linux/linux-5.18.11/drivers/thunderbolt/lc.c

645 lines
14 KiB
C
Raw Permalink Normal View History

2024-03-22 18:12:32 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Thunderbolt link controller support
*
* Copyright (C) 2019, Intel Corporation
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#include "tb.h"
/**
* tb_lc_read_uuid() - Read switch UUID from link controller common register
* @sw: Switch whose UUID is read
* @uuid: UUID is placed here
*/
int tb_lc_read_uuid(struct tb_switch *sw, u32 *uuid)
{
if (!sw->cap_lc)
return -EINVAL;
return tb_sw_read(sw, uuid, TB_CFG_SWITCH, sw->cap_lc + TB_LC_FUSE, 4);
}
static int read_lc_desc(struct tb_switch *sw, u32 *desc)
{
if (!sw->cap_lc)
return -EINVAL;
return tb_sw_read(sw, desc, TB_CFG_SWITCH, sw->cap_lc + TB_LC_DESC, 1);
}
static int find_port_lc_cap(struct tb_port *port)
{
struct tb_switch *sw = port->sw;
int start, phys, ret, size;
u32 desc;
ret = read_lc_desc(sw, &desc);
if (ret)
return ret;
/* Start of port LC registers */
start = (desc & TB_LC_DESC_SIZE_MASK) >> TB_LC_DESC_SIZE_SHIFT;
size = (desc & TB_LC_DESC_PORT_SIZE_MASK) >> TB_LC_DESC_PORT_SIZE_SHIFT;
phys = tb_phy_port_from_link(port->port);
return sw->cap_lc + start + phys * size;
}
static int tb_lc_set_port_configured(struct tb_port *port, bool configured)
{
bool upstream = tb_is_upstream_port(port);
struct tb_switch *sw = port->sw;
u32 ctrl, lane;
int cap, ret;
if (sw->generation < 2)
return 0;
cap = find_port_lc_cap(port);
if (cap < 0)
return cap;
ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1);
if (ret)
return ret;
/* Resolve correct lane */
if (port->port % 2)
lane = TB_LC_SX_CTRL_L1C;
else
lane = TB_LC_SX_CTRL_L2C;
if (configured) {
ctrl |= lane;
if (upstream)
ctrl |= TB_LC_SX_CTRL_UPSTREAM;
} else {
ctrl &= ~lane;
if (upstream)
ctrl &= ~TB_LC_SX_CTRL_UPSTREAM;
}
return tb_sw_write(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1);
}
/**
* tb_lc_configure_port() - Let LC know about configured port
* @port: Port that is set as configured
*
* Sets the port configured for power management purposes.
*/
int tb_lc_configure_port(struct tb_port *port)
{
return tb_lc_set_port_configured(port, true);
}
/**
* tb_lc_unconfigure_port() - Let LC know about unconfigured port
* @port: Port that is set as configured
*
* Sets the port unconfigured for power management purposes.
*/
void tb_lc_unconfigure_port(struct tb_port *port)
{
tb_lc_set_port_configured(port, false);
}
static int tb_lc_set_xdomain_configured(struct tb_port *port, bool configure)
{
struct tb_switch *sw = port->sw;
u32 ctrl, lane;
int cap, ret;
if (sw->generation < 2)
return 0;
cap = find_port_lc_cap(port);
if (cap < 0)
return cap;
ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1);
if (ret)
return ret;
/* Resolve correct lane */
if (port->port % 2)
lane = TB_LC_SX_CTRL_L1D;
else
lane = TB_LC_SX_CTRL_L2D;
if (configure)
ctrl |= lane;
else
ctrl &= ~lane;
return tb_sw_write(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1);
}
/**
* tb_lc_configure_xdomain() - Inform LC that the link is XDomain
* @port: Switch downstream port connected to another host
*
* Sets the lane configured for XDomain accordingly so that the LC knows
* about this. Returns %0 in success and negative errno in failure.
*/
int tb_lc_configure_xdomain(struct tb_port *port)
{
return tb_lc_set_xdomain_configured(port, true);
}
/**
* tb_lc_unconfigure_xdomain() - Unconfigure XDomain from port
* @port: Switch downstream port that was connected to another host
*
* Unsets the lane XDomain configuration.
*/
void tb_lc_unconfigure_xdomain(struct tb_port *port)
{
tb_lc_set_xdomain_configured(port, false);
}
/**
* tb_lc_start_lane_initialization() - Start lane initialization
* @port: Device router lane 0 adapter
*
* Starts lane initialization for @port after the router resumed from
* sleep. Should be called for those downstream lane adapters that were
* not connected (tb_lc_configure_port() was not called) before sleep.
