459 lines
14 KiB
C
459 lines
14 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
/*
|
||
|
* Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
|
||
|
* Copyright (C) 2008-2009 PetaLogix
|
||
|
* Copyright (C) 2006 Atmark Techno, Inc.
|
||
|
*/
|
||
|
|
||
|
#ifndef _ASM_MICROBLAZE_PGTABLE_H
|
||
|
#define _ASM_MICROBLAZE_PGTABLE_H
|
||
|
|
||
|
#include <asm/setup.h>
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
extern int mem_init_done;
|
||
|
#endif
|
||
|
|
||
|
#include <asm-generic/pgtable-nopmd.h>
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/threads.h>
|
||
|
#include <asm/processor.h> /* For TASK_SIZE */
|
||
|
#include <asm/mmu.h>
|
||
|
#include <asm/page.h>
|
||
|
|
||
|
extern unsigned long va_to_phys(unsigned long address);
|
||
|
extern pte_t *va_to_pte(unsigned long address);
|
||
|
|
||
|
/*
|
||
|
* The following only work if pte_present() is true.
|
||
|
* Undefined behaviour if not..
|
||
|
*/
|
||
|
|
||
|
/* Start and end of the vmalloc area. */
|
||
|
/* Make sure to map the vmalloc area above the pinned kernel memory area
|
||
|
of 32Mb. */
|
||
|
#define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
|
||
|
#define VMALLOC_END ioremap_bot
|
||
|
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
|
||
|
/*
|
||
|
* Macro to mark a page protection value as "uncacheable".
|
||
|
*/
|
||
|
|
||
|
#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \
|
||
|
_PAGE_WRITETHRU)
|
||
|
|
||
|
#define pgprot_noncached(prot) \
|
||
|
(__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||
|
_PAGE_NO_CACHE | _PAGE_GUARDED))
|
||
|
|
||
|
#define pgprot_noncached_wc(prot) \
|
||
|
(__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||
|
_PAGE_NO_CACHE))
|
||
|
|
||
|
/*
|
||
|
* The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
|
||
|
* table containing PTEs, together with a set of 16 segment registers, to
|
||
|
* define the virtual to physical address mapping.
|
||
|
*
|
||
|
* We use the hash table as an extended TLB, i.e. a cache of currently
|
||
|
* active mappings. We maintain a two-level page table tree, much
|
||
|
* like that used by the i386, for the sake of the Linux memory
|
||
|
* management code. Low-level assembler code in hashtable.S
|
||
|
* (procedure hash_page) is responsible for extracting ptes from the
|
||
|
* tree and putting them into the hash table when necessary, and
|
||
|
* updating the accessed and modified bits in the page table tree.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
|
||
|
* instruction and data sides share a unified, 64-entry, semi-associative
|
||
|
* TLB which is maintained totally under software control. In addition, the
|
||
|
* instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
|
||
|
* TLB which serves as a first level to the shared TLB. These two TLBs are
|
||
|
* known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* The normal case is that PTEs are 32-bits and we have a 1-page
|
||
|
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* PGDIR_SHIFT determines what a top-level page table entry can map */
|
||
|
#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
|
||
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
||
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
||
|
|
||
|
/*
|
||
|
* entries per page directory level: our page-table tree is two-level, so
|
||
|
* we don't really have any PMD directory.
|
||
|
*/
|
||
|
#define PTRS_PER_PTE (1 << PTE_SHIFT)
|
||
|
#define PTRS_PER_PMD 1
|
||
|
#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
|
||
|
|
||
|
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
|
||
|
#define FIRST_USER_PGD_NR 0
|
||
|
|
||
|
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
|
||
|
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
|
||
|
|
||
|
#define pte_ERROR(e) \
|
||
|
printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
|
||
|
__FILE__, __LINE__, pte_val(e))
|
||
|
#define pgd_ERROR(e) \
|
||
|
printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
|
||
|
__FILE__, __LINE__, pgd_val(e))
|
||
|
|
||
|
/*
|
||
|
* Bits in a linux-style PTE. These match the bits in the
|
||
|
* (hardware-defined) PTE as closely as possible.
