
||
|
err |= __put_user(xfeatures, (__u32 __user *)&x->header.xfeatures);
|
||
|
|
||
|
return !err;
|
||
|
}
|
||
|
|
||
|
static inline int copy_fpregs_to_sigframe(struct xregs_state __user *buf)
|
||
|
{
|
||
|
if (use_xsave())
|
||
|
return xsave_to_user_sigframe(buf);
|
||
|
if (use_fxsr())
|
||
|
return fxsave_to_user_sigframe((struct fxregs_state __user *) buf);
|
||
|
else
|
||
|
return fnsave_to_user_sigframe((struct fregs_state __user *) buf);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Save the fpu, extended register state to the user signal frame.
|
||
|
*
|
||
|
* 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save
|
||
|
* state is copied.
|
||
|
* 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'.
|
||
|
*
|
||
|
* buf == buf_fx for 64-bit frames and 32-bit fsave frame.
|
||
|
* buf != buf_fx for 32-bit frames with fxstate.
|
||
|
*
|
||
|
* Save it directly to the user frame with disabled page fault handler. If
|
||
|
* that faults, try to clear the frame which handles the page fault.
|
||
|
*
|
||
|
* If this is a 32-bit frame with fxstate, put a fsave header before
|
||
|
* the aligned state at 'buf_fx'.
|
||
|
*
|
||
|
* For [f]xsave state, update the SW reserved fields in the [f]xsave frame
|
||
|
* indicating the absence/presence of the extended state to the user.
|
||
|
*/
|
||
|
bool copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size)
|
||
|
{
|
||
|
struct task_struct *tsk = current;
|
||
|
struct fpstate *fpstate = tsk->thread.fpu.fpstate;
|
||
|
bool ia32_fxstate = (buf != buf_fx);
|
||
|
int ret;
|
||
|
|
||
|
ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) ||
|
||
|
IS_ENABLED(CONFIG_IA32_EMULATION));
|
||
|
|
||
|
if (!static_cpu_has(X86_FEATURE_FPU)) {
|
||
|
struct user_i387_ia32_struct fp;
|
||
|
|
||
|
fpregs_soft_get(current, NULL, (struct membuf){.p = &fp,
|
||
|
.left = sizeof(fp)});
|
||
|
return !copy_to_user(buf, &fp, sizeof(fp));
|
||
|
}
|
||
|
|
||
|
if (!access_ok(buf, size))
|
||
|
return false;
|
||
|
|
||
|
if (use_xsave()) {
|
||
|
struct xregs_state __user *xbuf = buf_fx;
|
||
|
|
||
|
/*
|
||
|
* Clear the xsave header first, so that reserved fields are
|
||
|
* initialized to zero.
|
||
|
*/
|
||
|
if (__clear_user(&xbuf->header, sizeof(xbuf->header)))
|
||
|
return false;
|
||
|
}
|
||
|
retry:
|
||
|
/*
|
||
|
* Load the FPU registers if they are not valid for the current task.
|
||
|
* With a valid FPU state we can attempt to save the state directly to
|
||
|
* userland's stack frame which will likely succeed. If it does not,
|
||
|
* resolve the fault in the user memory and try again.
|
||
|
*/
|
||
|
fpregs_lock();
|
||
|
if (test_thread_flag(TIF_NEED_FPU_LOAD))
|
||
|
fpregs_restore_userregs();
|
||
|
|
||
|
pagefault_disable();
|
||
|
ret = copy_fpregs_to_sigframe(buf_fx);
|
||
|
pagefault_enable();
|
||
|
fpregs_unlock();
|
||
|
|
||
|
if (ret) {
|
||
|
if (!__clear_user(buf_fx, fpstate->user_size))
|
||
|
goto retry;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Save the fsave header for the 32-bit frames. */
|
||
|
if ((ia32_fxstate || !use_fxsr()) && !save_fsave_header(tsk, buf))
|
||
|
return false;
|
||
|
|
||
|
if (use_fxsr() && !save_xstate_epilog(buf_fx, ia32_fxstate, fpstate))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static int __restore_fpregs_from_user(void __user *buf, u64 ufeatures,
|
||
|
u64 xrestore, bool fx_only)
|
||
|
{
|
||
|
if (use_xsave()) {
|
||
|
u64 init_bv = ufeatures & ~xrestore;
|
||
|
int ret;
|
||
|
|
||
|
if (likely(!fx_only))
|
||
|
ret = xrstor_from_user_sigframe(buf, xrestore);
|
||
|
else
|
||
|
ret = fxrstor_from_user_sigframe(buf);
|
||
|
|
||
|
if (!ret && unlikely(init_bv))
|
||
|
os_xrstor(&init_fpstate, init_bv);
|
||
|
return ret;
|
||
|
} else if (use_fxsr()) {
|
||
|
return fxrstor_from_user_sigframe(buf);
|
||
|
} else {
|
||
|
return frstor_from_user_sigframe(buf);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Attempt to restore the FPU registers directly from user memory.
