438 lines
12 KiB
C
438 lines
12 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
|
||
|
*/
|
||
|
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/cpufreq.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/of_platform.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include <asm/smp_plat.h>
|
||
|
|
||
|
#include <soc/tegra/bpmp.h>
|
||
|
#include <soc/tegra/bpmp-abi.h>
|
||
|
|
||
|
#define KHZ 1000
|
||
|
#define REF_CLK_MHZ 408 /* 408 MHz */
|
||
|
#define US_DELAY 500
|
||
|
#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ)
|
||
|
#define MAX_CNT ~0U
|
||
|
|
||
|
/* cpufreq transisition latency */
|
||
|
#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
|
||
|
|
||
|
enum cluster {
|
||
|
CLUSTER0,
|
||
|
CLUSTER1,
|
||
|
CLUSTER2,
|
||
|
CLUSTER3,
|
||
|
MAX_CLUSTERS,
|
||
|
};
|
||
|
|
||
|
struct tegra194_cpufreq_data {
|
||
|
void __iomem *regs;
|
||
|
size_t num_clusters;
|
||
|
struct cpufreq_frequency_table **tables;
|
||
|
};
|
||
|
|
||
|
struct tegra_cpu_ctr {
|
||
|
u32 cpu;
|
||
|
u32 coreclk_cnt, last_coreclk_cnt;
|
||
|
u32 refclk_cnt, last_refclk_cnt;
|
||
|
};
|
||
|
|
||
|
struct read_counters_work {
|
||
|
struct work_struct work;
|
||
|
struct tegra_cpu_ctr c;
|
||
|
};
|
||
|
|
||
|
static struct workqueue_struct *read_counters_wq;
|
||
|
|
||
|
static void get_cpu_cluster(void *cluster)
|
||
|
{
|
||
|
u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
|
||
|
|
||
|
*((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
|
||
|
* The register provides frequency feedback information to
|
||
|
* determine the average actual frequency a core has run at over
|
||
|
* a period of time.
|
||
|
* [31:0] PLLP counter: Counts at fixed frequency (408 MHz)
|
||
|
* [63:32] Core clock counter: counts on every core clock cycle
|
||
|
* where the core is architecturally clocking
|
||
|
*/
|
||
|
static u64 read_freq_feedback(void)
|
||
|
{
|
||
|
u64 val = 0;
|
||
|
|
||
|
asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
|
||
|
*nltbl, u16 ndiv)
|
||
|
{
|
||
|
return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
|
||
|
}
|
||
|
|
||
|
static void tegra_read_counters(struct work_struct *work)
|
||
|
{
|
||
|
struct read_counters_work *read_counters_work;
|
||
|
struct tegra_cpu_ctr *c;
|
||
|
u64 val;
|
||
|
|
||
|
/*
|
||
|
* ref_clk_counter(32 bit counter) runs on constant clk,
|
||
|
* pll_p(408MHz).
|
||
|
* It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
|
||
|
* = 10526880 usec = 10.527 sec to overflow
|
||
|
*
|
||
|
* Like wise core_clk_counter(32 bit counter) runs on core clock.
|
||
|
* It's synchronized to crab_clk (cpu_crab_clk) which runs at
|
||
|
* freq of cluster. Assuming max cluster clock ~2000MHz,
|
||
|
* It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
|
||
|
* = ~2.147 sec to overflow
|
||
|
*/
|
||
|
read_counters_work = container_of(work, struct read_counters_work,
|
||
|
work);
|
||
|
c = &read_counters_work->c;
|
||
|
|
||
|
val = read_freq_feedback();
|
||
|
c->last_refclk_cnt = lower_32_bits(val);
|
||
|
c->last_coreclk_cnt = upper_32_bits(val);
|
||
|
udelay(US_DELAY);
|
||
|
val = read_freq_feedback();
|
||
|
c->refclk_cnt = lower_32_bits(val);
|
||
|
c->coreclk_cnt = upper_32_bits(val);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return instantaneous cpu speed
|
||
|
* Instantaneous freq is calculated as -
|
||
|
* -Takes sample on every query of getting the freq.
