ubuntu-linux-kernel/kernel/bpf/core.c

1691 lines
43 KiB
C

/*
* Linux Socket Filter - Kernel level socket filtering
*
* Based on the design of the Berkeley Packet Filter. The new
* internal format has been designed by PLUMgrid:
*
* Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
*
* Authors:
*
* Jay Schulist <jschlst@samba.org>
* Alexei Starovoitov <ast@plumgrid.com>
* Daniel Borkmann <dborkman@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Andi Kleen - Fix a few bad bugs and races.
* Kris Katterjohn - Added many additional checks in bpf_check_classic()
*/
#include <linux/filter.h>
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
#include <linux/random.h>
#include <linux/moduleloader.h>
#include <linux/bpf.h>
#include <linux/frame.h>
#include <linux/rbtree_latch.h>
#include <linux/kallsyms.h>
#include <linux/rcupdate.h>
#include <asm/unaligned.h>
/* Registers */
#define BPF_R0 regs[BPF_REG_0]
#define BPF_R1 regs[BPF_REG_1]
#define BPF_R2 regs[BPF_REG_2]
#define BPF_R3 regs[BPF_REG_3]
#define BPF_R4 regs[BPF_REG_4]
#define BPF_R5 regs[BPF_REG_5]
#define BPF_R6 regs[BPF_REG_6]
#define BPF_R7 regs[BPF_REG_7]
#define BPF_R8 regs[BPF_REG_8]
#define BPF_R9 regs[BPF_REG_9]
#define BPF_R10 regs[BPF_REG_10]
/* Named registers */
#define DST regs[insn->dst_reg]
#define SRC regs[insn->src_reg]
#define FP regs[BPF_REG_FP]
#define ARG1 regs[BPF_REG_ARG1]
#define CTX regs[BPF_REG_CTX]
#define IMM insn->imm
/* No hurry in this branch
*
* Exported for the bpf jit load helper.
*/
void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
{
u8 *ptr = NULL;
if (k >= SKF_NET_OFF)
ptr = skb_network_header(skb) + k - SKF_NET_OFF;
else if (k >= SKF_LL_OFF)
ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
return ptr;
return NULL;
}
struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
{
gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
struct bpf_prog_aux *aux;
struct bpf_prog *fp;
size = round_up(size, PAGE_SIZE);
fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
if (fp == NULL)
return NULL;
aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
if (aux == NULL) {
vfree(fp);
return NULL;
}
fp->pages = size / PAGE_SIZE;
fp->aux = aux;
fp->aux->prog = fp;
INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
return fp;
}
EXPORT_SYMBOL_GPL(bpf_prog_alloc);
struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
gfp_t gfp_extra_flags)
{
gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
struct bpf_prog *fp;
u32 pages, delta;
int ret;
BUG_ON(fp_old == NULL);
size = round_up(size, PAGE_SIZE);
pages = size / PAGE_SIZE;
if (pages <= fp_old->pages)
return fp_old;
delta = pages - fp_old->pages;
ret = __bpf_prog_charge(fp_old->aux->user, delta);
if (ret)
return NULL;
fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
if (fp == NULL) {
__bpf_prog_uncharge(fp_old->aux->user, delta);
} else {
memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
fp->pages = pages;
fp->aux->prog = fp;
/* We keep fp->aux from fp_old around in the new
* reallocated structure.
*/
fp_old->aux = NULL;
__bpf_prog_free(fp_old);
}
return fp;
}
void __bpf_prog_free(struct bpf_prog *fp)
{
kfree(fp->aux);
vfree(fp);
}
int bpf_prog_calc_tag(struct bpf_prog *fp)
{
const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
u32 raw_size = bpf_prog_tag_scratch_size(fp);
u32 digest[SHA_DIGEST_WORDS];
u32 ws[SHA_WORKSPACE_WORDS];
u32 i, bsize, psize, blocks;
struct bpf_insn *dst;
bool was_ld_map;
u8 *raw, *todo;
__be32 *result;
__be64 *bits;
raw = vmalloc(raw_size);
if (!raw)
return -ENOMEM;
sha_init(digest);
memset(ws, 0, sizeof(ws));
/* We need to take out the map fd for the digest calculation
* since they are unstable from user space side.