|
||
|
* Pagefaults are handled and any errors returned are fatal.
|
||
|
*/
|
||
|
static bool restore_fpregs_from_user(void __user *buf, u64 xrestore,
|
||
|
bool fx_only, unsigned int size)
|
||
|
{
|
||
|
struct fpu *fpu = ¤t->thread.fpu;
|
||
|
int ret;
|
||
|
|
||
|
retry:
|
||
|
fpregs_lock();
|
||
|
/* Ensure that XFD is up to date */
|
||
|
xfd_update_state(fpu->fpstate);
|
||
|
pagefault_disable();
|
||
|
ret = __restore_fpregs_from_user(buf, fpu->fpstate->user_xfeatures,
|
||
|
xrestore, fx_only);
|
||
|
pagefault_enable();
|
||
|
|
||
|
if (unlikely(ret)) {
|
||
|
/*
|
||
|
* The above did an FPU restore operation, restricted to
|
||
|
* the user portion of the registers, and failed, but the
|
||
|
* microcode might have modified the FPU registers
|
||
|
* nevertheless.
|
||
|
*
|
||
|
* If the FPU registers do not belong to current, then
|
||
|
* invalidate the FPU register state otherwise the task
|
||
|
* might preempt current and return to user space with
|
||
|
* corrupted FPU registers.
|
||
|
*/
|
||
|
if (test_thread_flag(TIF_NEED_FPU_LOAD))
|
||
|
__cpu_invalidate_fpregs_state();
|
||
|
fpregs_unlock();
|
||
|
|
||
|
/* Try to handle #PF, but anything else is fatal. */
|
||
|
if (ret != X86_TRAP_PF)
|
||
|
return false;
|
||
|
|
||
|
if (!fault_in_readable(buf, size))
|
||
|
goto retry;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Restore supervisor states: previous context switch etc has done
|
||
|
* XSAVES and saved the supervisor states in the kernel buffer from
|
||
|
* which they can be restored now.
|
||
|
*
|
||
|
* It would be optimal to handle this with a single XRSTORS, but
|
||
|
* this does not work because the rest of the FPU registers have
|
||
|
* been restored from a user buffer directly.
|
||
|
*/
|
||
|
if (test_thread_flag(TIF_NEED_FPU_LOAD) && xfeatures_mask_supervisor())
|
||
|
os_xrstor_supervisor(fpu->fpstate);
|
||
|
|
||
|
fpregs_mark_activate();
|
||
|
fpregs_unlock();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool __fpu_restore_sig(void __user *buf, void __user *buf_fx,
|
||
|
bool ia32_fxstate)
|
||
|
{
|
||
|
struct task_struct *tsk = current;
|
||
|
struct fpu *fpu = &tsk->thread.fpu;
|
||
|
struct user_i387_ia32_struct env;
|
||
|
bool success, fx_only = false;
|
||
|
union fpregs_state *fpregs;
|
||
|
unsigned int state_size;
|
||
|
u64 user_xfeatures = 0;
|
||
|
|
||
|
if (use_xsave()) {
|
||
|
struct _fpx_sw_bytes fx_sw_user;
|
||
|
|
||
|
if (!check_xstate_in_sigframe(buf_fx, &fx_sw_user))
|
||
|
return false;
|
||
|
|
||
|
fx_only = !fx_sw_user.magic1;
|
||
|
state_size = fx_sw_user.xstate_size;
|
||
|
user_xfeatures = fx_sw_user.xfeatures;
|
||
|
} else {
|
||
|
user_xfeatures = XFEATURE_MASK_FPSSE;
|
||
|
state_size = fpu->fpstate->user_size;
|
||
|
}
|
||
|
|
||
|
if (likely(!ia32_fxstate)) {
|
||
|
/* Restore the FPU registers directly from user memory. */
|
||
|
return restore_fpregs_from_user(buf_fx, user_xfeatures, fx_only,
|
||
|
state_size);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Copy the legacy state because the FP portion of the FX frame has
|
||
|
* to be ignored for histerical raisins. The legacy state is folded
|
||
|
* in once the larger state has been copied.
