linux/linux-5.18.11/arch/mips/kernel/smp-bmips.c

673 lines
16 KiB
C
Raw Permalink Normal View History

2024-03-22 18:12:32 +00:00
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
*
* SMP support for BMIPS
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/sched/hotplug.h>
#include <linux/sched/task_stack.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/reboot.h>
#include <linux/io.h>
#include <linux/compiler.h>
#include <linux/linkage.h>
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/kexec.h>
#include <linux/irq.h>
#include <asm/time.h>
#include <asm/processor.h>
#include <asm/bootinfo.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/mipsregs.h>
#include <asm/bmips.h>
#include <asm/traps.h>
#include <asm/barrier.h>
#include <asm/cpu-features.h>
static int __maybe_unused max_cpus = 1;
/* these may be configured by the platform code */
int bmips_smp_enabled = 1;
int bmips_cpu_offset;
cpumask_t bmips_booted_mask;
unsigned long bmips_tp1_irqs = IE_IRQ1;
#define RESET_FROM_KSEG0 0x80080800
#define RESET_FROM_KSEG1 0xa0080800
static void bmips_set_reset_vec(int cpu, u32 val);
#ifdef CONFIG_SMP
/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
unsigned long bmips_smp_boot_sp;
unsigned long bmips_smp_boot_gp;
static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
static void bmips5000_send_ipi_single(int cpu, unsigned int action);
static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
/* SW interrupts 0,1 are used for interprocessor signaling */
#define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
#define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
#define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
#define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
#define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
#define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
static void __init bmips_smp_setup(void)
{
int i, cpu = 1, boot_cpu = 0;
int cpu_hw_intr;
switch (current_cpu_type()) {
case CPU_BMIPS4350:
case CPU_BMIPS4380:
/* arbitration priority */
clear_c0_brcm_cmt_ctrl(0x30);
/* NBK and weak order flags */
set_c0_brcm_config_0(0x30000);
/* Find out if we are running on TP0 or TP1 */
boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
/*
* MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
* thread
* MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
* MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
*/
if (boot_cpu == 0)
cpu_hw_intr = 0x02;
else
cpu_hw_intr = 0x1d;
change_c0_brcm_cmt_intr(0xf8018000,
(cpu_hw_intr << 27) | (0x03 << 15));
/* single core, 2 threads (2 pipelines) */
max_cpus = 2;
break;
case CPU_BMIPS5000:
/* enable raceless SW interrupts */
set_c0_brcm_config(0x03 << 22);
/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
/* N cores, 2 threads per core */
max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
/* clear any pending SW interrupts */
for (i = 0; i < max_cpus; i++) {
write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
}
break;
default:
max_cpus = 1;
}
if (!bmips_smp_enabled)
max_cpus = 1;
/* this can be overridden by the BSP */
if (!board_ebase_setup)
board_ebase_setup = &bmips_ebase_setup;
if (max_cpus > 1) {
__cpu_number_map[boot_cpu] = 0;
__cpu_logical_map[0] = boot_cpu;
for (i = 0; i < max_cpus; i++) {
if (i != boot_cpu) {
__cpu_number_map[i] = cpu;
__cpu_logical_map[cpu] = i;
cpu++;
}
set_cpu_possible(i, 1);
set_cpu_present(i, 1);
}
} else {
__cpu_number_map[0] = boot_cpu;
__cpu_logical_map[0] = 0;
set_cpu_possible(0, 1);
set_cpu_present(0, 1);
}
}
/*
* IPI IRQ setup - runs on CPU0
*/
static void bmips_prepare_cpus(unsigned int max_cpus)
{
irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
switch (current_cpu_type()) {
case CPU_BMIPS4350:
case CPU_BMIPS4380:
bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
break;
case CPU_BMIPS5000:
bmips_ipi_interrupt = bmips5000_ipi_interrupt;
break;
default:
return;
}
if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
panic("Can't request IPI0 interrupt");
if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
panic("Can't request IPI1 interrupt");
}
/*
* Tell the hardware to boot CPUx - runs on CPU0
*/
static int bmips_boot_secondary(int cpu, struct task_struct *idle)
{
bmips_smp_boot_sp = __KSTK_TOS(idle);
bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
mb();
/*
* Initial boot sequence for secondary CPU:
* bmips_reset_nmi_vec @ a000_0000 ->