*/
dst = (void *)raw;
for (i = 0, was_ld_map = false; i < fp->len; i++) {
dst[i] = fp->insnsi[i];
if (!was_ld_map &&
dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
was_ld_map = true;
dst[i].imm = 0;
} else if (was_ld_map &&
dst[i].code == 0 &&
dst[i].dst_reg == 0 &&
dst[i].src_reg == 0 &&
dst[i].off == 0) {
was_ld_map = false;
dst[i].imm = 0;
} else {
was_ld_map = false;
}
}
psize = bpf_prog_insn_size(fp);
memset(&raw[psize], 0, raw_size - psize);
raw[psize++] = 0x80;
bsize = round_up(psize, SHA_MESSAGE_BYTES);
blocks = bsize / SHA_MESSAGE_BYTES;
todo = raw;
if (bsize - psize >= sizeof(__be64)) {
bits = (__be64 *)(todo + bsize - sizeof(__be64));
} else {
bits = (__be64 *)(todo + bsize + bits_offset);
blocks++;
}
*bits = cpu_to_be64((psize - 1) << 3);
while (blocks--) {
sha_transform(digest, todo, ws);
todo += SHA_MESSAGE_BYTES;
}
result = (__force __be32 *)digest;
for (i = 0; i < SHA_DIGEST_WORDS; i++)
result[i] = cpu_to_be32(digest[i]);
memcpy(fp->tag, result, sizeof(fp->tag));
vfree(raw);
return 0;
}
static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
{
return BPF_CLASS(insn->code) == BPF_JMP &&
/* Call and Exit are both special jumps with no
* target inside the BPF instruction image.
*/
BPF_OP(insn->code) != BPF_CALL &&
BPF_OP(insn->code) != BPF_EXIT;
}
static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
{
struct bpf_insn *insn = prog->insnsi;
u32 i, insn_cnt = prog->len;
for (i = 0; i < insn_cnt; i++, insn++) {
if (!bpf_is_jmp_and_has_target(insn))
continue;
/* Adjust offset of jmps if we cross boundaries. */
if (i < pos && i + insn->off + 1 > pos)
insn->off += delta;
else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
insn->off -= delta;
}
}
struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
const struct bpf_insn *patch, u32 len)
{
u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
struct bpf_prog *prog_adj;
/* Since our patchlet doesn't expand the image, we're done. */
if (insn_delta == 0) {
memcpy(prog->insnsi + off, patch, sizeof(*patch));
return prog;
}
insn_adj_cnt = prog->len + insn_delta;
/* Several new instructions need to be inserted. Make room
* for them. Likely, there's no need for a new allocation as
* last page could have large enough tailroom.
*/
prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
GFP_USER);
if (!prog_adj)
return NULL;
prog_adj->len = insn_adj_cnt;
/* Patching happens in 3 steps:
*
* 1) Move over tail of insnsi from next instruction onwards,
* so we can patch the single target insn with one or more
* new ones (patching is always from 1 to n insns, n > 0).
* 2) Inject new instructions at the target location.
* 3) Adjust branch offsets if necessary.
*/
insn_rest = insn_adj_cnt - off - len;
memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
sizeof(*patch) * insn_rest);
memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
bpf_adj_branches(prog_adj, off, insn_delta);
return prog_adj;
}
#ifdef CONFIG_BPF_JIT
static __always_inline void
bpf_get_prog_addr_region(const struct bpf_prog *prog,
unsigned long *symbol_start,
unsigned long *symbol_end)
{
const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
unsigned long addr = (unsigned long)hdr;
WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
*symbol_start = addr;
*symbol_end = addr + hdr->pages * PAGE_SIZE;
}
static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
{
const char *end = sym + KSYM_NAME_LEN;
BUILD_BUG_ON(sizeof("bpf_prog_") +
sizeof(prog->tag) * 2 +
/* name has been null terminated.
