207 lines
5.9 KiB
C
207 lines
5.9 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
|
||
|
*/
|
||
|
|
||
|
#include <linux/cache.h>
|
||
|
#include <linux/crc32.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/libfdt.h>
|
||
|
#include <linux/mm_types.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/pgtable.h>
|
||
|
#include <linux/random.h>
|
||
|
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/fixmap.h>
|
||
|
#include <asm/kernel-pgtable.h>
|
||
|
#include <asm/memory.h>
|
||
|
#include <asm/mmu.h>
|
||
|
#include <asm/sections.h>
|
||
|
#include <asm/setup.h>
|
||
|
|
||
|
enum kaslr_status {
|
||
|
KASLR_ENABLED,
|
||
|
KASLR_DISABLED_CMDLINE,
|
||
|
KASLR_DISABLED_NO_SEED,
|
||
|
KASLR_DISABLED_FDT_REMAP,
|
||
|
};
|
||
|
|
||
|
static enum kaslr_status __initdata kaslr_status;
|
||
|
u64 __ro_after_init module_alloc_base;
|
||
|
u16 __initdata memstart_offset_seed;
|
||
|
|
||
|
static __init u64 get_kaslr_seed(void *fdt)
|
||
|
{
|
||
|
int node, len;
|
||
|
fdt64_t *prop;
|
||
|
u64 ret;
|
||
|
|
||
|
node = fdt_path_offset(fdt, "/chosen");
|
||
|
if (node < 0)
|
||
|
return 0;
|
||
|
|
||
|
prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
|
||
|
if (!prop || len != sizeof(u64))
|
||
|
return 0;
|
||
|
|
||
|
ret = fdt64_to_cpu(*prop);
|
||
|
*prop = 0;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
struct arm64_ftr_override kaslr_feature_override __initdata;
|
||
|
|
||
|
/*
|
||
|
* This routine will be executed with the kernel mapped at its default virtual
|
||
|
* address, and if it returns successfully, the kernel will be remapped, and
|
||
|
* start_kernel() will be executed from a randomized virtual offset. The
|
||
|
* relocation will result in all absolute references (e.g., static variables
|
||
|
* containing function pointers) to be reinitialized, and zero-initialized
|
||
|
* .bss variables will be reset to 0.
|
||
|
*/
|
||
|
u64 __init kaslr_early_init(void)
|
||
|
{
|
||
|
void *fdt;
|
||
|
u64 seed, offset, mask, module_range;
|
||
|
unsigned long raw;
|
||
|
|
||
|
/*
|
||
|
* Set a reasonable default for module_alloc_base in case
|
||
|
* we end up running with module randomization disabled.
|
||
|
*/
|
||
|
module_alloc_base = (u64)_etext - MODULES_VSIZE;
|
||
|
dcache_clean_inval_poc((unsigned long)&module_alloc_base,
|
||
|
(unsigned long)&module_alloc_base +
|
||
|
sizeof(module_alloc_base));
|
||
|
|
||
|
/*
|
||
|
* Try to map the FDT early. If this fails, we simply bail,
|
||
|
* and proceed with KASLR disabled. We will make another
|
||
|
* attempt at mapping the FDT in setup_machine()
|
||
|
*/
|
||
|
fdt = get_early_fdt_ptr();
|
||
|
if (!fdt) {
|
||
|
kaslr_status = KASLR_DISABLED_FDT_REMAP;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Retrieve (and wipe) the seed from the FDT
|
||
|
*/
|
||
|
seed = get_kaslr_seed(fdt);
|
||
|
|
||
|
/*
|
||
|
* Check if 'nokaslr' appears on the command line, and
|
||
|
* return 0 if that is the case.
|
||
|
*/
|
||
|
if (kaslr_feature_override.val & kaslr_feature_override.mask & 0xf) {
|
||
|
kaslr_status = KASLR_DISABLED_CMDLINE;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Mix in any entropy obtainable architecturally if enabled
|
||
|
* and supported.
