ubuntu-linux-kernel/sound/soc/stm/stm32_spdifrx.c

1002 lines
27 KiB
C

/*
* STM32 ALSA SoC Digital Audio Interface (SPDIF-rx) driver.
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
*
* License terms: GPL V2.0.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
/* SPDIF-rx Register Map */
#define STM32_SPDIFRX_CR 0x00
#define STM32_SPDIFRX_IMR 0x04
#define STM32_SPDIFRX_SR 0x08
#define STM32_SPDIFRX_IFCR 0x0C
#define STM32_SPDIFRX_DR 0x10
#define STM32_SPDIFRX_CSR 0x14
#define STM32_SPDIFRX_DIR 0x18
/* Bit definition for SPDIF_CR register */
#define SPDIFRX_CR_SPDIFEN_SHIFT 0
#define SPDIFRX_CR_SPDIFEN_MASK GENMASK(1, SPDIFRX_CR_SPDIFEN_SHIFT)
#define SPDIFRX_CR_SPDIFENSET(x) ((x) << SPDIFRX_CR_SPDIFEN_SHIFT)
#define SPDIFRX_CR_RXDMAEN BIT(2)
#define SPDIFRX_CR_RXSTEO BIT(3)
#define SPDIFRX_CR_DRFMT_SHIFT 4
#define SPDIFRX_CR_DRFMT_MASK GENMASK(5, SPDIFRX_CR_DRFMT_SHIFT)
#define SPDIFRX_CR_DRFMTSET(x) ((x) << SPDIFRX_CR_DRFMT_SHIFT)
#define SPDIFRX_CR_PMSK BIT(6)
#define SPDIFRX_CR_VMSK BIT(7)
#define SPDIFRX_CR_CUMSK BIT(8)
#define SPDIFRX_CR_PTMSK BIT(9)
#define SPDIFRX_CR_CBDMAEN BIT(10)
#define SPDIFRX_CR_CHSEL_SHIFT 11
#define SPDIFRX_CR_CHSEL BIT(SPDIFRX_CR_CHSEL_SHIFT)
#define SPDIFRX_CR_NBTR_SHIFT 12
#define SPDIFRX_CR_NBTR_MASK GENMASK(13, SPDIFRX_CR_NBTR_SHIFT)
#define SPDIFRX_CR_NBTRSET(x) ((x) << SPDIFRX_CR_NBTR_SHIFT)
#define SPDIFRX_CR_WFA BIT(14)
#define SPDIFRX_CR_INSEL_SHIFT 16
#define SPDIFRX_CR_INSEL_MASK GENMASK(18, PDIFRX_CR_INSEL_SHIFT)
#define SPDIFRX_CR_INSELSET(x) ((x) << SPDIFRX_CR_INSEL_SHIFT)
#define SPDIFRX_CR_CKSEN_SHIFT 20
#define SPDIFRX_CR_CKSEN BIT(20)
#define SPDIFRX_CR_CKSBKPEN BIT(21)
/* Bit definition for SPDIFRX_IMR register */
#define SPDIFRX_IMR_RXNEI BIT(0)
#define SPDIFRX_IMR_CSRNEIE BIT(1)
#define SPDIFRX_IMR_PERRIE BIT(2)
#define SPDIFRX_IMR_OVRIE BIT(3)
#define SPDIFRX_IMR_SBLKIE BIT(4)
#define SPDIFRX_IMR_SYNCDIE BIT(5)
#define SPDIFRX_IMR_IFEIE BIT(6)
#define SPDIFRX_XIMR_MASK GENMASK(6, 0)
/* Bit definition for SPDIFRX_SR register */
#define SPDIFRX_SR_RXNE BIT(0)
#define SPDIFRX_SR_CSRNE BIT(1)
#define SPDIFRX_SR_PERR BIT(2)
#define SPDIFRX_SR_OVR BIT(3)
#define SPDIFRX_SR_SBD BIT(4)
#define SPDIFRX_SR_SYNCD BIT(5)
#define SPDIFRX_SR_FERR BIT(6)
#define SPDIFRX_SR_SERR BIT(7)
#define SPDIFRX_SR_TERR BIT(8)
#define SPDIFRX_SR_WIDTH5_SHIFT 16
#define SPDIFRX_SR_WIDTH5_MASK GENMASK(30, PDIFRX_SR_WIDTH5_SHIFT)
#define SPDIFRX_SR_WIDTH5SET(x) ((x) << SPDIFRX_SR_WIDTH5_SHIFT)
/* Bit definition for SPDIFRX_IFCR register */
#define SPDIFRX_IFCR_PERRCF BIT(2)
#define SPDIFRX_IFCR_OVRCF BIT(3)
#define SPDIFRX_IFCR_SBDCF BIT(4)
#define SPDIFRX_IFCR_SYNCDCF BIT(5)
#define SPDIFRX_XIFCR_MASK GENMASK(5, 2)
/* Bit definition for SPDIFRX_DR register (DRFMT = 0b00) */
#define SPDIFRX_DR0_DR_SHIFT 0
#define SPDIFRX_DR0_DR_MASK GENMASK(23, SPDIFRX_DR0_DR_SHIFT)
#define SPDIFRX_DR0_DRSET(x) ((x) << SPDIFRX_DR0_DR_SHIFT)
#define SPDIFRX_DR0_PE BIT(24)
#define SPDIFRX_DR0_V BIT(25)
#define SPDIFRX_DR0_U BIT(26)