* bmips_smp_entry ->
* plat_wired_tlb_setup (cached function call; optional) ->
* start_secondary (cached jump)
*
* Warm restart sequence:
* play_dead WAIT loop ->
* bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
* eret to play_dead ->
* bmips_secondary_reentry ->
* start_secondary
*/
pr_info("SMP: Booting CPU%d...\n", cpu);
if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
/* kseg1 might not exist if this CPU enabled XKS01 */
bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
switch (current_cpu_type()) {
case CPU_BMIPS4350:
case CPU_BMIPS4380:
bmips43xx_send_ipi_single(cpu, 0);
break;
case CPU_BMIPS5000:
bmips5000_send_ipi_single(cpu, 0);
break;
}
} else {
bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
switch (current_cpu_type()) {
case CPU_BMIPS4350:
case CPU_BMIPS4380:
/* Reset slave TP1 if booting from TP0 */
if (cpu_logical_map(cpu) == 1)
set_c0_brcm_cmt_ctrl(0x01);
break;
case CPU_BMIPS5000:
write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
break;
}
cpumask_set_cpu(cpu, &bmips_booted_mask);
}
return 0;
}
/*
* Early setup - runs on secondary CPU after cache probe
*/
static void bmips_init_secondary(void)
{
bmips_cpu_setup();
switch (current_cpu_type()) {
case CPU_BMIPS4350:
case CPU_BMIPS4380:
clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
break;
case CPU_BMIPS5000:
write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
break;
}
}
/*
* Late setup - runs on secondary CPU before entering the idle loop
*/
static void bmips_smp_finish(void)
{
pr_info("SMP: CPU%d is running\n", smp_processor_id());
/* make sure there won't be a timer interrupt for a little while */
write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
irq_enable_hazard();
set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
irq_enable_hazard();
}
/*
* BMIPS5000 raceless IPIs
*
* Each CPU has two inbound SW IRQs which are independent of all other CPUs.
* IPI0 is used for SMP_RESCHEDULE_YOURSELF
* IPI1 is used for SMP_CALL_FUNCTION
*/
static void bmips5000_send_ipi_single(int cpu, unsigned int action)
{
write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
}
static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
{
int action = irq - IPI0_IRQ;
write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
if (action == 0)
scheduler_ipi();
else
generic_smp_call_function_interrupt();
return IRQ_HANDLED;
}
static void bmips5000_send_ipi_mask(const struct cpumask *mask,
unsigned int action)
{
unsigned int i;
for_each_cpu(i, mask)
bmips5000_send_ipi_single(i, action);
}
/*
* BMIPS43xx racey IPIs
*
* We use one inbound SW IRQ for each CPU.
*
* A spinlock must be held in order to keep CPUx from accidentally clearing
* an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
* same spinlock is used to protect the action masks.
*/
static DEFINE_SPINLOCK(ipi_lock);
static DEFINE_PER_CPU(int, ipi_action_mask);
static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
{
unsigned long flags;
spin_lock_irqsave(&ipi_lock, flags);
set_c0_cause(cpu ? C_SW1 : C_SW0);
per_cpu(ipi_action_mask, cpu) |= action;
irq_enable_hazard();
spin_unlock_irqrestore(&ipi_lock, flags);
}
static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
{
unsigned long flags;
int action, cpu = irq - IPI0_IRQ;
spin_lock_irqsave(&ipi_lock, flags);
action = __this_cpu_read(ipi_action_mask);
per_cpu(ipi_action_mask, cpu) = 0;
clear_c0_cause(cpu ? C_SW1 : C_SW0);
spin_unlock_irqrestore(&ipi_lock, flags);
if (action & SMP_RESCHEDULE_YOURSELF)
scheduler_ipi();
if (action & SMP_CALL_FUNCTION)
generic_smp_call_function_interrupt();
return IRQ_HANDLED;
}
static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
unsigned int action)
{
unsigned int i;
for_each_cpu(i, mask)
bmips43xx_send_ipi_single(i, action);
}
#ifdef CONFIG_HOTPLUG_CPU
static int bmips_cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
pr_info("SMP: CPU%d is offline\n", cpu);
set_cpu_online(cpu, false);
calculate_cpu_foreign_map();
irq_migrate_all_off_this_cpu();
clear_c0_status(IE_IRQ5);
local_flush_tlb_all();
local_flush_icache_range(0, ~0);
return 0;
}
static void bmips_cpu_die(unsigned int cpu)
{
}
void __ref play_dead(void)
{
idle_task_exit();
/* flush data cache */
_dma_cache_wback_inv(0, ~0);
/*
* Wakeup is on SW0 or SW1; disable everything else
* Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
* IRQ handlers; this clears ST0_IE and returns immediately.