* We should need +1 for the '_' preceding
* the name. However, the null character
* is double counted between the name and the
* sizeof("bpf_prog_") above, so we omit
* the +1 here.
*/
sizeof(prog->aux->name) > KSYM_NAME_LEN);
sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
if (prog->aux->name[0])
snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
else
*sym = 0;
}
static __always_inline unsigned long
bpf_get_prog_addr_start(struct latch_tree_node *n)
{
unsigned long symbol_start, symbol_end;
const struct bpf_prog_aux *aux;
aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
return symbol_start;
}
static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
struct latch_tree_node *b)
{
return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
}
static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
{
unsigned long val = (unsigned long)key;
unsigned long symbol_start, symbol_end;
const struct bpf_prog_aux *aux;
aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
if (val < symbol_start)
return -1;
if (val >= symbol_end)
return 1;
return 0;
}
static const struct latch_tree_ops bpf_tree_ops = {
.less = bpf_tree_less,
.comp = bpf_tree_comp,
};
static DEFINE_SPINLOCK(bpf_lock);
static LIST_HEAD(bpf_kallsyms);
static struct latch_tree_root bpf_tree __cacheline_aligned;
int bpf_jit_kallsyms __read_mostly;
static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
{
WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
}
static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
{
if (list_empty(&aux->ksym_lnode))
return;
latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
list_del_rcu(&aux->ksym_lnode);
}
static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
{
return fp->jited && !bpf_prog_was_classic(fp);
}
static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
{
return list_empty(&fp->aux->ksym_lnode) ||
fp->aux->ksym_lnode.prev == LIST_POISON2;
}
void bpf_prog_kallsyms_add(struct bpf_prog *fp)
{
if (!bpf_prog_kallsyms_candidate(fp) ||
!capable(CAP_SYS_ADMIN))
return;
spin_lock_bh(&bpf_lock);
bpf_prog_ksym_node_add(fp->aux);
spin_unlock_bh(&bpf_lock);
}
void bpf_prog_kallsyms_del(struct bpf_prog *fp)
{
if (!bpf_prog_kallsyms_candidate(fp))
return;
spin_lock_bh(&bpf_lock);
bpf_prog_ksym_node_del(fp->aux);
spin_unlock_bh(&bpf_lock);
}
static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
{
struct latch_tree_node *n;
if (!bpf_jit_kallsyms_enabled())
return NULL;
n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
return n ?
container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
NULL;
}
const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char *sym)
{
unsigned long symbol_start, symbol_end;
struct bpf_prog *prog;
char *ret = NULL;
rcu_read_lock();
prog = bpf_prog_kallsyms_find(addr);
if (prog) {
bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
bpf_get_prog_name(prog, sym);
ret = sym;
if (size)
*size = symbol_end - symbol_start;
if (off)
*off = addr - symbol_start;
}
rcu_read_unlock();
return ret;
}
bool is_bpf_text_address(unsigned long addr)
{
bool ret;
rcu_read_lock();
ret = bpf_prog_kallsyms_find(addr) != NULL;
rcu_read_unlock();
return ret;
}
int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
char *sym)
{
unsigned long symbol_start, symbol_end;
struct bpf_prog_aux *aux;
unsigned int it = 0;
int ret = -ERANGE;
if (!bpf_jit_kallsyms_enabled())
return ret;
rcu_read_lock();
list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
if (it++ != symnum)
continue;
bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
bpf_get_prog_name(aux->prog, sym);
*value = symbol_start;
*type = BPF_SYM_ELF_TYPE;
ret = 0;
break;
}
rcu_read_unlock();
return ret;
}
struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
unsigned int alignment,
bpf_jit_fill_hole_t bpf_fill_ill_insns)
{
struct bpf_binary_header *hdr;
unsigned int size, hole, start;
/* Most of BPF filters are really small, but if some of them
* fill a page, allow at least 128 extra bytes to insert a
* random section of illegal instructions.
