519 lines
13 KiB
C
519 lines
13 KiB
C
|
/*
|
||
|
* This file is subject to the terms and conditions of the GNU General Public
|
||
|
* License. See the file "COPYING" in the main directory of this archive
|
||
|
* for more details.
|
||
|
*
|
||
|
*
|
||
|
* Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
|
||
|
* Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
|
||
|
* Copyright 1999 Hewlett Packard Co.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/ptrace.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/sched/debug.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/extable.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/hugetlb.h>
|
||
|
#include <linux/perf_event.h>
|
||
|
|
||
|
#include <asm/traps.h>
|
||
|
|
||
|
#define DEBUG_NATLB 0
|
||
|
|
||
|
/* Various important other fields */
|
||
|
#define bit22set(x) (x & 0x00000200)
|
||
|
#define bits23_25set(x) (x & 0x000001c0)
|
||
|
#define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80)
|
||
|
/* extended opcode is 0x6a */
|
||
|
|
||
|
#define BITSSET 0x1c0 /* for identifying LDCW */
|
||
|
|
||
|
|
||
|
int show_unhandled_signals = 1;
|
||
|
|
||
|
/*
|
||
|
* parisc_acctyp(unsigned int inst) --
|
||
|
* Given a PA-RISC memory access instruction, determine if the
|
||
|
* the instruction would perform a memory read or memory write
|
||
|
* operation.
|
||
|
*
|
||
|
* This function assumes that the given instruction is a memory access
|
||
|
* instruction (i.e. you should really only call it if you know that
|
||
|
* the instruction has generated some sort of a memory access fault).
|
||
|
*
|
||
|
* Returns:
|
||
|
* VM_READ if read operation
|
||
|
* VM_WRITE if write operation
|
||
|
* VM_EXEC if execute operation
|
||
|
*/
|
||
|
unsigned long
|
||
|
parisc_acctyp(unsigned long code, unsigned int inst)
|
||
|
{
|
||
|
if (code == 6 || code == 16)
|
||
|
return VM_EXEC;
|
||
|
|
||
|
switch (inst & 0xf0000000) {
|
||
|
case 0x40000000: /* load */
|
||
|
case 0x50000000: /* new load */
|
||
|
return VM_READ;
|
||
|
|
||
|
case 0x60000000: /* store */
|
||
|
case 0x70000000: /* new store */
|
||
|
return VM_WRITE;
|
||
|
|
||
|
case 0x20000000: /* coproc */
|
||
|
case 0x30000000: /* coproc2 */
|
||
|
if (bit22set(inst))
|
||
|
return VM_WRITE;
|
||
|
fallthrough;
|
||
|
|
||
|
case 0x0: /* indexed/memory management */
|
||
|
if (bit22set(inst)) {
|
||
|
/*
|
||
|
* Check for the 'Graphics Flush Read' instruction.
|
||
|
* It resembles an FDC instruction, except for bits
|
||
|
* 20 and 21. Any combination other than zero will
|
||
|
* utilize the block mover functionality on some
|
||
|
* older PA-RISC platforms. The case where a block
|
||
|
* move is performed from VM to graphics IO space
|
||
|
* should be treated as a READ.
|
||
|
*
|
||
|
* The significance of bits 20,21 in the FDC
|
||
|
* instruction is:
|
||
|
*
|
||
|
* 00 Flush data cache (normal instruction behavior)
|
||
|
* 01 Graphics flush write (IO space -> VM)
|
||
|
* 10 Graphics flush read (VM -> IO space)
|
||
|
* 11 Graphics flush read/write (VM <-> IO space)
|
||
|
*/
|
||
|
if (isGraphicsFlushRead(inst))
|
||
|
return VM_READ;
|
||
|
return VM_WRITE;
|
||
|
} else {
|
||
|
/*
|
||
|
* Check for LDCWX and LDCWS (semaphore instructions).
|
||
|
* If bits 23 through 25 are all 1's it is one of
|
||
|
* the above two instructions and is a write.
