linux/linux-5.18.11/arch/arm64/kvm/vgic/vgic-mmio-v3.c

1106 lines
30 KiB
C
Raw Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* VGICv3 MMIO handling functions
*/
#include <linux/bitfield.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <kvm/iodev.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"
#include "vgic-mmio.h"
/* extract @num bytes at @offset bytes offset in data */
unsigned long extract_bytes(u64 data, unsigned int offset,
unsigned int num)
{
return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
}
/* allows updates of any half of a 64-bit register (or the whole thing) */
u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
unsigned long val)
{
int lower = (offset & 4) * 8;
int upper = lower + 8 * len - 1;
reg &= ~GENMASK_ULL(upper, lower);
val &= GENMASK_ULL(len * 8 - 1, 0);
return reg | ((u64)val << lower);
}
bool vgic_has_its(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
return false;
return dist->has_its;
}
bool vgic_supports_direct_msis(struct kvm *kvm)
{
return (kvm_vgic_global_state.has_gicv4_1 ||
(kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
}
/*
* The Revision field in the IIDR have the following meanings:
*
* Revision 2: Interrupt groups are guest-configurable and signaled using
* their configured groups.
*/
static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
u32 value = 0;
switch (addr & 0x0c) {
case GICD_CTLR:
if (vgic->enabled)
value |= GICD_CTLR_ENABLE_SS_G1;
value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
if (vgic->nassgireq)
value |= GICD_CTLR_nASSGIreq;
break;
case GICD_TYPER:
value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
value = (value >> 5) - 1;
if (vgic_has_its(vcpu->kvm)) {
value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
value |= GICD_TYPER_LPIS;
} else {
value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
}
break;
case GICD_TYPER2:
if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
value = GICD_TYPER2_nASSGIcap;
break;
case GICD_IIDR:
value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
break;
default:
return 0;
}
return value;
}
static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
switch (addr & 0x0c) {
case GICD_CTLR: {
bool was_enabled, is_hwsgi;
mutex_lock(&vcpu->kvm->lock);
was_enabled = dist->enabled;
is_hwsgi = dist->nassgireq;
dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
/* Not a GICv4.1? No HW SGIs */
if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
val &= ~GICD_CTLR_nASSGIreq;
/* Dist stays enabled? nASSGIreq is RO */
if (was_enabled && dist->enabled) {
val &= ~GICD_CTLR_nASSGIreq;
val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
}
/* Switching HW SGIs? */
dist->nassgireq = val & GICD_CTLR_nASSGIreq;
if (is_hwsgi != dist->nassgireq)
vgic_v4_configure_vsgis(vcpu->kvm);
if (kvm_vgic_global_state.has_gicv4_1 &&
was_enabled != dist->enabled)
kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
else if (!was_enabled && dist->enabled)
vgic_kick_vcpus(vcpu->kvm);
mutex_unlock(&vcpu->kvm->lock);
break;
}
case GICD_TYPER:
case GICD_TYPER2:
case GICD_IIDR:
/* This is at best for documentation purposes... */
return;
}
}
static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
switch (addr & 0x0c) {
case GICD_TYPER2:
case GICD_IIDR:
if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
return -EINVAL;
return 0;
case GICD_CTLR:
/* Not a GICv4.1? No HW SGIs */
if (!kvm_vgic_global_state.has_gicv4_1)
val &= ~GICD_CTLR_nASSGIreq;
dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
dist->nassgireq = val & GICD_CTLR_nASSGIreq;
return 0;
}
vgic_mmio_write_v3_misc(vcpu, addr, len, val);
return 0;
}
static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
int intid = VGIC_ADDR_TO_INTID(addr, 64);
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
unsigned long ret = 0;
if (!irq)
return 0;
/* The upper word is RAZ for us. */
if (!(addr & 4))
ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
vgic_put_irq(vcpu->kvm, irq);
return ret;
}
static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
int intid = VGIC_ADDR_TO_INTID(addr, 64);
struct vgic_irq *irq;
unsigned long flags;
/* The upper word is WI for us since we don't implement Aff3. */
if (addr & 4)
return;
irq = vgic_get_irq(vcpu->kvm, NULL, intid);
if (!irq)
return;
raw_spin_lock_irqsave(&irq->irq_lock, flags);
/* We only care about and preserve Aff0, Aff1 and Aff2. */
irq->mpidr = val & GENMASK(23, 0);
irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
}
static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