#define SPDIFRX_DR0_C BIT(27)
#define SPDIFRX_DR0_PT_SHIFT 28
#define SPDIFRX_DR0_PT_MASK GENMASK(29, SPDIFRX_DR0_PT_SHIFT)
#define SPDIFRX_DR0_PTSET(x) ((x) << SPDIFRX_DR0_PT_SHIFT)
/* Bit definition for SPDIFRX_DR register (DRFMT = 0b01) */
#define SPDIFRX_DR1_PE BIT(0)
#define SPDIFRX_DR1_V BIT(1)
#define SPDIFRX_DR1_U BIT(2)
#define SPDIFRX_DR1_C BIT(3)
#define SPDIFRX_DR1_PT_SHIFT 4
#define SPDIFRX_DR1_PT_MASK GENMASK(5, SPDIFRX_DR1_PT_SHIFT)
#define SPDIFRX_DR1_PTSET(x) ((x) << SPDIFRX_DR1_PT_SHIFT)
#define SPDIFRX_DR1_DR_SHIFT 8
#define SPDIFRX_DR1_DR_MASK GENMASK(31, SPDIFRX_DR1_DR_SHIFT)
#define SPDIFRX_DR1_DRSET(x) ((x) << SPDIFRX_DR1_DR_SHIFT)
/* Bit definition for SPDIFRX_DR register (DRFMT = 0b10) */
#define SPDIFRX_DR1_DRNL1_SHIFT 0
#define SPDIFRX_DR1_DRNL1_MASK GENMASK(15, SPDIFRX_DR1_DRNL1_SHIFT)
#define SPDIFRX_DR1_DRNL1SET(x) ((x) << SPDIFRX_DR1_DRNL1_SHIFT)
#define SPDIFRX_DR1_DRNL2_SHIFT 16
#define SPDIFRX_DR1_DRNL2_MASK GENMASK(31, SPDIFRX_DR1_DRNL2_SHIFT)
#define SPDIFRX_DR1_DRNL2SET(x) ((x) << SPDIFRX_DR1_DRNL2_SHIFT)
/* Bit definition for SPDIFRX_CSR register */
#define SPDIFRX_CSR_USR_SHIFT 0
#define SPDIFRX_CSR_USR_MASK GENMASK(15, SPDIFRX_CSR_USR_SHIFT)
#define SPDIFRX_CSR_USRGET(x) (((x) & SPDIFRX_CSR_USR_MASK)\
>> SPDIFRX_CSR_USR_SHIFT)
#define SPDIFRX_CSR_CS_SHIFT 16
#define SPDIFRX_CSR_CS_MASK GENMASK(23, SPDIFRX_CSR_CS_SHIFT)
#define SPDIFRX_CSR_CSGET(x) (((x) & SPDIFRX_CSR_CS_MASK)\
>> SPDIFRX_CSR_CS_SHIFT)
#define SPDIFRX_CSR_SOB BIT(24)
/* Bit definition for SPDIFRX_DIR register */
#define SPDIFRX_DIR_THI_SHIFT 0
#define SPDIFRX_DIR_THI_MASK GENMASK(12, SPDIFRX_DIR_THI_SHIFT)
#define SPDIFRX_DIR_THI_SET(x) ((x) << SPDIFRX_DIR_THI_SHIFT)
#define SPDIFRX_DIR_TLO_SHIFT 16
#define SPDIFRX_DIR_TLO_MASK GENMASK(28, SPDIFRX_DIR_TLO_SHIFT)
#define SPDIFRX_DIR_TLO_SET(x) ((x) << SPDIFRX_DIR_TLO_SHIFT)
#define SPDIFRX_SPDIFEN_DISABLE 0x0
#define SPDIFRX_SPDIFEN_SYNC 0x1
#define SPDIFRX_SPDIFEN_ENABLE 0x3
#define SPDIFRX_IN1 0x1
#define SPDIFRX_IN2 0x2
#define SPDIFRX_IN3 0x3
#define SPDIFRX_IN4 0x4
#define SPDIFRX_IN5 0x5
#define SPDIFRX_IN6 0x6
#define SPDIFRX_IN7 0x7
#define SPDIFRX_IN8 0x8
#define SPDIFRX_NBTR_NONE 0x0
#define SPDIFRX_NBTR_3 0x1
#define SPDIFRX_NBTR_15 0x2
#define SPDIFRX_NBTR_63 0x3
#define SPDIFRX_DRFMT_RIGHT 0x0
#define SPDIFRX_DRFMT_LEFT 0x1
#define SPDIFRX_DRFMT_PACKED 0x2
/* 192 CS bits in S/PDIF frame. i.e 24 CS bytes */
#define SPDIFRX_CS_BYTES_NB 24
#define SPDIFRX_UB_BYTES_NB 48
/*
* CSR register is retrieved as a 32 bits word
* It contains 1 channel status byte and 2 user data bytes
* 2 S/PDIF frames are acquired to get all CS/UB bits
*/
#define SPDIFRX_CSR_BUF_LENGTH (SPDIFRX_CS_BYTES_NB * 4 * 2)
/**
* struct stm32_spdifrx_data - private data of SPDIFRX
* @pdev: device data pointer
* @base: mmio register base virtual address
* @regmap: SPDIFRX register map pointer
* @regmap_conf: SPDIFRX register map configuration pointer
* @cs_completion: channel status retrieving completion