*/
size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
hdr = module_alloc(size);
if (hdr == NULL)
return NULL;
/* Fill space with illegal/arch-dep instructions. */
bpf_fill_ill_insns(hdr, size);
hdr->pages = size / PAGE_SIZE;
hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
PAGE_SIZE - sizeof(*hdr));
start = (get_random_int() % hole) & ~(alignment - 1);
/* Leave a random number of instructions before BPF code. */
*image_ptr = &hdr->image[start];
return hdr;
}
void bpf_jit_binary_free(struct bpf_binary_header *hdr)
{
module_memfree(hdr);
}
/* This symbol is only overridden by archs that have different
* requirements than the usual eBPF JITs, f.e. when they only
* implement cBPF JIT, do not set images read-only, etc.
*/
void __weak bpf_jit_free(struct bpf_prog *fp)
{
if (fp->jited) {
struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
bpf_jit_binary_unlock_ro(hdr);
bpf_jit_binary_free(hdr);
WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
}
bpf_prog_unlock_free(fp);
}
int bpf_jit_harden __read_mostly;
static int bpf_jit_blind_insn(const struct bpf_insn *from,
const struct bpf_insn *aux,
struct bpf_insn *to_buff)
{
struct bpf_insn *to = to_buff;
u32 imm_rnd = get_random_int();
s16 off;
BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
if (from->imm == 0 &&
(from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
goto out;
}
switch (from->code) {
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU | BPF_MOV | BPF_K:
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU | BPF_MOD | BPF_K:
*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
break;
case BPF_ALU64 | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_MUL | BPF_K:
case BPF_ALU64 | BPF_MOV | BPF_K:
case BPF_ALU64 | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_K:
*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
break;
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP | BPF_JSET | BPF_K:
/* Accommodate for extra offset in case of a backjump. */
off = from->off;
if (off < 0)
off -= 2;
*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
break;
case BPF_LD | BPF_ABS | BPF_W:
case BPF_LD | BPF_ABS | BPF_H:
case BPF_LD | BPF_ABS | BPF_B:
*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
break;
case BPF_LD | BPF_IND | BPF_W:
case BPF_LD | BPF_IND | BPF_H:
case BPF_LD | BPF_IND | BPF_B:
*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
break;
case BPF_LD | BPF_IMM | BPF_DW:
*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
break;
case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
break;
case BPF_ST | BPF_MEM | BPF_DW:
case BPF_ST | BPF_MEM | BPF_W:
case BPF_ST | BPF_MEM | BPF_H:
case BPF_ST | BPF_MEM | BPF_B:
*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
break;
}
out:
return to - to_buff;
}
static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
gfp_t gfp_extra_flags)
{
gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
struct bpf_prog *fp;
fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
if (fp != NULL) {
/* aux->prog still points to the fp_other one, so
* when promoting the clone to the real program,
* this still needs to be adapted.
*/
memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
}
return fp;
}
static void bpf_prog_clone_free(struct bpf_prog *fp)
{
/* aux was stolen by the other clone, so we cannot free
* it from this path! It will be freed eventually by the
* other program on release.
*
* At this point, we don't need a deferred release since
* clone is guaranteed to not be locked.
*/
fp->aux = NULL;
__bpf_prog_free(fp);
}
void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
{
/* We have to repoint aux->prog to self, as we don't
* know whether fp here is the clone or the original.