bool was_enabled = vgic_cpu->lpis_enabled;
if (!vgic_has_its(vcpu->kvm))
return;
vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
if (was_enabled && !vgic_cpu->lpis_enabled) {
vgic_flush_pending_lpis(vcpu);
vgic_its_invalidate_cache(vcpu->kvm);
}
if (!was_enabled && vgic_cpu->lpis_enabled)
vgic_enable_lpis(vcpu);
}
static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
{
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
if (!rdreg)
return false;
if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
return false;
} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
struct list_head *rd_regions = &vgic->rd_regions;
gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
/*
* the rdist is the last one of the redist region,
* check whether there is no other contiguous rdist region
*/
list_for_each_entry(iter, rd_regions, list) {
if (iter->base == end && iter->free_index > 0)
return false;
}
}
return true;
}
static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
int target_vcpu_id = vcpu->vcpu_id;
u64 value;
value = (u64)(mpidr & GENMASK(23, 0)) << 32;
value |= ((target_vcpu_id & 0xffff) << 8);
if (vgic_has_its(vcpu->kvm))
value |= GICR_TYPER_PLPIS;
if (vgic_mmio_vcpu_rdist_is_last(vcpu))
value |= GICR_TYPER_LAST;
return extract_bytes(value, addr & 7, len);
}
static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
}
static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
switch (addr & 0xffff) {
case GICD_PIDR2:
/* report a GICv3 compliant implementation */
return 0x3b;
}
return 0;
}
static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
u32 value = 0;
int i;
/*
* pending state of interrupt is latched in pending_latch variable.
* Userspace will save and restore pending state and line_level
* separately.
* Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
* for handling of ISPENDR and ICPENDR.
*/
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
bool state = irq->pending_latch;
if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
int err;
err = irq_get_irqchip_state(irq->host_irq,
IRQCHIP_STATE_PENDING,
&state);
WARN_ON(err);
}
if (state)
value |= (1U << i);
vgic_put_irq(vcpu->kvm, irq);
}
return value;
}
static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (test_bit(i, &val)) {
/*
* pending_latch is set irrespective of irq type
* (level or edge) to avoid dependency that VM should
* restore irq config before pending info.
*/
irq->pending_latch = true;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
} else {
irq->pending_latch = false;
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
}
vgic_put_irq(vcpu->kvm, irq);
}
return 0;
}
/* We want to avoid outer shareable. */
u64 vgic_sanitise_shareability(u64 field)
{
switch (field) {
case GIC_BASER_OuterShareable:
return GIC_BASER_InnerShareable;
default:
return field;
}
}
/* Avoid any inner non-cacheable mapping. */
u64 vgic_sanitise_inner_cacheability(u64 field)
{
switch (field) {
case GIC_BASER_CACHE_nCnB:
case GIC_BASER_CACHE_nC:
return GIC_BASER_CACHE_RaWb;
default:
return field;
}
}
/* Non-cacheable or same-as-inner are OK. */
u64 vgic_sanitise_outer_cacheability(u64 field)
{
switch (field) {
case GIC_BASER_CACHE_SameAsInner:
case GIC_BASER_CACHE_nC:
return field;
default:
return GIC_BASER_CACHE_SameAsInner;
}
}
u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
u64 (*sanitise_fn)(u64))
{
u64 field = (reg & field_mask) >> field_shift;
field = sanitise_fn(field) << field_shift;
return (reg & ~field_mask) | field;
}
#define PROPBASER_RES0_MASK \
(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
#define PENDBASER_RES0_MASK \
(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
static u64 vgic_sanitise_pendbaser(u64 reg)
{
reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
GICR_PENDBASER_SHAREABILITY_SHIFT,
vgic_sanitise_shareability);
reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
vgic_sanitise_inner_cacheability);
reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
vgic_sanitise_outer_cacheability);
reg &= ~PENDBASER_RES0_MASK;
return reg;
}
static u64 vgic_sanitise_propbaser(u64 reg)
{
reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
GICR_PROPBASER_SHAREABILITY_SHIFT,
vgic_sanitise_shareability);
reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
vgic_sanitise_inner_cacheability);
reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
vgic_sanitise_outer_cacheability);
reg &= ~PROPBASER_RES0_MASK;
return reg;
}
static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return extract_bytes(dist->propbaser, addr & 7, len);