* @kclk: kernel clock feeding the SPDIFRX clock generator
* @dma_params: dma configuration data for rx channel
* @substream: PCM substream data pointer
* @dmab: dma buffer info pointer
* @ctrl_chan: dma channel for S/PDIF control bits
* @desc:dma async transaction descriptor
* @slave_config: dma slave channel runtime config pointer
* @phys_addr: SPDIFRX registers physical base address
* @lock: synchronization enabling lock
* @cs: channel status buffer
* @ub: user data buffer
* @irq: SPDIFRX interrupt line
* @refcount: keep count of opened DMA channels
*/
struct stm32_spdifrx_data {
struct platform_device *pdev;
void __iomem *base;
struct regmap *regmap;
const struct regmap_config *regmap_conf;
struct completion cs_completion;
struct clk *kclk;
struct snd_dmaengine_dai_dma_data dma_params;
struct snd_pcm_substream *substream;
struct snd_dma_buffer *dmab;
struct dma_chan *ctrl_chan;
struct dma_async_tx_descriptor *desc;
struct dma_slave_config slave_config;
dma_addr_t phys_addr;
spinlock_t lock; /* Sync enabling lock */
unsigned char cs[SPDIFRX_CS_BYTES_NB];
unsigned char ub[SPDIFRX_UB_BYTES_NB];
int irq;
int refcount;
};
static void stm32_spdifrx_dma_complete(void *data)
{
struct stm32_spdifrx_data *spdifrx = (struct stm32_spdifrx_data *)data;
struct platform_device *pdev = spdifrx->pdev;
u32 *p_start = (u32 *)spdifrx->dmab->area;
u32 *p_end = p_start + (2 * SPDIFRX_CS_BYTES_NB) - 1;
u32 *ptr = p_start;
u16 *ub_ptr = (short *)spdifrx->ub;
int i = 0;
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_CBDMAEN,
(unsigned int)~SPDIFRX_CR_CBDMAEN);
if (!spdifrx->dmab->area)
return;
while (ptr <= p_end) {
if (*ptr & SPDIFRX_CSR_SOB)
break;
ptr++;
}
if (ptr > p_end) {
dev_err(&pdev->dev, "Start of S/PDIF block not found\n");
return;
}
while (i < SPDIFRX_CS_BYTES_NB) {
spdifrx->cs[i] = (unsigned char)SPDIFRX_CSR_CSGET(*ptr);
*ub_ptr++ = SPDIFRX_CSR_USRGET(*ptr++);
if (ptr > p_end) {
dev_err(&pdev->dev, "Failed to get channel status\n");
return;
}
i++;
}
complete(&spdifrx->cs_completion);
}
static int stm32_spdifrx_dma_ctrl_start(struct stm32_spdifrx_data *spdifrx)
{
dma_cookie_t cookie;
int err;
spdifrx->desc = dmaengine_prep_slave_single(spdifrx->ctrl_chan,
spdifrx->dmab->addr,
SPDIFRX_CSR_BUF_LENGTH,
DMA_DEV_TO_MEM,
DMA_CTRL_ACK);
if (!spdifrx->desc)
return -EINVAL;
spdifrx->desc->callback = stm32_spdifrx_dma_complete;
spdifrx->desc->callback_param = spdifrx;
cookie = dmaengine_submit(spdifrx->desc);
err = dma_submit_error(cookie);
if (err)
return -EINVAL;
dma_async_issue_pending(spdifrx->ctrl_chan);
return 0;
}
static void stm32_spdifrx_dma_ctrl_stop(struct stm32_spdifrx_data *spdifrx)
{
dmaengine_terminate_async(spdifrx->ctrl_chan);
}
static int stm32_spdifrx_start_sync(struct stm32_spdifrx_data *spdifrx)
{
int cr, cr_mask, imr, ret;
/* Enable IRQs */
imr = SPDIFRX_IMR_IFEIE | SPDIFRX_IMR_SYNCDIE | SPDIFRX_IMR_PERRIE;
ret = regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IMR, imr, imr);
if (ret)
return ret;
spin_lock(&spdifrx->lock);
spdifrx->refcount++;