|
||
|
*/
|
||
|
|
||
|
/* There are several potential gotchas here. The hardware TLBLO
|
||
|
* field looks like this:
|
||
|
*
|
||
|
* 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
||
|
* RPN..................... 0 0 EX WR ZSEL....... W I M G
|
||
|
*
|
||
|
* Where possible we make the Linux PTE bits match up with this
|
||
|
*
|
||
|
* - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
|
||
|
* support down to 1k pages), this is done in the TLBMiss exception
|
||
|
* handler.
|
||
|
* - We use only zones 0 (for kernel pages) and 1 (for user pages)
|
||
|
* of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
|
||
|
* miss handler. Bit 27 is PAGE_USER, thus selecting the correct
|
||
|
* zone.
|
||
|
* - PRESENT *must* be in the bottom two bits because swap cache
|
||
|
* entries use the top 30 bits. Because 4xx doesn't support SMP
|
||
|
* anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
|
||
|
* is cleared in the TLB miss handler before the TLB entry is loaded.
|
||
|
* - All other bits of the PTE are loaded into TLBLO without
|
||
|
* * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
|
||
|
* software PTE bits. We actually use bits 21, 24, 25, and
|
||
|
* 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
|
||
|
* PRESENT.
|
||
|
*/
|
||
|
|
||
|
/* Definitions for MicroBlaze. */
|
||
|
#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
|
||
|
#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
|
||
|
#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
|
||
|
#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
|
||
|
#define _PAGE_USER 0x010 /* matches one of the zone permission bits */
|
||
|
#define _PAGE_RW 0x040 /* software: Writes permitted */
|
||
|
#define _PAGE_DIRTY 0x080 /* software: dirty page */
|
||
|
#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
|
||
|
#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
|
||
|
#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
|
||
|
#define _PMD_PRESENT PAGE_MASK
|
||
|
|
||
|
/*
|
||
|
* Some bits are unused...
|
||
|
*/
|
||
|
#ifndef _PAGE_HASHPTE
|
||
|
#define _PAGE_HASHPTE 0
|
||
|
#endif
|
||
|
#ifndef _PTE_NONE_MASK
|
||
|
#define _PTE_NONE_MASK 0
|
||
|
#endif
|
||
|
#ifndef _PAGE_SHARED
|
||
|
#define _PAGE_SHARED 0
|
||
|
#endif
|
||
|
#ifndef _PAGE_EXEC
|
||
|
#define _PAGE_EXEC 0
|
||
|
#endif
|
||
|
|
||
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
|
||
|
|
||
|
/*
|
||
|
* Note: the _PAGE_COHERENT bit automatically gets set in the hardware
|
||
|
* PTE if CONFIG_SMP is defined (hash_page does this); there is no need
|
||
|
* to have it in the Linux PTE, and in fact the bit could be reused for
|
||
|
* another purpose. -- paulus.
|
||
|
*/
|
||
|
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
|
||
|
#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
|
||
|
|
||
|
#define _PAGE_KERNEL \
|
||
|
(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
|
||
|
|
||
|
#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
|
||
|
|
||
|
#define PAGE_NONE __pgprot(_PAGE_BASE)
|
||
|
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
|
||
|
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
||
|
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
|
||
|
#define PAGE_SHARED_X \
|
||
|
__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
|
||
|
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
|
||
|
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
||
|
|
||
|
#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
|
||
|
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED)
|
||
|
#define PAGE_KERNEL_CI __pgprot(_PAGE_IO)
|
||
|
|
||
|
/*
|
||
|
* We consider execute permission the same as read.
|
||
|
* Also, write permissions imply read permissions.