*
* Returns %0 in success and negative errno in case of failure.
*/
int tb_lc_start_lane_initialization(struct tb_port *port)
{
struct tb_switch *sw = port->sw;
int ret, cap;
u32 ctrl;
if (!tb_route(sw))
return 0;
if (sw->generation < 2)
return 0;
cap = find_port_lc_cap(port);
if (cap < 0)
return cap;
ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1);
if (ret)
return ret;
ctrl |= TB_LC_SX_CTRL_SLI;
return tb_sw_write(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1);
}
/**
* tb_lc_is_clx_supported() - Check whether CLx is supported by the lane adapter
* @port: Lane adapter
*
* TB_LC_LINK_ATTR_CPS bit reflects if the link supports CLx including
* active cables (if connected on the link).
*/
bool tb_lc_is_clx_supported(struct tb_port *port)
{
struct tb_switch *sw = port->sw;
int cap, ret;
u32 val;
cap = find_port_lc_cap(port);
if (cap < 0)
return false;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_LINK_ATTR, 1);
if (ret)
return false;
return !!(val & TB_LC_LINK_ATTR_CPS);
}
/**
* tb_lc_is_usb_plugged() - Is there USB device connected to port
* @port: Device router lane 0 adapter
*
* Returns true if the @port has USB type-C device connected.
*/
bool tb_lc_is_usb_plugged(struct tb_port *port)
{
struct tb_switch *sw = port->sw;
int cap, ret;
u32 val;
if (sw->generation != 3)
return false;
cap = find_port_lc_cap(port);
if (cap < 0)
return false;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_CS_42, 1);
if (ret)
return false;
return !!(val & TB_LC_CS_42_USB_PLUGGED);
}
/**
* tb_lc_is_xhci_connected() - Is the internal xHCI connected
* @port: Device router lane 0 adapter
*
* Returns true if the internal xHCI has been connected to @port.
*/
bool tb_lc_is_xhci_connected(struct tb_port *port)
{
struct tb_switch *sw = port->sw;
int cap, ret;
u32 val;
if (sw->generation != 3)
return false;
cap = find_port_lc_cap(port);
if (cap < 0)
return false;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_LINK_REQ, 1);
if (ret)
return false;
return !!(val & TB_LC_LINK_REQ_XHCI_CONNECT);
}
static int __tb_lc_xhci_connect(struct tb_port *port, bool connect)
{
struct tb_switch *sw = port->sw;
int cap, ret;
u32 val;
if (sw->generation != 3)
return -EINVAL;
cap = find_port_lc_cap(port);
if (cap < 0)
return cap;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_LINK_REQ, 1);
if (ret)
return ret;
if (connect)
val |= TB_LC_LINK_REQ_XHCI_CONNECT;
else
val &= ~TB_LC_LINK_REQ_XHCI_CONNECT;
return tb_sw_write(sw, &val, TB_CFG_SWITCH, cap + TB_LC_LINK_REQ, 1);
}
/**
* tb_lc_xhci_connect() - Connect internal xHCI
* @port: Device router lane 0 adapter
*
* Tells LC to connect the internal xHCI to @port. Returns %0 on success
* and negative errno in case of failure. Can be called for Thunderbolt 3
* routers only.
*/
int tb_lc_xhci_connect(struct tb_port *port)
{
int ret;
ret = __tb_lc_xhci_connect(port, true);
if (ret)
return ret;
tb_port_dbg(port, "xHCI connected\n");
return 0;
}
/**
* tb_lc_xhci_disconnect() - Disconnect internal xHCI
* @port: Device router lane 0 adapter
*
* Tells LC to disconnect the internal xHCI from @port. Can be called
* for Thunderbolt 3 routers only.
*/
void tb_lc_xhci_disconnect(struct tb_port *port)
{
__tb_lc_xhci_connect(port, false);
tb_port_dbg(port, "xHCI disconnected\n");
}
static int tb_lc_set_wake_one(struct tb_switch *sw, unsigned int offset,
unsigned int flags)
{
u32 ctrl;
int ret;
/*
* Enable wake on PCIe and USB4 (wake coming from another
* router).