regmap_read(spdifrx->regmap, STM32_SPDIFRX_CR, &cr);
if (!(cr & SPDIFRX_CR_SPDIFEN_MASK)) {
/*
* Start sync if SPDIFRX is still in idle state.
* SPDIFRX reception enabled when sync done
*/
dev_dbg(&spdifrx->pdev->dev, "start synchronization\n");
/*
* SPDIFRX configuration:
* Wait for activity before starting sync process. This avoid
* to issue sync errors when spdif signal is missing on input.
* Preamble, CS, user, validity and parity error bits not copied
* to DR register.
*/
cr = SPDIFRX_CR_WFA | SPDIFRX_CR_PMSK | SPDIFRX_CR_VMSK |
SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK | SPDIFRX_CR_RXSTEO;
cr_mask = cr;
cr |= SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_SYNC);
cr_mask |= SPDIFRX_CR_SPDIFEN_MASK;
ret = regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
cr_mask, cr);
if (ret < 0)
dev_err(&spdifrx->pdev->dev,
"Failed to start synchronization\n");
}
spin_unlock(&spdifrx->lock);
return ret;
}
static void stm32_spdifrx_stop(struct stm32_spdifrx_data *spdifrx)
{
int cr, cr_mask, reg;
spin_lock(&spdifrx->lock);
if (--spdifrx->refcount) {
spin_unlock(&spdifrx->lock);
return;
}
cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_DISABLE);
cr_mask = SPDIFRX_CR_SPDIFEN_MASK | SPDIFRX_CR_RXDMAEN;
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, cr_mask, cr);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IMR,
SPDIFRX_XIMR_MASK, 0);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IFCR,
SPDIFRX_XIFCR_MASK, SPDIFRX_XIFCR_MASK);
/* dummy read to clear CSRNE and RXNE in status register */
regmap_read(spdifrx->regmap, STM32_SPDIFRX_DR, &reg);
regmap_read(spdifrx->regmap, STM32_SPDIFRX_CSR, &reg);
spin_unlock(&spdifrx->lock);
}
static int stm32_spdifrx_dma_ctrl_register(struct device *dev,
struct stm32_spdifrx_data *spdifrx)
{
int ret;
spdifrx->ctrl_chan = dma_request_chan(dev, "rx-ctrl");
if (IS_ERR(spdifrx->ctrl_chan)) {
dev_err(dev, "dma_request_slave_channel failed\n");
return PTR_ERR(spdifrx->ctrl_chan);
}
spdifrx->dmab = devm_kzalloc(dev, sizeof(struct snd_dma_buffer),
GFP_KERNEL);
if (!spdifrx->dmab)
return -ENOMEM;
spdifrx->dmab->dev.type = SNDRV_DMA_TYPE_DEV_IRAM;
spdifrx->dmab->dev.dev = dev;
ret = snd_dma_alloc_pages(spdifrx->dmab->dev.type, dev,
SPDIFRX_CSR_BUF_LENGTH, spdifrx->dmab);
if (ret < 0) {
dev_err(dev, "snd_dma_alloc_pages returned error %d\n", ret);
return ret;
}
spdifrx->slave_config.direction = DMA_DEV_TO_MEM;
spdifrx->slave_config.src_addr = (dma_addr_t)(spdifrx->phys_addr +
STM32_SPDIFRX_CSR);
spdifrx->slave_config.dst_addr = spdifrx->dmab->addr;
spdifrx->slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
spdifrx->slave_config.src_maxburst = 1;
ret = dmaengine_slave_config(spdifrx->ctrl_chan,
&spdifrx->slave_config);
if (ret < 0) {
dev_err(dev, "dmaengine_slave_config returned error %d\n", ret);
spdifrx->ctrl_chan = NULL;
}
return ret;
};
static const char * const spdifrx_enum_input[] = {
"in0", "in1", "in2", "in3"
};
/* By default CS bits are retrieved from channel A */
static const char * const spdifrx_enum_cs_channel[] = {