*/
clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
change_c0_status(
IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
irq_disable_hazard();
/*
* wait for SW interrupt from bmips_boot_secondary(), then jump
* back to start_secondary()
*/
__asm__ __volatile__(
" wait\n"
" j bmips_secondary_reentry\n"
: : : "memory");
}
#endif /* CONFIG_HOTPLUG_CPU */
const struct plat_smp_ops bmips43xx_smp_ops = {
.smp_setup = bmips_smp_setup,
.prepare_cpus = bmips_prepare_cpus,
.boot_secondary = bmips_boot_secondary,
.smp_finish = bmips_smp_finish,
.init_secondary = bmips_init_secondary,
.send_ipi_single = bmips43xx_send_ipi_single,
.send_ipi_mask = bmips43xx_send_ipi_mask,
#ifdef CONFIG_HOTPLUG_CPU
.cpu_disable = bmips_cpu_disable,
.cpu_die = bmips_cpu_die,
#endif
#ifdef CONFIG_KEXEC
.kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
#endif
};
const struct plat_smp_ops bmips5000_smp_ops = {
.smp_setup = bmips_smp_setup,
.prepare_cpus = bmips_prepare_cpus,
.boot_secondary = bmips_boot_secondary,
.smp_finish = bmips_smp_finish,
.init_secondary = bmips_init_secondary,
.send_ipi_single = bmips5000_send_ipi_single,
.send_ipi_mask = bmips5000_send_ipi_mask,
#ifdef CONFIG_HOTPLUG_CPU
.cpu_disable = bmips_cpu_disable,
.cpu_die = bmips_cpu_die,
#endif
#ifdef CONFIG_KEXEC
.kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
#endif
};
#endif /* CONFIG_SMP */
/***********************************************************************
* BMIPS vector relocation
* This is primarily used for SMP boot, but it is applicable to some
* UP BMIPS systems as well.
***********************************************************************/
static void bmips_wr_vec(unsigned long dst, char *start, char *end)
{
memcpy((void *)dst, start, end - start);
dma_cache_wback(dst, end - start);
local_flush_icache_range(dst, dst + (end - start));
instruction_hazard();
}
static inline void bmips_nmi_handler_setup(void)
{
bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
bmips_reset_nmi_vec_end);
bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
bmips_smp_int_vec_end);
}
struct reset_vec_info {
int cpu;
u32 val;
};
static void bmips_set_reset_vec_remote(void *vinfo)
{
struct reset_vec_info *info = vinfo;
int shift = info->cpu & 0x01 ? 16 : 0;
u32 mask = ~(0xffff << shift), val = info->val >> 16;
preempt_disable();
if (smp_processor_id() > 0) {
smp_call_function_single(0, &bmips_set_reset_vec_remote,
info, 1);
} else {
if (info->cpu & 0x02) {
/* BMIPS5200 "should" use mask/shift, but it's buggy */
bmips_write_zscm_reg(0xa0, (val << 16) | val);
bmips_read_zscm_reg(0xa0);
} else {
write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
(val << shift));
}
}
preempt_enable();
}
static void bmips_set_reset_vec(int cpu, u32 val)
{
struct reset_vec_info info;
if (current_cpu_type() == CPU_BMIPS5000) {
/* this needs to run from CPU0 (which is always online) */
info.cpu = cpu;
info.val = val;
bmips_set_reset_vec_remote(&info);
} else {
void __iomem *cbr = BMIPS_GET_CBR();
if (cpu == 0)
__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
else {
if (current_cpu_type() != CPU_BMIPS4380)
return;
__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
}
}
__sync();
back_to_back_c0_hazard();
}
void bmips_ebase_setup(void)
{
unsigned long new_ebase = ebase;
BUG_ON(ebase != CKSEG0);
switch (current_cpu_type()) {
case CPU_BMIPS4350:
/*
* BMIPS4350 cannot relocate the normal vectors, but it
* can relocate the BEV=1 vectors. So CPU1 starts up at
* the relocated BEV=1, IV=0 general exception vector @
* 0xa000_0380.