|
||
|
* - Read core and ref clock counters;
|
||
|
* - Delay for X us
|
||
|
* - Read above cycle counters again
|
||
|
* - Calculates freq by subtracting current and previous counters
|
||
|
* divided by the delay time or eqv. of ref_clk_counter in delta time
|
||
|
* - Return Kcycles/second, freq in KHz
|
||
|
*
|
||
|
* delta time period = x sec
|
||
|
* = delta ref_clk_counter / (408 * 10^6) sec
|
||
|
* freq in Hz = cycles/sec
|
||
|
* = (delta cycles / x sec
|
||
|
* = (delta cycles * 408 * 10^6) / delta ref_clk_counter
|
||
|
* in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter
|
||
|
*
|
||
|
* @cpu - logical cpu whose freq to be updated
|
||
|
* Returns freq in KHz on success, 0 if cpu is offline
|
||
|
*/
|
||
|
static unsigned int tegra194_calculate_speed(u32 cpu)
|
||
|
{
|
||
|
struct read_counters_work read_counters_work;
|
||
|
struct tegra_cpu_ctr c;
|
||
|
u32 delta_refcnt;
|
||
|
u32 delta_ccnt;
|
||
|
u32 rate_mhz;
|
||
|
|
||
|
/*
|
||
|
* udelay() is required to reconstruct cpu frequency over an
|
||
|
* observation window. Using workqueue to call udelay() with
|
||
|
* interrupts enabled.
|
||
|
*/
|
||
|
read_counters_work.c.cpu = cpu;
|
||
|
INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
|
||
|
queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
|
||
|
flush_work(&read_counters_work.work);
|
||
|
c = read_counters_work.c;
|
||
|
|
||
|
if (c.coreclk_cnt < c.last_coreclk_cnt)
|
||
|
delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
|
||
|
else
|
||
|
delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
|
||
|
if (!delta_ccnt)
|
||
|
return 0;
|
||
|
|
||
|
/* ref clock is 32 bits */
|
||
|
if (c.refclk_cnt < c.last_refclk_cnt)
|
||
|
delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
|
||
|
else
|
||
|
delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
|
||
|
if (!delta_refcnt) {
|
||
|
pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
|
||
|
return 0;
|
||
|
}
|
||
|
rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
|
||
|
|
||
|
return (rate_mhz * KHZ); /* in KHz */
|
||
|
}
|
||
|
|
||
|
static void get_cpu_ndiv(void *ndiv)
|
||
|
{
|
||
|
u64 ndiv_val;
|
||
|
|
||
|
asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : );
|
||
|
|
||
|
*(u64 *)ndiv = ndiv_val;
|
||
|
}
|
||
|
|
||
|
static void set_cpu_ndiv(void *data)
|
||
|
{
|
||
|
struct cpufreq_frequency_table *tbl = data;
|
||
|
u64 ndiv_val = (u64)tbl->driver_data;
|
||
|
|
||
|
asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
|
||
|
}
|
||
|
|
||
|
static unsigned int tegra194_get_speed(u32 cpu)
|
||
|
{
|
||
|
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
|
||
|
struct cpufreq_frequency_table *pos;
|
||
|
unsigned int rate;
|
||
|
u64 ndiv;
|
||
|
int ret;
|
||
|
u32 cl;
|
||
|
|
||
|
smp_call_function_single(cpu, get_cpu_cluster, &cl, true);
|
||
|
|
||
|
/* reconstruct actual cpu freq using counters */
|
||
|
rate = tegra194_calculate_speed(cpu);
|
||
|
|
||
|
/* get last written ndiv value */
|
||
|
ret = smp_call_function_single(cpu, get_cpu_ndiv, &ndiv, true);
|
||
|
if (WARN_ON_ONCE(ret))
|
||
|
return rate;
|
||
|
|
||
|
/*
|
||
|
* If the reconstructed frequency has acceptable delta from
|
||
|
* the last written value, then return freq corresponding
|
||
|
* to the last written ndiv value from freq_table. This is
|
||
|
* done to return consistent value.