"A", "B"
};
static SOC_ENUM_SINGLE_DECL(ctrl_enum_input,
STM32_SPDIFRX_CR, SPDIFRX_CR_INSEL_SHIFT,
spdifrx_enum_input);
static SOC_ENUM_SINGLE_DECL(ctrl_enum_cs_channel,
STM32_SPDIFRX_CR, SPDIFRX_CR_CHSEL_SHIFT,
spdifrx_enum_cs_channel);
static int stm32_spdifrx_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int stm32_spdifrx_ub_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int stm32_spdifrx_get_ctrl_data(struct stm32_spdifrx_data *spdifrx)
{
int ret = 0;
memset(spdifrx->cs, 0, SPDIFRX_CS_BYTES_NB);
memset(spdifrx->ub, 0, SPDIFRX_UB_BYTES_NB);
ret = stm32_spdifrx_dma_ctrl_start(spdifrx);
if (ret < 0)
return ret;
ret = clk_prepare_enable(spdifrx->kclk);
if (ret) {
dev_err(&spdifrx->pdev->dev, "Enable kclk failed: %d\n", ret);
return ret;
}
ret = regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_CBDMAEN, SPDIFRX_CR_CBDMAEN);
if (ret < 0)
goto end;
ret = stm32_spdifrx_start_sync(spdifrx);
if (ret < 0)
goto end;
if (wait_for_completion_interruptible_timeout(&spdifrx->cs_completion,
msecs_to_jiffies(100))
<= 0) {
dev_err(&spdifrx->pdev->dev, "Failed to get control data\n");
ret = -EAGAIN;
}
stm32_spdifrx_stop(spdifrx);
stm32_spdifrx_dma_ctrl_stop(spdifrx);
end:
clk_disable_unprepare(spdifrx->kclk);
return ret;
}
static int stm32_spdifrx_capture_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
stm32_spdifrx_get_ctrl_data(spdifrx);
ucontrol->value.iec958.status[0] = spdifrx->cs[0];
ucontrol->value.iec958.status[1] = spdifrx->cs[1];
ucontrol->value.iec958.status[2] = spdifrx->cs[2];
ucontrol->value.iec958.status[3] = spdifrx->cs[3];
ucontrol->value.iec958.status[4] = spdifrx->cs[4];
return 0;
}
static int stm32_spdif_user_bits_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
stm32_spdifrx_get_ctrl_data(spdifrx);
ucontrol->value.iec958.status[0] = spdifrx->ub[0];
ucontrol->value.iec958.status[1] = spdifrx->ub[1];
ucontrol->value.iec958.status[2] = spdifrx->ub[2];
ucontrol->value.iec958.status[3] = spdifrx->ub[3];
ucontrol->value.iec958.status[4] = spdifrx->ub[4];
return 0;
}
static struct snd_kcontrol_new stm32_spdifrx_iec_ctrls[] = {
/* Channel status control */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = stm32_spdifrx_info,
.get = stm32_spdifrx_capture_get,
},
/* User bits control */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 User Bit Capture Default",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = stm32_spdifrx_ub_info,
.get = stm32_spdif_user_bits_get,
},
};
static struct snd_kcontrol_new stm32_spdifrx_ctrls[] = {
SOC_ENUM("SPDIFRX input", ctrl_enum_input),
SOC_ENUM("SPDIFRX CS channel", ctrl_enum_cs_channel),
};
static int stm32_spdifrx_dai_register_ctrls(struct snd_soc_dai *cpu_dai)
{
int ret;
ret = snd_soc_add_dai_controls(cpu_dai, stm32_spdifrx_iec_ctrls,
ARRAY_SIZE(stm32_spdifrx_iec_ctrls));
if (ret < 0)
return ret;
return snd_soc_add_component_controls(cpu_dai->component,
stm32_spdifrx_ctrls,
ARRAY_SIZE(stm32_spdifrx_ctrls));
}