|
||
|
*
|
||
|
* Note: With the limited bits we are looking at,
|
||
|
* this will also catch PROBEW and PROBEWI. However,
|
||
|
* these should never get in here because they don't
|
||
|
* generate exceptions of the type:
|
||
|
* Data TLB miss fault/data page fault
|
||
|
* Data memory protection trap
|
||
|
*/
|
||
|
if (bits23_25set(inst) == BITSSET)
|
||
|
return VM_WRITE;
|
||
|
}
|
||
|
return VM_READ; /* Default */
|
||
|
}
|
||
|
return VM_READ; /* Default */
|
||
|
}
|
||
|
|
||
|
#undef bit22set
|
||
|
#undef bits23_25set
|
||
|
#undef isGraphicsFlushRead
|
||
|
#undef BITSSET
|
||
|
|
||
|
|
||
|
#if 0
|
||
|
/* This is the treewalk to find a vma which is the highest that has
|
||
|
* a start < addr. We're using find_vma_prev instead right now, but
|
||
|
* we might want to use this at some point in the future. Probably
|
||
|
* not, but I want it committed to CVS so I don't lose it :-)
|
||
|
*/
|
||
|
while (tree != vm_avl_empty) {
|
||
|
if (tree->vm_start > addr) {
|
||
|
tree = tree->vm_avl_left;
|
||
|
} else {
|
||
|
prev = tree;
|
||
|
if (prev->vm_next == NULL)
|
||
|
break;
|
||
|
if (prev->vm_next->vm_start > addr)
|
||
|
break;
|
||
|
tree = tree->vm_avl_right;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
int fixup_exception(struct pt_regs *regs)
|
||
|
{
|
||
|
const struct exception_table_entry *fix;
|
||
|
|
||
|
fix = search_exception_tables(regs->iaoq[0]);
|
||
|
if (fix) {
|
||
|
/*
|
||
|
* Fix up get_user() and put_user().
|
||
|
* ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
|
||
|
* bit in the relative address of the fixup routine to indicate
|
||
|
* that gr[ASM_EXCEPTIONTABLE_REG] should be loaded with
|
||
|
* -EFAULT to report a userspace access error.
|
||
|
*/
|
||
|
if (fix->fixup & 1) {
|
||
|
regs->gr[ASM_EXCEPTIONTABLE_REG] = -EFAULT;
|
||
|
|
||
|
/* zero target register for get_user() */
|
||
|
if (parisc_acctyp(0, regs->iir) == VM_READ) {
|
||
|
int treg = regs->iir & 0x1f;
|
||
|
BUG_ON(treg == 0);
|
||
|
regs->gr[treg] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
|
||
|
regs->iaoq[0] &= ~3;
|
||
|
/*
|
||
|
* NOTE: In some cases the faulting instruction
|
||
|
* may be in the delay slot of a branch. We
|
||
|
* don't want to take the branch, so we don't
|
||
|
* increment iaoq[1], instead we set it to be
|
||
|
* iaoq[0]+4, and clear the B bit in the PSW
|
||
|
*/
|
||
|
regs->iaoq[1] = regs->iaoq[0] + 4;
|
||
|
regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* parisc hardware trap list
|
||
|
*
|
||
|
* Documented in section 3 "Addressing and Access Control" of the
|
||
|
* "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
|
||
|
* https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
|
||
|
*
|
||
|
* For implementation see handle_interruption() in traps.c
|
||
|
*/
|
||
|
static const char * const trap_description[] = {
|
||
|
[1] "High-priority machine check (HPMC)",
|
||
|
[2] "Power failure interrupt",
|
||
|
[3] "Recovery counter trap",
|
||
|
[5] "Low-priority machine check",
|
||
|
[6] "Instruction TLB miss fault",
|
||
|
[7] "Instruction access rights / protection trap",
|
||
|
[8] "Illegal instruction trap",
|
||