|
||
|
*/
|
||
|
cpufreq_for_each_valid_entry(pos, data->tables[cl]) {
|
||
|
if (pos->driver_data != ndiv)
|
||
|
continue;
|
||
|
|
||
|
if (abs(pos->frequency - rate) > 115200) {
|
||
|
pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n",
|
||
|
cpu, rate, pos->frequency, ndiv);
|
||
|
} else {
|
||
|
rate = pos->frequency;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
return rate;
|
||
|
}
|
||
|
|
||
|
static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
|
||
|
{
|
||
|
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
|
||
|
u32 cpu;
|
||
|
u32 cl;
|
||
|
|
||
|
smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);
|
||
|
|
||
|
if (cl >= data->num_clusters || !data->tables[cl])
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* set same policy for all cpus in a cluster */
|
||
|
for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
|
||
|
cpumask_set_cpu(cpu, policy->cpus);
|
||
|
|
||
|
policy->freq_table = data->tables[cl];
|
||
|
policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
|
||
|
unsigned int index)
|
||
|
{
|
||
|
struct cpufreq_frequency_table *tbl = policy->freq_table + index;
|
||
|
|
||
|
/*
|
||
|
* Each core writes frequency in per core register. Then both cores
|
||
|
* in a cluster run at same frequency which is the maximum frequency
|
||
|
* request out of the values requested by both cores in that cluster.
|
||
|
*/
|
||
|
on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct cpufreq_driver tegra194_cpufreq_driver = {
|
||
|
.name = "tegra194",
|
||
|
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
||
|
.verify = cpufreq_generic_frequency_table_verify,
|
||
|
.target_index = tegra194_cpufreq_set_target,
|
||
|
.get = tegra194_get_speed,
|
||
|
.init = tegra194_cpufreq_init,
|
||
|
.attr = cpufreq_generic_attr,
|
||
|
};
|
||
|
|
||
|
static void tegra194_cpufreq_free_resources(void)
|
||
|
{
|
||
|
destroy_workqueue(read_counters_wq);
|
||
|
}
|
||
|
|
||
|
static struct cpufreq_frequency_table *
|
||
|
init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
|
||
|
unsigned int cluster_id)
|
||
|
{
|
||
|
struct cpufreq_frequency_table *freq_table;
|
||
|
struct mrq_cpu_ndiv_limits_response resp;
|
||
|
unsigned int num_freqs, ndiv, delta_ndiv;
|
||
|
struct mrq_cpu_ndiv_limits_request req;
|
||
|
struct tegra_bpmp_message msg;
|
||
|
u16 freq_table_step_size;
|
||
|
int err, index;
|
||
|
|
||
|
memset(&req, 0, sizeof(req));
|
||
|
req.cluster_id = cluster_id;
|
||
|
|
||
|
memset(&msg, 0, sizeof(msg));
|
||
|
msg.mrq = MRQ_CPU_NDIV_LIMITS;
|
||
|
msg.tx.data = &req;
|
||
|
msg.tx.size = sizeof(req);
|
||
|
msg.rx.data = &resp;
|
||
|
msg.rx.size = sizeof(resp);
|
||
|
|
||
|
err = tegra_bpmp_transfer(bpmp, &msg);
|
||
|
if (err)
|
||
|
return ERR_PTR(err);
|
||
|
if (msg.rx.ret == -BPMP_EINVAL) {
|
||
|
/* Cluster not available */
|
||
|
return NULL;
|
||
|
}
|
||
|
if (msg.rx.ret)
|
||
|
return ERR_PTR(-EINVAL);
|
||
|
|
||
|
/*
|
||
|
* Make sure frequency table step is a multiple of mdiv to match
|
||
|
* vhint table granularity.