}
static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
u64 old_propbaser, propbaser;
/* Storing a value with LPIs already enabled is undefined */
if (vgic_cpu->lpis_enabled)
return;
do {
old_propbaser = READ_ONCE(dist->propbaser);
propbaser = old_propbaser;
propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
propbaser = vgic_sanitise_propbaser(propbaser);
} while (cmpxchg64(&dist->propbaser, old_propbaser,
propbaser) != old_propbaser);
}
static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
u64 value = vgic_cpu->pendbaser;
value &= ~GICR_PENDBASER_PTZ;
return extract_bytes(value, addr & 7, len);
}
static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
u64 old_pendbaser, pendbaser;
/* Storing a value with LPIs already enabled is undefined */
if (vgic_cpu->lpis_enabled)
return;
do {
old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
pendbaser = old_pendbaser;
pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
pendbaser = vgic_sanitise_pendbaser(pendbaser);
} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
pendbaser) != old_pendbaser);
}
/*
* The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
* redistributors, while SPIs are covered by registers in the distributor
* block. Trying to set private IRQs in this block gets ignored.
* We take some special care here to fix the calculation of the register
* offset.
*/
#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
{ \
.reg_offset = off, \
.bits_per_irq = bpi, \
.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
.access_flags = acc, \
.read = vgic_mmio_read_raz, \
.write = vgic_mmio_write_wi, \
}, { \
.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
.bits_per_irq = bpi, \
.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
.access_flags = acc, \
.read = rd, \
.write = wr, \
.uaccess_read = ur, \
.uaccess_write = uw, \
}
static const struct vgic_register_region vgic_v3_dist_registers[] = {
REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
NULL, vgic_mmio_uaccess_write_v3_misc,
16, VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
vgic_mmio_read_enable, vgic_mmio_write_senable,
NULL, vgic_uaccess_write_senable, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
vgic_mmio_read_enable, vgic_mmio_write_cenable,
NULL, vgic_uaccess_write_cenable, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
vgic_mmio_read_pending, vgic_mmio_write_spending,
vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
vgic_mmio_read_pending, vgic_mmio_write_cpending,
vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
vgic_mmio_read_active, vgic_mmio_write_sactive,
vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
vgic_mmio_read_active, vgic_mmio_write_cactive,
vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
1, VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
VGIC_ACCESS_32bit),
};
static const struct vgic_register_region vgic_v3_rd_registers[] = {
/* RD_base registers */
REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
NULL, vgic_mmio_uaccess_write_wi, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
VGIC_ACCESS_32bit),
/* SGI_base registers */
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
vgic_mmio_read_group, vgic_mmio_write_group, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
vgic_mmio_read_enable, vgic_mmio_write_senable,
NULL, vgic_uaccess_write_senable, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
vgic_mmio_read_enable, vgic_mmio_write_cenable,
NULL, vgic_uaccess_write_cenable, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
vgic_mmio_read_pending, vgic_mmio_write_spending,
vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
vgic_mmio_read_pending, vgic_mmio_write_cpending,
vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
vgic_mmio_read_active, vgic_mmio_write_sactive,
vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
vgic_mmio_read_active, vgic_mmio_write_cactive,
vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
vgic_mmio_read_config, vgic_mmio_write_config, 8,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
};
unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
{
dev->regions = vgic_v3_dist_registers;
dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
return SZ_64K;
}
/**
* vgic_register_redist_iodev - register a single redist iodev
* @vcpu: The VCPU to which the redistributor belongs
*
* Register a KVM iodev for this VCPU's redistributor using the address
* provided.
*
* Return 0 on success, -ERRNO otherwise.