|
[9] "Break instruction trap",
|
||
|
[10] "Privileged operation trap",
|
||
|
[11] "Privileged register trap",
|
||
|
[12] "Overflow trap",
|
||
|
[13] "Conditional trap",
|
||
|
[14] "FP Assist Exception trap",
|
||
|
[15] "Data TLB miss fault",
|
||
|
[16] "Non-access ITLB miss fault",
|
||
|
[17] "Non-access DTLB miss fault",
|
||
|
[18] "Data memory protection/unaligned access trap",
|
||
|
[19] "Data memory break trap",
|
||
|
[20] "TLB dirty bit trap",
|
||
|
[21] "Page reference trap",
|
||
|
[22] "Assist emulation trap",
|
||
|
[25] "Taken branch trap",
|
||
|
[26] "Data memory access rights trap",
|
||
|
[27] "Data memory protection ID trap",
|
||
|
[28] "Unaligned data reference trap",
|
||
|
};
|
||
|
|
||
|
const char *trap_name(unsigned long code)
|
||
|
{
|
||
|
const char *t = NULL;
|
||
|
|
||
|
if (code < ARRAY_SIZE(trap_description))
|
||
|
t = trap_description[code];
|
||
|
|
||
|
return t ? t : "Unknown trap";
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Print out info about fatal segfaults, if the show_unhandled_signals
|
||
|
* sysctl is set:
|
||
|
*/
|
||
|
static inline void
|
||
|
show_signal_msg(struct pt_regs *regs, unsigned long code,
|
||
|
unsigned long address, struct task_struct *tsk,
|
||
|
struct vm_area_struct *vma)
|
||
|
{
|
||
|
if (!unhandled_signal(tsk, SIGSEGV))
|
||
|
return;
|
||
|
|
||
|
if (!printk_ratelimit())
|
||
|
return;
|
||
|
|
||
|
pr_warn("\n");
|
||
|
pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
|
||
|
tsk->comm, code, address);
|
||
|
print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
|
||
|
|
||
|
pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
|
||
|
vma ? ',':'\n');
|
||
|
|
||
|
if (vma)
|
||
|
pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
|
||
|
vma->vm_start, vma->vm_end);
|
||
|
|
||
|
show_regs(regs);
|
||
|
}
|
||
|
|
||
|
void do_page_fault(struct pt_regs *regs, unsigned long code,
|
||
|
unsigned long address)
|
||
|
{
|
||
|
struct vm_area_struct *vma, *prev_vma;
|
||
|
struct task_struct *tsk;
|
||
|
struct mm_struct *mm;
|
||
|
unsigned long acc_type;
|
||
|
vm_fault_t fault = 0;
|
||
|
unsigned int flags;
|
||
|
char *msg;
|
||
|
|
||
|
tsk = current;
|
||
|
mm = tsk->mm;
|
||
|
if (!mm) {
|
||
|
msg = "Page fault: no context";
|
||
|
goto no_context;
|
||
|
}
|
||
|
|
||
|
flags = FAULT_FLAG_DEFAULT;
|
||
|
if (user_mode(regs))
|
||
|
flags |= FAULT_FLAG_USER;
|
||
|
|
||
|
acc_type = parisc_acctyp(code, regs->iir);
|
||
|
if (acc_type & VM_WRITE)
|
||
|
flags |= FAULT_FLAG_WRITE;
|
||
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
|
||
|
retry:
|
||
|
mmap_read_lock(mm);
|
||
|
vma = find_vma_prev(mm, address, &prev_vma);
|
||
|
if (!vma || address < vma->vm_start)
|
||
|
goto check_expansion;
|
||
|
/*
|
||
|
* Ok, we have a good vm_area for this memory access. We still need to
|
||
|
* check the access permissions.
|
||
|
*/
|
||
|
|
||
|
good_area:
|
||
|
|
||
|
if ((vma->vm_flags & acc_type) != acc_type)
|
||
|
goto bad_area;
|
||
|
|
||
|
/*
|
||
|
* If for any reason at all we couldn't handle the fault, make
|
||
|
* sure we exit gracefully rather than endlessly redo the
|
||
|
* fault.