static int stm32_spdifrx_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = dev_get_drvdata(cpu_dai->dev);
spdifrx->dma_params.addr = (dma_addr_t)(spdifrx->phys_addr +
STM32_SPDIFRX_DR);
spdifrx->dma_params.maxburst = 1;
snd_soc_dai_init_dma_data(cpu_dai, NULL, &spdifrx->dma_params);
return stm32_spdifrx_dai_register_ctrls(cpu_dai);
}
static bool stm32_spdifrx_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_SPDIFRX_CR:
case STM32_SPDIFRX_IMR:
case STM32_SPDIFRX_SR:
case STM32_SPDIFRX_IFCR:
case STM32_SPDIFRX_DR:
case STM32_SPDIFRX_CSR:
case STM32_SPDIFRX_DIR:
return true;
default:
return false;
}
}
static bool stm32_spdifrx_volatile_reg(struct device *dev, unsigned int reg)
{
if (reg == STM32_SPDIFRX_DR)
return true;
return false;
}
static bool stm32_spdifrx_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_SPDIFRX_CR:
case STM32_SPDIFRX_IMR:
case STM32_SPDIFRX_IFCR:
return true;
default:
return false;
}
}
static const struct regmap_config stm32_h7_spdifrx_regmap_conf = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM32_SPDIFRX_DIR,
.readable_reg = stm32_spdifrx_readable_reg,
.volatile_reg = stm32_spdifrx_volatile_reg,
.writeable_reg = stm32_spdifrx_writeable_reg,
.fast_io = true,
};
static irqreturn_t stm32_spdifrx_isr(int irq, void *devid)
{
struct stm32_spdifrx_data *spdifrx = (struct stm32_spdifrx_data *)devid;
struct snd_pcm_substream *substream = spdifrx->substream;
struct platform_device *pdev = spdifrx->pdev;
unsigned int cr, mask, sr, imr;
unsigned int flags;
int err = 0, err_xrun = 0;
regmap_read(spdifrx->regmap, STM32_SPDIFRX_SR, &sr);
regmap_read(spdifrx->regmap, STM32_SPDIFRX_IMR, &imr);
mask = imr & SPDIFRX_XIMR_MASK;
/* SERR, TERR, FERR IRQs are generated if IFEIE is set */
if (mask & SPDIFRX_IMR_IFEIE)
mask |= (SPDIFRX_IMR_IFEIE << 1) | (SPDIFRX_IMR_IFEIE << 2);
flags = sr & mask;
if (!flags) {
dev_err(&pdev->dev, "Unexpected IRQ. rflags=%#x, imr=%#x\n",
sr, imr);
return IRQ_NONE;
}
/* Clear IRQs */
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IFCR,
SPDIFRX_XIFCR_MASK, flags);
if (flags & SPDIFRX_SR_PERR) {
dev_dbg(&pdev->dev, "Parity error\n");
err_xrun = 1;
}
if (flags & SPDIFRX_SR_OVR) {
dev_dbg(&pdev->dev, "Overrun error\n");
err_xrun = 1;
}
if (flags & SPDIFRX_SR_SBD)
dev_dbg(&pdev->dev, "Synchronization block detected\n");
if (flags & SPDIFRX_SR_SYNCD) {
dev_dbg(&pdev->dev, "Synchronization done\n");
/* Enable spdifrx */
cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_ENABLE);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_SPDIFEN_MASK, cr);
}
if (flags & SPDIFRX_SR_FERR) {
dev_dbg(&pdev->dev, "Frame error\n");
err = 1;
}
if (flags & SPDIFRX_SR_SERR) {
dev_dbg(&pdev->dev, "Synchronization error\n");
err = 1;
}
if (flags & SPDIFRX_SR_TERR) {
dev_dbg(&pdev->dev, "Timeout error\n");
err = 1;
}
if (err) {
/* SPDIFRX in STATE_STOP. Disable SPDIFRX to clear errors */
cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_DISABLE);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_SPDIFEN_MASK, cr);
if (substream)