*/
int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
struct vgic_dist *vgic = &kvm->arch.vgic;
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
struct vgic_redist_region *rdreg;
gpa_t rd_base;
int ret;
if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
return 0;
/*
* We may be creating VCPUs before having set the base address for the
* redistributor region, in which case we will come back to this
* function for all VCPUs when the base address is set. Just return
* without doing any work for now.
*/
rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
if (!rdreg)
return 0;
if (!vgic_v3_check_base(kvm))
return -EINVAL;
vgic_cpu->rdreg = rdreg;
vgic_cpu->rdreg_index = rdreg->free_index;
rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
rd_dev->base_addr = rd_base;
rd_dev->iodev_type = IODEV_REDIST;
rd_dev->regions = vgic_v3_rd_registers;
rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
rd_dev->redist_vcpu = vcpu;
mutex_lock(&kvm->slots_lock);
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
2 * SZ_64K, &rd_dev->dev);
mutex_unlock(&kvm->slots_lock);
if (ret)
return ret;
rdreg->free_index++;
return 0;
}
static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
{
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
}
static int vgic_register_all_redist_iodevs(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
unsigned long c;
int ret = 0;
kvm_for_each_vcpu(c, vcpu, kvm) {
ret = vgic_register_redist_iodev(vcpu);
if (ret)
break;
}
if (ret) {
/* The current c failed, so iterate over the previous ones. */
int i;
mutex_lock(&kvm->slots_lock);
for (i = 0; i < c; i++) {
vcpu = kvm_get_vcpu(kvm, i);
vgic_unregister_redist_iodev(vcpu);
}
mutex_unlock(&kvm->slots_lock);
}
return ret;
}
/**
* vgic_v3_alloc_redist_region - Allocate a new redistributor region
*
* Performs various checks before inserting the rdist region in the list.
* Those tests depend on whether the size of the rdist region is known
* (ie. count != 0). The list is sorted by rdist region index.
*
* @kvm: kvm handle
* @index: redist region index
* @base: base of the new rdist region
* @count: number of redistributors the region is made of (0 in the old style
* single region, whose size is induced from the number of vcpus)
*
* Return 0 on success, < 0 otherwise
*/
static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
gpa_t base, uint32_t count)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
struct list_head *rd_regions = &d->rd_regions;
int nr_vcpus = atomic_read(&kvm->online_vcpus);
size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
: nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
int ret;
/* cross the end of memory ? */
if (base + size < base)
return -EINVAL;
if (list_empty(rd_regions)) {
if (index != 0)
return -EINVAL;
} else {
rdreg = list_last_entry(rd_regions,
struct vgic_redist_region, list);
/* Don't mix single region and discrete redist regions */
if (!count && rdreg->count)
return -EINVAL;
if (!count)
return -EEXIST;
if (index != rdreg->index + 1)
return -EINVAL;
}
/*
* For legacy single-region redistributor regions (!count),
* check that the redistributor region does not overlap with the
* distributor's address space.
*/
if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
vgic_dist_overlap(kvm, base, size))
return -EINVAL;
/* collision with any other rdist region? */
if (vgic_v3_rdist_overlap(kvm, base, size))
return -EINVAL;
rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
if (!rdreg)
return -ENOMEM;
rdreg->base = VGIC_ADDR_UNDEF;
ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
if (ret)
goto free;
rdreg->base = base;
rdreg->count = count;
rdreg->free_index = 0;
rdreg->index = index;
list_add_tail(&rdreg->list, rd_regions);
return 0;
free:
kfree(rdreg);
return ret;
}
void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
{
list_del(&rdreg->list);
kfree(rdreg);
}
int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
{
int ret;
ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
if (ret)
return ret;
/*
* Register iodevs for each existing VCPU. Adding more VCPUs
* afterwards will register the iodevs when needed.