*
* set_uncached_handler() is used here because:
* - CPU1 will run this from uncached space
* - None of the cacheflush functions are set up yet
*/
set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
&bmips_smp_int_vec, 0x80);
__sync();
return;
case CPU_BMIPS3300:
case CPU_BMIPS4380:
/*
* 0x8000_0000: reset/NMI (initially in kseg1)
* 0x8000_0400: normal vectors
*/
new_ebase = 0x80000400;
bmips_set_reset_vec(0, RESET_FROM_KSEG0);
break;
case CPU_BMIPS5000:
/*
* 0x8000_0000: reset/NMI (initially in kseg1)
* 0x8000_1000: normal vectors
*/
new_ebase = 0x80001000;
bmips_set_reset_vec(0, RESET_FROM_KSEG0);
write_c0_ebase(new_ebase);
break;
default:
return;
}
board_nmi_handler_setup = &bmips_nmi_handler_setup;
ebase = new_ebase;
}
asmlinkage void __weak plat_wired_tlb_setup(void)
{
/*
* Called when starting/restarting a secondary CPU.
* Kernel stacks and other important data might only be accessible
* once the wired entries are present.
*/
}
void bmips_cpu_setup(void)
{
void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
u32 __maybe_unused cfg;
switch (current_cpu_type()) {
case CPU_BMIPS3300:
/* Set BIU to async mode */
set_c0_brcm_bus_pll(BIT(22));
__sync();
/* put the BIU back in sync mode */
clear_c0_brcm_bus_pll(BIT(22));
/* clear BHTD to enable branch history table */
clear_c0_brcm_reset(BIT(16));
/* Flush and enable RAC */
cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
__raw_readl(cbr + BMIPS_RAC_CONFIG);
cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
__raw_readl(cbr + BMIPS_RAC_CONFIG);
cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
break;
case CPU_BMIPS4380:
/* CBG workaround for early BMIPS4380 CPUs */
switch (read_c0_prid()) {
case 0x2a040:
case 0x2a042:
case 0x2a044:
case 0x2a060:
cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
__raw_readl(cbr + BMIPS_L2_CONFIG);
}
/* clear BHTD to enable branch history table */
clear_c0_brcm_config_0(BIT(21));
/* XI/ROTR enable */
set_c0_brcm_config_0(BIT(23));
set_c0_brcm_cmt_ctrl(BIT(15));
break;
case CPU_BMIPS5000:
/* enable RDHWR, BRDHWR */
set_c0_brcm_config(BIT(17) | BIT(21));
/* Disable JTB */
__asm__ __volatile__(
" .set noreorder\n"
" li $8, 0x5a455048\n"
" .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
" .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
" li $9, 0x00008000\n"
" or $8, $8, $9\n"
" .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
" sync\n"
" li $8, 0x0\n"
" .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
" .set reorder\n"
: : : "$8", "$9");
/* XI enable */
set_c0_brcm_config(BIT(27));
/* enable MIPS32R2 ROR instruction for XI TLB handlers */
__asm__ __volatile__(
" li $8, 0x5a455048\n"
" .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
" nop; nop; nop\n"
" .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
" lui $9, 0x0100\n"
" or $8, $9\n"
" .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
: : : "$8", "$9");
break;
}
}