|
||
|
*/
|
||
|
#define __P000 PAGE_NONE
|
||
|
#define __P001 PAGE_READONLY_X
|
||
|
#define __P010 PAGE_COPY
|
||
|
#define __P011 PAGE_COPY_X
|
||
|
#define __P100 PAGE_READONLY
|
||
|
#define __P101 PAGE_READONLY_X
|
||
|
#define __P110 PAGE_COPY
|
||
|
#define __P111 PAGE_COPY_X
|
||
|
|
||
|
#define __S000 PAGE_NONE
|
||
|
#define __S001 PAGE_READONLY_X
|
||
|
#define __S010 PAGE_SHARED
|
||
|
#define __S011 PAGE_SHARED_X
|
||
|
#define __S100 PAGE_READONLY
|
||
|
#define __S101 PAGE_READONLY_X
|
||
|
#define __S110 PAGE_SHARED
|
||
|
#define __S111 PAGE_SHARED_X
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
/*
|
||
|
* ZERO_PAGE is a global shared page that is always zero: used
|
||
|
* for zero-mapped memory areas etc..
|
||
|
*/
|
||
|
extern unsigned long empty_zero_page[1024];
|
||
|
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
|
||
|
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
|
||
|
#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
|
||
|
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
|
||
|
#define pte_clear(mm, addr, ptep) \
|
||
|
do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
|
||
|
|
||
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
||
|
#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0)
|
||
|
#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0)
|
||
|
#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
|
||
|
|
||
|
#define pte_page(x) (mem_map + (unsigned long) \
|
||
|
((pte_val(x) - memory_start) >> PAGE_SHIFT))
|
||
|
#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
|
||
|
|
||
|
#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
|
||
|
|
||
|
#define pfn_pte(pfn, prot) \
|
||
|
__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
/*
|
||
|
* The following only work if pte_present() is true.
|
||
|
* Undefined behaviour if not..
|
||
|
*/
|
||
|
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
|
||
|
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
|
||
|
static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
|
||
|
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
||
|
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
||
|
|
||
|
static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
|
||
|
static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
|
||
|
|
||
|
static inline pte_t pte_rdprotect(pte_t pte) \
|
||
|
{ pte_val(pte) &= ~_PAGE_USER; return pte; }
|
||
|
static inline pte_t pte_wrprotect(pte_t pte) \
|
||
|
{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
|
||
|
static inline pte_t pte_exprotect(pte_t pte) \
|
||
|
{ pte_val(pte) &= ~_PAGE_EXEC; return pte; }
|
||
|
static inline pte_t pte_mkclean(pte_t pte) \
|
||
|
{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
|
||
|
static inline pte_t pte_mkold(pte_t pte) \
|
||
|
{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
||
|
|
||
|
static inline pte_t pte_mkread(pte_t pte) \
|
||
|
{ pte_val(pte) |= _PAGE_USER; return pte; }
|
||
|
static inline pte_t pte_mkexec(pte_t pte) \
|
||
|
{ pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
|
||
|
static inline pte_t pte_mkwrite(pte_t pte) \
|
||
|
{ pte_val(pte) |= _PAGE_RW; return pte; }
|
||
|
static inline pte_t pte_mkdirty(pte_t pte) \
|
||
|
{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
||
|
static inline pte_t pte_mkyoung(pte_t pte) \
|
||
|
{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
||
|
|
||
|
/*
|
||
|
* Conversion functions: convert a page and protection to a page entry,
|
||
|
* and a page entry and page directory to the page they refer to.
|
||
|
*/
|
||
|
|
||
|
static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
|
||
|
{
|
||
|
pte_t pte;
|
||
|
pte_val(pte) = physpage | pgprot_val(pgprot);
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
#define mk_pte(page, pgprot) \
|
||
|
({ \
|
||
|
pte_t pte; \
|
||
|
pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \
|
||
|
pgprot_val(pgprot); \
|
||
|
pte; \
|
||
|
})
|
||
|
|
||
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
||
|
{
|
||
|
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Atomic PTE updates.
|
||
|
*
|
||
|
* pte_update clears and sets bit atomically, and returns
|
||
|
* the old pte value.