*/
ret = vgic_register_all_redist_iodevs(kvm);
if (ret) {
struct vgic_redist_region *rdreg;
rdreg = vgic_v3_rdist_region_from_index(kvm, index);
vgic_v3_free_redist_region(rdreg);
return ret;
}
return 0;
}
int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
{
const struct vgic_register_region *region;
struct vgic_io_device iodev;
struct vgic_reg_attr reg_attr;
struct kvm_vcpu *vcpu;
gpa_t addr;
int ret;
ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
if (ret)
return ret;
vcpu = reg_attr.vcpu;
addr = reg_attr.addr;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
iodev.regions = vgic_v3_dist_registers;
iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
iodev.base_addr = 0;
break;
case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
iodev.regions = vgic_v3_rd_registers;
iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
iodev.base_addr = 0;
break;
}
case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
u64 reg, id;
id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
}
default:
return -ENXIO;
}
/* We only support aligned 32-bit accesses. */
if (addr & 3)
return -ENXIO;
region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
if (!region)
return -ENXIO;
return 0;
}
/*
* Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
* generation register ICC_SGI1R_EL1) with a given VCPU.
* If the VCPU's MPIDR matches, return the level0 affinity, otherwise
* return -1.
*/
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
{
unsigned long affinity;
int level0;
/*
* Split the current VCPU's MPIDR into affinity level 0 and the
* rest as this is what we have to compare against.
*/
affinity = kvm_vcpu_get_mpidr_aff(vcpu);
level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
affinity &= ~MPIDR_LEVEL_MASK;
/* bail out if the upper three levels don't match */
if (sgi_aff != affinity)
return -1;
/* Is this VCPU's bit set in the mask ? */
if (!(sgi_cpu_mask & BIT(level0)))
return -1;
return level0;
}
/*
* The ICC_SGI* registers encode the affinity differently from the MPIDR,
* so provide a wrapper to use the existing defines to isolate a certain
* affinity level.
*/
#define SGI_AFFINITY_LEVEL(reg, level) \
((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
/**
* vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
* @vcpu: The VCPU requesting a SGI
* @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
* @allow_group1: Does the sysreg access allow generation of G1 SGIs
*
* With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
* This will trap in sys_regs.c and call this function.
* This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
* target processors as well as a bitmask of 16 Aff0 CPUs.
* If the interrupt routing mode bit is not set, we iterate over all VCPUs to
* check for matching ones. If this bit is set, we signal all, but not the
* calling VCPU.
*/
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu *c_vcpu;
u16 target_cpus;
u64 mpidr;
int sgi;
int vcpu_id = vcpu->vcpu_id;
bool broadcast;
unsigned long c, flags;
sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
mpidr = SGI_AFFINITY_LEVEL(reg, 3);
mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
/*
* We iterate over all VCPUs to find the MPIDRs matching the request.
* If we have handled one CPU, we clear its bit to detect early
* if we are already finished. This avoids iterating through all
* VCPUs when most of the times we just signal a single VCPU.
*/
kvm_for_each_vcpu(c, c_vcpu, kvm) {
struct vgic_irq *irq;
/* Exit early if we have dealt with all requested CPUs */
if (!broadcast && target_cpus == 0)
break;
/* Don't signal the calling VCPU */
if (broadcast && c == vcpu_id)
continue;
if (!broadcast) {
int level0;
level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
if (level0 == -1)
continue;
/* remove this matching VCPU from the mask */
target_cpus &= ~BIT(level0);
}
irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
/*
* An access targeting Group0 SGIs can only generate
* those, while an access targeting Group1 SGIs can
* generate interrupts of either group.
*/
if (!irq->group || allow_group1) {
if (!irq->hw) {
irq->pending_latch = true;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
} else {
/* HW SGI? Ask the GIC to inject it */
int err;
err = irq_set_irqchip_state(irq->host_irq,
IRQCHIP_STATE_PENDING,
true);
WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
}
} else {
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
}
vgic_put_irq(vcpu->kvm, irq);
}
}
int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
int offset, u32 *val)
{
struct vgic_io_device dev = {
.regions = vgic_v3_dist_registers,
.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
};
return vgic_uaccess(vcpu, &dev, is_write, offset, val);
}
int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
int offset, u32 *val)
{
struct vgic_io_device rd_dev = {
.regions = vgic_v3_rd_registers,
.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
};
return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
}
int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
u32 intid, u64 *val)
{
if (intid % 32)
return -EINVAL;
if (is_write)
vgic_write_irq_line_level_info(vcpu, intid, *val);
else
*val = vgic_read_irq_line_level_info(vcpu, intid);
return 0;
}