snd_pcm_stop(substream, SNDRV_PCM_STATE_DISCONNECTED);
return IRQ_HANDLED;
}
if (err_xrun && substream)
snd_pcm_stop_xrun(substream);
return IRQ_HANDLED;
}
static int stm32_spdifrx_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
spdifrx->substream = substream;
ret = clk_prepare_enable(spdifrx->kclk);
if (ret)
dev_err(&spdifrx->pdev->dev, "Enable kclk failed: %d\n", ret);
return ret;
}
static int stm32_spdifrx_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
int data_size = params_width(params);
int fmt;
switch (data_size) {
case 16:
fmt = SPDIFRX_DRFMT_PACKED;
break;
case 32:
fmt = SPDIFRX_DRFMT_LEFT;
break;
default:
dev_err(&spdifrx->pdev->dev, "Unexpected data format\n");
return -EINVAL;
}
/*
* Set buswidth to 4 bytes for all data formats.
* Packed format: transfer 2 x 2 bytes samples
* Left format: transfer 1 x 3 bytes samples + 1 dummy byte
*/
spdifrx->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
snd_soc_dai_init_dma_data(cpu_dai, NULL, &spdifrx->dma_params);
return regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_DRFMT_MASK,
SPDIFRX_CR_DRFMTSET(fmt));
}
static int stm32_spdifrx_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
int ret = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IMR,
SPDIFRX_IMR_OVRIE, SPDIFRX_IMR_OVRIE);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_RXDMAEN, SPDIFRX_CR_RXDMAEN);
ret = stm32_spdifrx_start_sync(spdifrx);
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_STOP:
stm32_spdifrx_stop(spdifrx);
break;
default:
return -EINVAL;
}
return ret;
}
static void stm32_spdifrx_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
spdifrx->substream = NULL;
clk_disable_unprepare(spdifrx->kclk);
}
static const struct snd_soc_dai_ops stm32_spdifrx_pcm_dai_ops = {
.startup = stm32_spdifrx_startup,
.hw_params = stm32_spdifrx_hw_params,
.trigger = stm32_spdifrx_trigger,
.shutdown = stm32_spdifrx_shutdown,
};
static struct snd_soc_dai_driver stm32_spdifrx_dai[] = {
{
.name = "spdifrx-capture-cpu-dai",
.probe = stm32_spdifrx_dai_probe,
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = SNDRV_PCM_FMTBIT_S32_LE |
SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &stm32_spdifrx_pcm_dai_ops,
}
};
static const struct snd_pcm_hardware stm32_spdifrx_pcm_hw = {
.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
.buffer_bytes_max = 8 * PAGE_SIZE,
.period_bytes_max = 2048, /* MDMA constraint */
.periods_min = 2,
.periods_max = 8,
};
static const struct snd_soc_component_driver stm32_spdifrx_component = {
.name = "stm32-spdifrx",
};
static const struct snd_dmaengine_pcm_config stm32_spdifrx_pcm_config = {
.pcm_hardware = &stm32_spdifrx_pcm_hw,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static const struct of_device_id stm32_spdifrx_ids[] = {
{
.compatible = "st,stm32h7-spdifrx",
.data = &stm32_h7_spdifrx_regmap_conf
},
{}
};
static int stm_spdifrx_parse_of(struct platform_device *pdev,
struct stm32_spdifrx_data *spdifrx)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *of_id;
struct resource *res;