*/
fp->aux->prog = fp;
bpf_prog_clone_free(fp_other);
}
struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
{
struct bpf_insn insn_buff[16], aux[2];
struct bpf_prog *clone, *tmp;
int insn_delta, insn_cnt;
struct bpf_insn *insn;
int i, rewritten;
if (!bpf_jit_blinding_enabled())
return prog;
clone = bpf_prog_clone_create(prog, GFP_USER);
if (!clone)
return ERR_PTR(-ENOMEM);
insn_cnt = clone->len;
insn = clone->insnsi;
for (i = 0; i < insn_cnt; i++, insn++) {
/* We temporarily need to hold the original ld64 insn
* so that we can still access the first part in the
* second blinding run.
*/
if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
insn[1].code == 0)
memcpy(aux, insn, sizeof(aux));
rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
if (!rewritten)
continue;
tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
if (!tmp) {
/* Patching may have repointed aux->prog during
* realloc from the original one, so we need to
* fix it up here on error.
*/
bpf_jit_prog_release_other(prog, clone);
return ERR_PTR(-ENOMEM);
}
clone = tmp;
insn_delta = rewritten - 1;
/* Walk new program and skip insns we just inserted. */
insn = clone->insnsi + i + insn_delta;
insn_cnt += insn_delta;
i += insn_delta;
}
return clone;
}
#endif /* CONFIG_BPF_JIT */
/* Base function for offset calculation. Needs to go into .text section,
* therefore keeping it non-static as well; will also be used by JITs
* anyway later on, so do not let the compiler omit it.
*/
noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
return 0;
}
EXPORT_SYMBOL_GPL(__bpf_call_base);
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
/**
* __bpf_prog_run - run eBPF program on a given context
* @ctx: is the data we are operating on
* @insn: is the array of eBPF instructions
*
* Decode and execute eBPF instructions.
*/
static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
u64 *stack)
{
u64 tmp;
static const void *jumptable[256] = {
[0 ... 255] = &&default_label,
/* Now overwrite non-defaults ... */
/* 32 bit ALU operations */
[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
[BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
[BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
[BPF_ALU | BPF_NEG] = &&ALU_NEG,
[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
/* 64 bit ALU operations */
[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
/* Call instruction */
[BPF_JMP | BPF_CALL] = &&JMP_CALL,
[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
/* Jumps */
[BPF_JMP | BPF_JA] = &&JMP_JA,
[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
[BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
[BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
[BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
[BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
[BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
[BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
[BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
[BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
/* Program return */
[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
/* Store instructions */
[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
/* Load instructions */
[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
};
u32 tail_call_cnt = 0;
void *ptr;
int off;
#define CONT ({ insn++; goto select_insn; })
#define CONT_JMP ({ insn++; goto select_insn; })
select_insn:
goto *jumptable[insn->code];
/* ALU */
#define ALU(OPCODE, OP) \
ALU64_##OPCODE##_X: \
DST = DST OP SRC; \
CONT; \
ALU_##OPCODE##_X: \
DST = (u32) DST OP (u32) SRC; \
CONT; \
ALU64_##OPCODE##_K: \
DST = DST OP IMM; \
CONT; \
ALU_##OPCODE##_K: \
DST = (u32) DST OP (u32) IMM; \
CONT;
ALU(ADD, +)
ALU(SUB, -)
ALU(AND, &)
ALU(OR, |)
ALU(LSH, <<)
ALU(RSH, >>)
ALU(XOR, ^)
ALU(MUL, *)
#undef ALU
ALU_NEG:
DST = (u32) -DST;
CONT;
ALU64_NEG:
DST = -DST;
CONT;
ALU_MOV_X:
DST = (u32) SRC;
CONT;
ALU_MOV_K:
DST = (u32) IMM;
CONT;
ALU64_MOV_X:
DST = SRC;
CONT;
ALU64_MOV_K:
DST = IMM;
CONT;