|
||
|
*/
|
||
|
|
||
|
fault = handle_mm_fault(vma, address, flags, regs);
|
||
|
|
||
|
if (fault_signal_pending(fault, regs))
|
||
|
return;
|
||
|
|
||
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
||
|
/*
|
||
|
* We hit a shared mapping outside of the file, or some
|
||
|
* other thing happened to us that made us unable to
|
||
|
* handle the page fault gracefully.
|
||
|
*/
|
||
|
if (fault & VM_FAULT_OOM)
|
||
|
goto out_of_memory;
|
||
|
else if (fault & VM_FAULT_SIGSEGV)
|
||
|
goto bad_area;
|
||
|
else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
|
||
|
VM_FAULT_HWPOISON_LARGE))
|
||
|
goto bad_area;
|
||
|
BUG();
|
||
|
}
|
||
|
if (fault & VM_FAULT_RETRY) {
|
||
|
/*
|
||
|
* No need to mmap_read_unlock(mm) as we would
|
||
|
* have already released it in __lock_page_or_retry
|
||
|
* in mm/filemap.c.
|
||
|
*/
|
||
|
flags |= FAULT_FLAG_TRIED;
|
||
|
goto retry;
|
||
|
}
|
||
|
mmap_read_unlock(mm);
|
||
|
return;
|
||
|
|
||
|
check_expansion:
|
||
|
vma = prev_vma;
|
||
|
if (vma && (expand_stack(vma, address) == 0))
|
||
|
goto good_area;
|
||
|
|
||
|
/*
|
||
|
* Something tried to access memory that isn't in our memory map..
|
||
|
*/
|
||
|
bad_area:
|
||
|
mmap_read_unlock(mm);
|
||
|
|
||
|
if (user_mode(regs)) {
|
||
|
int signo, si_code;
|
||
|
|
||
|
switch (code) {
|
||
|
case 15: /* Data TLB miss fault/Data page fault */
|
||
|
/* send SIGSEGV when outside of vma */
|
||
|
if (!vma ||
|
||
|
address < vma->vm_start || address >= vma->vm_end) {
|
||
|
signo = SIGSEGV;
|
||
|
si_code = SEGV_MAPERR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* send SIGSEGV for wrong permissions */
|
||
|
if ((vma->vm_flags & acc_type) != acc_type) {
|
||
|
signo = SIGSEGV;
|
||
|
si_code = SEGV_ACCERR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* probably address is outside of mapped file */
|
||
|
fallthrough;
|
||
|
case 17: /* NA data TLB miss / page fault */
|
||
|
case 18: /* Unaligned access - PCXS only */
|
||
|
signo = SIGBUS;
|
||
|
si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
|
||
|
break;
|
||
|
case 16: /* Non-access instruction TLB miss fault */
|
||
|
case 26: /* PCXL: Data memory access rights trap */
|
||
|
default:
|
||
|
signo = SIGSEGV;
|
||
|
si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
|
||
|
break;
|
||
|
}
|
||
|
#ifdef CONFIG_MEMORY_FAILURE
|
||
|
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
|
||
|
unsigned int lsb = 0;
|
||
|
printk(KERN_ERR
|
||
|
"MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
|
||
|
tsk->comm, tsk->pid, address);
|
||
|
/*
|
||
|
* Either small page or large page may be poisoned.
|
||
|
* In other words, VM_FAULT_HWPOISON_LARGE and
|
||
|
* VM_FAULT_HWPOISON are mutually exclusive.
|
||
|
*/
|
||
|
if (fault & VM_FAULT_HWPOISON_LARGE)
|
||
|
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
|
||
|
else if (fault & VM_FAULT_HWPOISON)
|
||
|
lsb = PAGE_SHIFT;
|
||
|
|
||
|
force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address,
|
||
|
lsb);
|
||
|
return;
|
||
|
}
|
||
|
#endif
|
||
|
show_signal_msg(regs, code, address, tsk, vma);
|
||
|
|
||
|
force_sig_fault(signo, si_code, (void __user *) address);
|
||
|
return;
|
||
|
}
|
||
|
msg = "Page fault: bad address";
|
||
|
|
||
|
no_context:
|
||
|
|
||
|
if (!user_mode(regs) && fixup_exception(regs)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
parisc_terminate(msg, regs, code, address);
|
||
|
|
||
|
out_of_memory:
|
||
|
mmap_read_unlock(mm);
|
||
|
if (!user_mode(regs)) {
|
||
|
msg = "Page fault: out of memory";
|
||
|
goto no_context;
|
||
|
}
|
||
|
pagefault_out_of_memory();
|
||
|
}
|
||
|
|
||
|
/* Handle non-access data TLB miss faults.