*/
ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH,
offset + TB_LC_SX_CTRL, 1);
if (ret)
return ret;
ctrl &= ~(TB_LC_SX_CTRL_WOC | TB_LC_SX_CTRL_WOD | TB_LC_SX_CTRL_WODPC |
TB_LC_SX_CTRL_WODPD | TB_LC_SX_CTRL_WOP | TB_LC_SX_CTRL_WOU4);
if (flags & TB_WAKE_ON_CONNECT)
ctrl |= TB_LC_SX_CTRL_WOC | TB_LC_SX_CTRL_WOD;
if (flags & TB_WAKE_ON_USB4)
ctrl |= TB_LC_SX_CTRL_WOU4;
if (flags & TB_WAKE_ON_PCIE)
ctrl |= TB_LC_SX_CTRL_WOP;
if (flags & TB_WAKE_ON_DP)
ctrl |= TB_LC_SX_CTRL_WODPC | TB_LC_SX_CTRL_WODPD;
return tb_sw_write(sw, &ctrl, TB_CFG_SWITCH, offset + TB_LC_SX_CTRL, 1);
}
/**
* tb_lc_set_wake() - Enable/disable wake
* @sw: Switch whose wakes to configure
* @flags: Wakeup flags (%0 to disable)
*
* For each LC sets wake bits accordingly.
*/
int tb_lc_set_wake(struct tb_switch *sw, unsigned int flags)
{
int start, size, nlc, ret, i;
u32 desc;
if (sw->generation < 2)
return 0;
if (!tb_route(sw))
return 0;
ret = read_lc_desc(sw, &desc);
if (ret)
return ret;
/* Figure out number of link controllers */
nlc = desc & TB_LC_DESC_NLC_MASK;
start = (desc & TB_LC_DESC_SIZE_MASK) >> TB_LC_DESC_SIZE_SHIFT;
size = (desc & TB_LC_DESC_PORT_SIZE_MASK) >> TB_LC_DESC_PORT_SIZE_SHIFT;
/* For each link controller set sleep bit */
for (i = 0; i < nlc; i++) {
unsigned int offset = sw->cap_lc + start + i * size;
ret = tb_lc_set_wake_one(sw, offset, flags);
if (ret)
return ret;
}
return 0;
}
/**
* tb_lc_set_sleep() - Inform LC that the switch is going to sleep
* @sw: Switch to set sleep
*
* Let the switch link controllers know that the switch is going to
* sleep.
*/
int tb_lc_set_sleep(struct tb_switch *sw)
{
int start, size, nlc, ret, i;
u32 desc;
if (sw->generation < 2)
return 0;
ret = read_lc_desc(sw, &desc);
if (ret)
return ret;
/* Figure out number of link controllers */
nlc = desc & TB_LC_DESC_NLC_MASK;
start = (desc & TB_LC_DESC_SIZE_MASK) >> TB_LC_DESC_SIZE_SHIFT;
size = (desc & TB_LC_DESC_PORT_SIZE_MASK) >> TB_LC_DESC_PORT_SIZE_SHIFT;
/* For each link controller set sleep bit */
for (i = 0; i < nlc; i++) {
unsigned int offset = sw->cap_lc + start + i * size;
u32 ctrl;
ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH,
offset + TB_LC_SX_CTRL, 1);
if (ret)
return ret;
ctrl |= TB_LC_SX_CTRL_SLP;
ret = tb_sw_write(sw, &ctrl, TB_CFG_SWITCH,
offset + TB_LC_SX_CTRL, 1);
if (ret)
return ret;
}
return 0;
}
/**
* tb_lc_lane_bonding_possible() - Is lane bonding possible towards switch
* @sw: Switch to check
*
* Checks whether conditions for lane bonding from parent to @sw are
* possible.
*/
bool tb_lc_lane_bonding_possible(struct tb_switch *sw)
{
struct tb_port *up;
int cap, ret;
u32 val;
if (sw->generation < 2)
return false;
up = tb_upstream_port(sw);
cap = find_port_lc_cap(up);
if (cap < 0)
return false;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_PORT_ATTR, 1);
if (ret)
return false;
return !!(val & TB_LC_PORT_ATTR_BE);
}
static int tb_lc_dp_sink_from_port(const struct tb_switch *sw,
struct tb_port *in)
{
struct tb_port *port;
/* The first DP IN port is sink 0 and second is sink 1 */
tb_switch_for_each_port(sw, port) {
if (tb_port_is_dpin(port))
return in != port;
}
return -EINVAL;
}
static int tb_lc_dp_sink_available(struct tb_switch *sw, int sink)
{
u32 val, alloc;
int ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
sw->cap_lc + TB_LC_SNK_ALLOCATION, 1);
if (ret)
return ret;
/*
* Sink is available for CM/SW to use if the allocation valie is
* either 0 or 1.