|
||
|
*/
|
||
|
freq_table_step_size = resp.mdiv *
|
||
|
DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
|
||
|
|
||
|
dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
|
||
|
cluster_id, freq_table_step_size);
|
||
|
|
||
|
delta_ndiv = resp.ndiv_max - resp.ndiv_min;
|
||
|
|
||
|
if (unlikely(delta_ndiv == 0)) {
|
||
|
num_freqs = 1;
|
||
|
} else {
|
||
|
/* We store both ndiv_min and ndiv_max hence the +1 */
|
||
|
num_freqs = delta_ndiv / freq_table_step_size + 1;
|
||
|
}
|
||
|
|
||
|
num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
|
||
|
|
||
|
freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
|
||
|
sizeof(*freq_table), GFP_KERNEL);
|
||
|
if (!freq_table)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
for (index = 0, ndiv = resp.ndiv_min;
|
||
|
ndiv < resp.ndiv_max;
|
||
|
index++, ndiv += freq_table_step_size) {
|
||
|
freq_table[index].driver_data = ndiv;
|
||
|
freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
|
||
|
}
|
||
|
|
||
|
freq_table[index].driver_data = resp.ndiv_max;
|
||
|
freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
|
||
|
freq_table[index].frequency = CPUFREQ_TABLE_END;
|
||
|
|
||
|
return freq_table;
|
||
|
}
|
||
|
|
||
|
static int tegra194_cpufreq_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct tegra194_cpufreq_data *data;
|
||
|
struct tegra_bpmp *bpmp;
|
||
|
int err, i;
|
||
|
|
||
|
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
|
||
|
if (!data)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
data->num_clusters = MAX_CLUSTERS;
|
||
|
data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
|
||
|
sizeof(*data->tables), GFP_KERNEL);
|
||
|
if (!data->tables)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
platform_set_drvdata(pdev, data);
|
||
|
|
||
|
bpmp = tegra_bpmp_get(&pdev->dev);
|
||
|
if (IS_ERR(bpmp))
|
||
|
return PTR_ERR(bpmp);
|
||
|
|
||
|
read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
|
||
|
if (!read_counters_wq) {
|
||
|
dev_err(&pdev->dev, "fail to create_workqueue\n");
|
||
|
err = -EINVAL;
|
||
|
goto put_bpmp;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < data->num_clusters; i++) {
|
||
|
data->tables[i] = init_freq_table(pdev, bpmp, i);
|
||
|
if (IS_ERR(data->tables[i])) {
|
||
|
err = PTR_ERR(data->tables[i]);
|
||
|
goto err_free_res;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
tegra194_cpufreq_driver.driver_data = data;
|
||
|
|
||
|
err = cpufreq_register_driver(&tegra194_cpufreq_driver);
|
||
|
if (!err)
|
||
|
goto put_bpmp;
|
||
|
|
||
|
err_free_res:
|
||
|
tegra194_cpufreq_free_resources();
|
||
|
put_bpmp:
|
||
|
tegra_bpmp_put(bpmp);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static int tegra194_cpufreq_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
cpufreq_unregister_driver(&tegra194_cpufreq_driver);
|
||
|
tegra194_cpufreq_free_resources();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct of_device_id tegra194_cpufreq_of_match[] = {
|
||
|
{ .compatible = "nvidia,tegra194-ccplex", },
|
||
|
{ /* sentinel */ }
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
|
||
|
|
||
|
static struct platform_driver tegra194_ccplex_driver = {
|
||
|
.driver = {
|
||
|
.name = "tegra194-cpufreq",
|
||
|
.of_match_table = tegra194_cpufreq_of_match,
|
||
|
},
|
||
|
.probe = tegra194_cpufreq_probe,
|
||
|
.remove = tegra194_cpufreq_remove,
|
||
|
};
|
||
|
module_platform_driver(tegra194_ccplex_driver);
|
||
|
|
||
|
MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
|
||
|
MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
|
||
|
MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
|
||
|
MODULE_LICENSE("GPL v2");
|