|
||
|
*
|
||
|
* For probe instructions, accesses to userspace are considered allowed
|
||
|
* if they lie in a valid VMA and the access type matches. We are not
|
||
|
* allowed to handle MM faults here so there may be situations where an
|
||
|
* actual access would fail even though a probe was successful.
|
||
|
*/
|
||
|
int
|
||
|
handle_nadtlb_fault(struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned long insn = regs->iir;
|
||
|
int breg, treg, xreg, val = 0;
|
||
|
struct vm_area_struct *vma, *prev_vma;
|
||
|
struct task_struct *tsk;
|
||
|
struct mm_struct *mm;
|
||
|
unsigned long address;
|
||
|
unsigned long acc_type;
|
||
|
|
||
|
switch (insn & 0x380) {
|
||
|
case 0x280:
|
||
|
/* FDC instruction */
|
||
|
fallthrough;
|
||
|
case 0x380:
|
||
|
/* PDC and FIC instructions */
|
||
|
if (DEBUG_NATLB && printk_ratelimit()) {
|
||
|
pr_warn("WARNING: nullifying cache flush/purge instruction\n");
|
||
|
show_regs(regs);
|
||
|
}
|
||
|
if (insn & 0x20) {
|
||
|
/* Base modification */
|
||
|
breg = (insn >> 21) & 0x1f;
|
||
|
xreg = (insn >> 16) & 0x1f;
|
||
|
if (breg && xreg)
|
||
|
regs->gr[breg] += regs->gr[xreg];
|
||
|
}
|
||
|
regs->gr[0] |= PSW_N;
|
||
|
return 1;
|
||
|
|
||
|
case 0x180:
|
||
|
/* PROBE instruction */
|
||
|
treg = insn & 0x1f;
|
||
|
if (regs->isr) {
|
||
|
tsk = current;
|
||
|
mm = tsk->mm;
|
||
|
if (mm) {
|
||
|
/* Search for VMA */
|
||
|
address = regs->ior;
|
||
|
mmap_read_lock(mm);
|
||
|
vma = find_vma_prev(mm, address, &prev_vma);
|
||
|
mmap_read_unlock(mm);
|
||
|
|
||
|
/*
|
||
|
* Check if access to the VMA is okay.
|
||
|
* We don't allow for stack expansion.
|
||
|
*/
|
||
|
acc_type = (insn & 0x40) ? VM_WRITE : VM_READ;
|
||
|
if (vma
|
||
|
&& address >= vma->vm_start
|
||
|
&& (vma->vm_flags & acc_type) == acc_type)
|
||
|
val = 1;
|
||
|
}
|
||
|
}
|
||
|
if (treg)
|
||
|
regs->gr[treg] = val;
|
||
|
regs->gr[0] |= PSW_N;
|
||
|
return 1;
|
||
|
|
||
|
case 0x300:
|
||
|
/* LPA instruction */
|
||
|
if (insn & 0x20) {
|
||
|
/* Base modification */
|
||
|
breg = (insn >> 21) & 0x1f;
|
||
|
xreg = (insn >> 16) & 0x1f;
|
||
|
if (breg && xreg)
|
||
|
regs->gr[breg] += regs->gr[xreg];
|
||
|
}
|
||
|
treg = insn & 0x1f;
|
||
|
if (treg)
|
||
|
regs->gr[treg] = 0;
|
||
|
regs->gr[0] |= PSW_N;
|
||
|
return 1;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|