|
||
|
*/
|
||
|
|
||
|
if (arch_get_random_seed_long_early(&raw))
|
||
|
seed ^= raw;
|
||
|
|
||
|
if (!seed) {
|
||
|
kaslr_status = KASLR_DISABLED_NO_SEED;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* OK, so we are proceeding with KASLR enabled. Calculate a suitable
|
||
|
* kernel image offset from the seed. Let's place the kernel in the
|
||
|
* middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
|
||
|
* the lower and upper quarters to avoid colliding with other
|
||
|
* allocations.
|
||
|
* Even if we could randomize at page granularity for 16k and 64k pages,
|
||
|
* let's always round to 2 MB so we don't interfere with the ability to
|
||
|
* map using contiguous PTEs
|
||
|
*/
|
||
|
mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
|
||
|
offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
|
||
|
|
||
|
/* use the top 16 bits to randomize the linear region */
|
||
|
memstart_offset_seed = seed >> 48;
|
||
|
|
||
|
if (!IS_ENABLED(CONFIG_KASAN_VMALLOC) &&
|
||
|
(IS_ENABLED(CONFIG_KASAN_GENERIC) ||
|
||
|
IS_ENABLED(CONFIG_KASAN_SW_TAGS)))
|
||
|
/*
|
||
|
* KASAN without KASAN_VMALLOC does not expect the module region
|
||
|
* to intersect the vmalloc region, since shadow memory is
|
||
|
* allocated for each module at load time, whereas the vmalloc
|
||
|
* region is shadowed by KASAN zero pages. So keep modules
|
||
|
* out of the vmalloc region if KASAN is enabled without
|
||
|
* KASAN_VMALLOC, and put the kernel well within 4 GB of the
|
||
|
* module region.
|
||
|
*/
|
||
|
return offset % SZ_2G;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
|
||
|
/*
|
||
|
* Randomize the module region over a 2 GB window covering the
|
||
|
* kernel. This reduces the risk of modules leaking information
|
||
|
* about the address of the kernel itself, but results in
|
||
|
* branches between modules and the core kernel that are
|
||
|
* resolved via PLTs. (Branches between modules will be
|
||
|
* resolved normally.)
|
||
|
*/
|
||
|
module_range = SZ_2G - (u64)(_end - _stext);
|
||
|
module_alloc_base = max((u64)_end + offset - SZ_2G,
|
||
|
(u64)MODULES_VADDR);
|
||
|
} else {
|
||
|
/*
|
||
|
* Randomize the module region by setting module_alloc_base to
|
||
|
* a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
|
||
|
* _stext) . This guarantees that the resulting region still
|
||
|
* covers [_stext, _etext], and that all relative branches can
|
||
|
* be resolved without veneers unless this region is exhausted
|
||
|
* and we fall back to a larger 2GB window in module_alloc()
|
||
|
* when ARM64_MODULE_PLTS is enabled.
|
||
|
*/
|
||
|
module_range = MODULES_VSIZE - (u64)(_etext - _stext);
|
||
|
module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
|
||
|
}
|
||
|
|
||
|
/* use the lower 21 bits to randomize the base of the module region */
|
||
|
module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
|
||
|
module_alloc_base &= PAGE_MASK;
|
||
|
|
||
|
dcache_clean_inval_poc((unsigned long)&module_alloc_base,
|
||
|
(unsigned long)&module_alloc_base +
|
||
|
sizeof(module_alloc_base));
|
||
|
dcache_clean_inval_poc((unsigned long)&memstart_offset_seed,
|
||
|
(unsigned long)&memstart_offset_seed +
|
||
|
sizeof(memstart_offset_seed));
|
||
|
|
||
|
return offset;
|
||
|
}
|
||
|
|
||
|
static int __init kaslr_init(void)
|
||
|
{
|
||
|
switch (kaslr_status) {
|
||
|
case KASLR_ENABLED:
|
||
|
pr_info("KASLR enabled\n");
|
||
|
break;
|
||
|
case KASLR_DISABLED_CMDLINE:
|
||
|
pr_info("KASLR disabled on command line\n");
|
||
|
break;
|
||
|
case KASLR_DISABLED_NO_SEED:
|
||
|
pr_warn("KASLR disabled due to lack of seed\n");
|
||
|
break;
|
||
|
case KASLR_DISABLED_FDT_REMAP:
|
||
|
pr_warn("KASLR disabled due to FDT remapping failure\n");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
core_initcall(kaslr_init)
|