if (!np)
return -ENODEV;
of_id = of_match_device(stm32_spdifrx_ids, &pdev->dev);
if (of_id)
spdifrx->regmap_conf =
(const struct regmap_config *)of_id->data;
else
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
spdifrx->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(spdifrx->base))
return PTR_ERR(spdifrx->base);
spdifrx->phys_addr = res->start;
spdifrx->kclk = devm_clk_get(&pdev->dev, "kclk");
if (IS_ERR(spdifrx->kclk)) {
dev_err(&pdev->dev, "Could not get kclk\n");
return PTR_ERR(spdifrx->kclk);
}
spdifrx->irq = platform_get_irq(pdev, 0);
if (spdifrx->irq < 0) {
dev_err(&pdev->dev, "No irq for node %s\n", pdev->name);
return spdifrx->irq;
}
return 0;
}
static int stm32_spdifrx_probe(struct platform_device *pdev)
{
struct stm32_spdifrx_data *spdifrx;
struct reset_control *rst;
const struct snd_dmaengine_pcm_config *pcm_config = NULL;
int ret;
spdifrx = devm_kzalloc(&pdev->dev, sizeof(*spdifrx), GFP_KERNEL);
if (!spdifrx)
return -ENOMEM;
spdifrx->pdev = pdev;
init_completion(&spdifrx->cs_completion);
spin_lock_init(&spdifrx->lock);
platform_set_drvdata(pdev, spdifrx);
ret = stm_spdifrx_parse_of(pdev, spdifrx);
if (ret)
return ret;
spdifrx->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "kclk",
spdifrx->base,
spdifrx->regmap_conf);
if (IS_ERR(spdifrx->regmap)) {
dev_err(&pdev->dev, "Regmap init failed\n");
return PTR_ERR(spdifrx->regmap);
}
ret = devm_request_irq(&pdev->dev, spdifrx->irq, stm32_spdifrx_isr, 0,
dev_name(&pdev->dev), spdifrx);
if (ret) {
dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
return ret;
}
rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (!IS_ERR(rst)) {
reset_control_assert(rst);
udelay(2);
reset_control_deassert(rst);
}
ret = devm_snd_soc_register_component(&pdev->dev,
&stm32_spdifrx_component,
stm32_spdifrx_dai,
ARRAY_SIZE(stm32_spdifrx_dai));
if (ret)
return ret;
ret = stm32_spdifrx_dma_ctrl_register(&pdev->dev, spdifrx);
if (ret)
goto error;
pcm_config = &stm32_spdifrx_pcm_config;
ret = devm_snd_dmaengine_pcm_register(&pdev->dev, pcm_config, 0);
if (ret) {
dev_err(&pdev->dev, "PCM DMA register returned %d\n", ret);
goto error;
}
return 0;
error:
if (!IS_ERR(spdifrx->ctrl_chan))
dma_release_channel(spdifrx->ctrl_chan);
if (spdifrx->dmab)
snd_dma_free_pages(spdifrx->dmab);
return ret;
}
static int stm32_spdifrx_remove(struct platform_device *pdev)
{
struct stm32_spdifrx_data *spdifrx = platform_get_drvdata(pdev);
if (spdifrx->ctrl_chan)
dma_release_channel(spdifrx->ctrl_chan);
if (spdifrx->dmab)
snd_dma_free_pages(spdifrx->dmab);
return 0;
}
MODULE_DEVICE_TABLE(of, stm32_spdifrx_ids);
static struct platform_driver stm32_spdifrx_driver = {
.driver = {
.name = "st,stm32-spdifrx",
.of_match_table = stm32_spdifrx_ids,
},
.probe = stm32_spdifrx_probe,
.remove = stm32_spdifrx_remove,
};
module_platform_driver(stm32_spdifrx_driver);
MODULE_DESCRIPTION("STM32 Soc spdifrx Interface");
MODULE_AUTHOR("Olivier Moysan, <olivier.moysan@st.com>");
MODULE_ALIAS("platform:stm32-spdifrx");
MODULE_LICENSE("GPL v2");