*/
if (!sink) {
alloc = val & TB_LC_SNK_ALLOCATION_SNK0_MASK;
if (!alloc || alloc == TB_LC_SNK_ALLOCATION_SNK0_CM)
return 0;
} else {
alloc = (val & TB_LC_SNK_ALLOCATION_SNK1_MASK) >>
TB_LC_SNK_ALLOCATION_SNK1_SHIFT;
if (!alloc || alloc == TB_LC_SNK_ALLOCATION_SNK1_CM)
return 0;
}
return -EBUSY;
}
/**
* tb_lc_dp_sink_query() - Is DP sink available for DP IN port
* @sw: Switch whose DP sink is queried
* @in: DP IN port to check
*
* Queries through LC SNK_ALLOCATION registers whether DP sink is available
* for the given DP IN port or not.
*/
bool tb_lc_dp_sink_query(struct tb_switch *sw, struct tb_port *in)
{
int sink;
/*
* For older generations sink is always available as there is no
* allocation mechanism.
*/
if (sw->generation < 3)
return true;
sink = tb_lc_dp_sink_from_port(sw, in);
if (sink < 0)
return false;
return !tb_lc_dp_sink_available(sw, sink);
}
/**
* tb_lc_dp_sink_alloc() - Allocate DP sink
* @sw: Switch whose DP sink is allocated
* @in: DP IN port the DP sink is allocated for
*
* Allocate DP sink for @in via LC SNK_ALLOCATION registers. If the
* resource is available and allocation is successful returns %0. In all
* other cases returs negative errno. In particular %-EBUSY is returned if
* the resource was not available.
*/
int tb_lc_dp_sink_alloc(struct tb_switch *sw, struct tb_port *in)
{
int ret, sink;
u32 val;
if (sw->generation < 3)
return 0;
sink = tb_lc_dp_sink_from_port(sw, in);
if (sink < 0)
return sink;
ret = tb_lc_dp_sink_available(sw, sink);
if (ret)
return ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
sw->cap_lc + TB_LC_SNK_ALLOCATION, 1);
if (ret)
return ret;
if (!sink) {
val &= ~TB_LC_SNK_ALLOCATION_SNK0_MASK;
val |= TB_LC_SNK_ALLOCATION_SNK0_CM;
} else {
val &= ~TB_LC_SNK_ALLOCATION_SNK1_MASK;
val |= TB_LC_SNK_ALLOCATION_SNK1_CM <<
TB_LC_SNK_ALLOCATION_SNK1_SHIFT;
}
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH,
sw->cap_lc + TB_LC_SNK_ALLOCATION, 1);
if (ret)
return ret;
tb_port_dbg(in, "sink %d allocated\n", sink);
return 0;
}
/**
* tb_lc_dp_sink_dealloc() - De-allocate DP sink
* @sw: Switch whose DP sink is de-allocated
* @in: DP IN port whose DP sink is de-allocated
*
* De-allocate DP sink from @in using LC SNK_ALLOCATION registers.
*/
int tb_lc_dp_sink_dealloc(struct tb_switch *sw, struct tb_port *in)
{
int ret, sink;
u32 val;
if (sw->generation < 3)
return 0;
sink = tb_lc_dp_sink_from_port(sw, in);
if (sink < 0)
return sink;
/* Needs to be owned by CM/SW */
ret = tb_lc_dp_sink_available(sw, sink);
if (ret)
return ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
sw->cap_lc + TB_LC_SNK_ALLOCATION, 1);
if (ret)
return ret;
if (!sink)
val &= ~TB_LC_SNK_ALLOCATION_SNK0_MASK;
else
val &= ~TB_LC_SNK_ALLOCATION_SNK1_MASK;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH,
sw->cap_lc + TB_LC_SNK_ALLOCATION, 1);
if (ret)
return ret;
tb_port_dbg(in, "sink %d de-allocated\n", sink);
return 0;
}
/**
* tb_lc_force_power() - Forces LC to be powered on
* @sw: Thunderbolt switch
*
* This is useful to let authentication cycle pass even without
* a Thunderbolt link present.
*/
int tb_lc_force_power(struct tb_switch *sw)
{
u32 in = 0xffff;
return tb_sw_write(sw, &in, TB_CFG_SWITCH, TB_LC_POWER, 1);
}