|
||
|
* The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
|
||
|
* 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
|
||
|
*/
|
||
|
static inline unsigned long pte_update(pte_t *p, unsigned long clr,
|
||
|
unsigned long set)
|
||
|
{
|
||
|
unsigned long flags, old, tmp;
|
||
|
|
||
|
raw_local_irq_save(flags);
|
||
|
|
||
|
__asm__ __volatile__( "lw %0, %2, r0 \n"
|
||
|
"andn %1, %0, %3 \n"
|
||
|
"or %1, %1, %4 \n"
|
||
|
"sw %1, %2, r0 \n"
|
||
|
: "=&r" (old), "=&r" (tmp)
|
||
|
: "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
|
||
|
: "cc");
|
||
|
|
||
|
raw_local_irq_restore(flags);
|
||
|
|
||
|
return old;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* set_pte stores a linux PTE into the linux page table.
|
||
|
*/
|
||
|
static inline void set_pte(struct mm_struct *mm, unsigned long addr,
|
||
|
pte_t *ptep, pte_t pte)
|
||
|
{
|
||
|
*ptep = pte;
|
||
|
}
|
||
|
|
||
|
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||
|
pte_t *ptep, pte_t pte)
|
||
|
{
|
||
|
*ptep = pte;
|
||
|
}
|
||
|
|
||
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
||
|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
||
|
unsigned long address, pte_t *ptep)
|
||
|
{
|
||
|
return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
|
||
|
}
|
||
|
|
||
|
static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
|
||
|
unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
return (pte_update(ptep, \
|
||
|
(_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
|
||
|
}
|
||
|
|
||
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
||
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
|
||
|
unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
|
||
|
}
|
||
|
|
||
|
/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
|
||
|
unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
|
||
|
}*/
|
||
|
|
||
|
static inline void ptep_mkdirty(struct mm_struct *mm,
|
||
|
unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
pte_update(ptep, 0, _PAGE_DIRTY);
|
||
|
}
|
||
|
|
||
|
/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
|
||
|
|
||
|
/* Convert pmd entry to page */
|
||
|
/* our pmd entry is an effective address of pte table*/
|
||
|
/* returns effective address of the pmd entry*/
|
||
|
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
|
||
|
{
|
||
|
return ((unsigned long) (pmd_val(pmd) & PAGE_MASK));
|
||
|
}
|
||
|
|
||
|
/* returns pfn of the pmd entry*/
|
||
|
#define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT)
|
||
|
|
||
|
/* returns struct *page of the pmd entry*/
|
||
|
#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
|
||
|
|
||
|
/* Find an entry in the third-level page table.. */
|
||
|
|
||
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
||
|
|
||
|
/*
|
||
|
* Encode and decode a swap entry.
|
||
|
* Note that the bits we use in a PTE for representing a swap entry
|
||
|
* must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
|
||
|
* (if used). -- paulus
|
||
|
*/
|
||
|
#define __swp_type(entry) ((entry).val & 0x3f)
|
||
|
#define __swp_offset(entry) ((entry).val >> 6)
|
||
|
#define __swp_entry(type, offset) \
|
||
|
((swp_entry_t) { (type) | ((offset) << 6) })
|
||
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
|
||
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 })
|
||
|
|
||
|
extern unsigned long iopa(unsigned long addr);
|
||
|
|
||
|
/* Values for nocacheflag and cmode */
|
||
|
/* These are not used by the APUS kernel_map, but prevents
|
||
|
* compilation errors.
|
||
|
*/
|
||
|
#define IOMAP_FULL_CACHING 0
|
||
|
#define IOMAP_NOCACHE_SER 1
|
||
|
#define IOMAP_NOCACHE_NONSER 2
|
||
|
#define IOMAP_NO_COPYBACK 3
|
||
|
|
||
|
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
|
||
|
#define kern_addr_valid(addr) (1)
|
||
|
|
||
|
void do_page_fault(struct pt_regs *regs, unsigned long address,
|
||
|
unsigned long error_code);
|
||
|
|
||
|
void mapin_ram(void);
|
||
|
int map_page(unsigned long va, phys_addr_t pa, int flags);
|
||
|
|
||
|
extern int mem_init_done;
|
||
|
|
||
|
asmlinkage void __init mmu_init(void);
|
||
|
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
extern unsigned long ioremap_bot, ioremap_base;
|
||
|
|
||
|
void setup_memory(void);
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
|
||
|
#endif /* _ASM_MICROBLAZE_PGTABLE_H */
|