|
||
|
*/
|
||
|
if (__copy_from_user(&env, buf, sizeof(env)))
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* By setting TIF_NEED_FPU_LOAD it is ensured that our xstate is
|
||
|
* not modified on context switch and that the xstate is considered
|
||
|
* to be loaded again on return to userland (overriding last_cpu avoids
|
||
|
* the optimisation).
|
||
|
*/
|
||
|
fpregs_lock();
|
||
|
if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
|
||
|
/*
|
||
|
* If supervisor states are available then save the
|
||
|
* hardware state in current's fpstate so that the
|
||
|
* supervisor state is preserved. Save the full state for
|
||
|
* simplicity. There is no point in optimizing this by only
|
||
|
* saving the supervisor states and then shuffle them to
|
||
|
* the right place in memory. It's ia32 mode. Shrug.
|
||
|
*/
|
||
|
if (xfeatures_mask_supervisor())
|
||
|
os_xsave(fpu->fpstate);
|
||
|
set_thread_flag(TIF_NEED_FPU_LOAD);
|
||
|
}
|
||
|
__fpu_invalidate_fpregs_state(fpu);
|
||
|
__cpu_invalidate_fpregs_state();
|
||
|
fpregs_unlock();
|
||
|
|
||
|
fpregs = &fpu->fpstate->regs;
|
||
|
if (use_xsave() && !fx_only) {
|
||
|
if (copy_sigframe_from_user_to_xstate(fpu->fpstate, buf_fx))
|
||
|
return false;
|
||
|
} else {
|
||
|
if (__copy_from_user(&fpregs->fxsave, buf_fx,
|
||
|
sizeof(fpregs->fxsave)))
|
||
|
return false;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_X86_64)) {
|
||
|
/* Reject invalid MXCSR values. */
|
||
|
if (fpregs->fxsave.mxcsr & ~mxcsr_feature_mask)
|
||
|
return false;
|
||
|
} else {
|
||
|
/* Mask invalid bits out for historical reasons (broken hardware). */
|
||
|
fpregs->fxsave.mxcsr &= mxcsr_feature_mask;
|
||
|
}
|
||
|
|
||
|
/* Enforce XFEATURE_MASK_FPSSE when XSAVE is enabled */
|
||
|
if (use_xsave())
|
||
|
fpregs->xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
|
||
|
}
|
||
|
|
||
|
/* Fold the legacy FP storage */
|
||
|
convert_to_fxsr(&fpregs->fxsave, &env);
|
||
|
|
||
|
fpregs_lock();
|
||
|
if (use_xsave()) {
|
||
|
/*
|
||
|
* Remove all UABI feature bits not set in user_xfeatures
|
||
|
* from the memory xstate header which makes the full
|
||
|
* restore below bring them into init state. This works for
|
||
|
* fx_only mode as well because that has only FP and SSE
|
||
|
* set in user_xfeatures.
|
||
|
*
|
||
|
* Preserve supervisor states!
|
||
|
*/
|
||
|
u64 mask = user_xfeatures | xfeatures_mask_supervisor();
|
||
|
|
||
|
fpregs->xsave.header.xfeatures &= mask;
|
||
|
success = !os_xrstor_safe(fpu->fpstate,
|
||
|
fpu_kernel_cfg.max_features);
|
||
|
} else {
|
||
|
success = !fxrstor_safe(&fpregs->fxsave);
|
||
|
}
|
||
|
|
||
|
if (likely(success))
|
||
|
fpregs_mark_activate();
|
||
|
|
||
|
fpregs_unlock();
|
||
|
return success;
|
||
|
}
|
||
|
|
||
|
static inline unsigned int xstate_sigframe_size(struct fpstate *fpstate)
|
||
|
{
|
||
|
unsigned int size = fpstate->user_size;
|
||
|
|
||
|
return use_xsave() ? size + FP_XSTATE_MAGIC2_SIZE : size;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Restore FPU state from a sigframe:
|
||
|
*/
|
||
|
bool fpu__restore_sig(void __user *buf, int ia32_frame)
|
||
|
{
|
||
|
struct fpu *fpu = ¤t->thread.fpu;
|
||
|
void __user *buf_fx = buf;
|
||
|
bool ia32_fxstate = false;
|
||
|
bool success = false;
|
||
|
unsigned int size;
|
||
|
|
||
|
if (unlikely(!buf)) {
|
||
|
fpu__clear_user_states(fpu);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
size = xstate_sigframe_size(fpu->fpstate);
|
||
|
|
||
|
ia32_frame &= (IS_ENABLED(CONFIG_X86_32) ||
|
||
|
IS_ENABLED(CONFIG_IA32_EMULATION));
|
||
|
|
||
|
/*
|
||
|
* Only FXSR enabled systems need the FX state quirk.
|
||
|
* FRSTOR does not need it and can use the fast path.
|
||
|
*/
|
||
|
if (ia32_frame && use_fxsr()) {
|
||
|
buf_fx = buf + sizeof(struct fregs_state);
|
||
|
size += sizeof(struct fregs_state);
|
||
|
ia32_fxstate = true;
|
||
|
}
|
||
|
|
||
|
if (!access_ok(buf, size))
|
||
|
goto out;
|
||
|
|
||
|
if (!IS_ENABLED(CONFIG_X86_64) && !cpu_feature_enabled(X86_FEATURE_FPU)) {
|
||
|
success = !fpregs_soft_set(current, NULL, 0,
|
||
|
sizeof(struct user_i387_ia32_struct),
|
||
|
NULL, buf);
|
||
|
} else {
|
||
|
success = __fpu_restore_sig(buf, buf_fx, ia32_fxstate);
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
if (unlikely(!success))
|
||
|
fpu__clear_user_states(fpu);
|
||
|
return success;
|
||
|
}
|
||
|
|
||
|
unsigned long
|
||
|
fpu__alloc_mathframe(unsigned long sp, int ia32_frame,
|
||
|
unsigned long *buf_fx, unsigned long *size)
|
||
|
{
|
||
|
unsigned long frame_size = xstate_sigframe_size(current->thread.fpu.fpstate);
|
||
|
|
||
|
*buf_fx = sp = round_down(sp - frame_size, 64);
|
||
|
if (ia32_frame && use_fxsr()) {
|
||
|
frame_size += sizeof(struct fregs_state);
|
||
|
sp -= sizeof(struct fregs_state);
|
||
|
}
|
||
|
|
||
|
*size = frame_size;
|
||
|
|
||
|
return sp;
|
||
|
}
|
||
|
|
||
|
unsigned long __init fpu__get_fpstate_size(void)
|
||
|
{
|
||
|
unsigned long ret = fpu_user_cfg.max_size;
|
||
|
|
||
|
if (use_xsave())
|
||
|
ret += FP_XSTATE_MAGIC2_SIZE;
|
||
|
|
||
|
/*
|
||
|
* This space is needed on (most) 32-bit kernels, or when a 32-bit
|
||
|
* app is running on a 64-bit kernel. To keep things simple, just
|
||
|
* assume the worst case and always include space for 'freg_state',
|
||
|
* even for 64-bit apps on 64-bit kernels. This wastes a bit of
|
||
|
* space, but keeps the code simple.
|
||
|
*/
|
||
|
if ((IS_ENABLED(CONFIG_IA32_EMULATION) ||
|
||
|
IS_ENABLED(CONFIG_X86_32)) && use_fxsr())
|
||
|
ret += sizeof(struct fregs_state);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|