LD_IMM_DW:
DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
insn++;
CONT;
ALU64_ARSH_X:
(*(s64 *) &DST) >>= SRC;
CONT;
ALU64_ARSH_K:
(*(s64 *) &DST) >>= IMM;
CONT;
ALU64_MOD_X:
if (unlikely(SRC == 0))
return 0;
div64_u64_rem(DST, SRC, &tmp);
DST = tmp;
CONT;
ALU_MOD_X:
if (unlikely(SRC == 0))
return 0;
tmp = (u32) DST;
DST = do_div(tmp, (u32) SRC);
CONT;
ALU64_MOD_K:
div64_u64_rem(DST, IMM, &tmp);
DST = tmp;
CONT;
ALU_MOD_K:
tmp = (u32) DST;
DST = do_div(tmp, (u32) IMM);
CONT;
ALU64_DIV_X:
if (unlikely(SRC == 0))
return 0;
DST = div64_u64(DST, SRC);
CONT;
ALU_DIV_X:
if (unlikely(SRC == 0))
return 0;
tmp = (u32) DST;
do_div(tmp, (u32) SRC);
DST = (u32) tmp;
CONT;
ALU64_DIV_K:
DST = div64_u64(DST, IMM);
CONT;
ALU_DIV_K:
tmp = (u32) DST;
do_div(tmp, (u32) IMM);
DST = (u32) tmp;
CONT;
ALU_END_TO_BE:
switch (IMM) {
case 16:
DST = (__force u16) cpu_to_be16(DST);
break;
case 32:
DST = (__force u32) cpu_to_be32(DST);
break;
case 64:
DST = (__force u64) cpu_to_be64(DST);
break;
}
CONT;
ALU_END_TO_LE:
switch (IMM) {
case 16:
DST = (__force u16) cpu_to_le16(DST);
break;
case 32:
DST = (__force u32) cpu_to_le32(DST);
break;
case 64:
DST = (__force u64) cpu_to_le64(DST);
break;
}
CONT;
/* CALL */
JMP_CALL:
/* Function call scratches BPF_R1-BPF_R5 registers,
* preserves BPF_R6-BPF_R9, and stores return value
* into BPF_R0.
*/
BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
BPF_R4, BPF_R5);
CONT;
JMP_TAIL_CALL: {
struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct bpf_prog *prog;
u32 index = BPF_R3;
if (unlikely(index >= array->map.max_entries))
goto out;
if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
goto out;
tail_call_cnt++;
prog = READ_ONCE(array->ptrs[index]);
if (!prog)
goto out;
/* ARG1 at this point is guaranteed to point to CTX from
* the verifier side due to the fact that the tail call is
* handeled like a helper, that is, bpf_tail_call_proto,
* where arg1_type is ARG_PTR_TO_CTX.
*/
insn = prog->insnsi;
goto select_insn;
out:
CONT;
}
/* JMP */
JMP_JA:
insn += insn->off;
CONT;
JMP_JEQ_X:
if (DST == SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JEQ_K:
if (DST == IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JNE_X:
if (DST != SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JNE_K:
if (DST != IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JGT_X:
if (DST > SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JGT_K:
if (DST > IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JLT_X:
if (DST < SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JLT_K:
if (DST < IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JGE_X:
if (DST >= SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JGE_K:
if (DST >= IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JLE_X:
if (DST <= SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JLE_K:
if (DST <= IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSGT_X:
if (((s64) DST) > ((s64) SRC)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSGT_K:
if (((s64) DST) > ((s64) IMM)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSLT_X:
if (((s64) DST) < ((s64) SRC)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSLT_K:
if (((s64) DST) < ((s64) IMM)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSGE_X:
if (((s64) DST) >= ((s64) SRC)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSGE_K:
if (((s64) DST) >= ((s64) IMM)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSLE_X:
if (((s64) DST) <= ((s64) SRC)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSLE_K:
if (((s64) DST) <= ((s64) IMM)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSET_X:
if (DST & SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSET_K:
if (DST & IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_EXIT:
return BPF_R0;
/* STX and ST and LDX*/
#define LDST(SIZEOP, SIZE) \
STX_MEM_##SIZEOP: \
*(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
CONT; \
ST_MEM_##SIZEOP: \
*(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
CONT; \
LDX_MEM_##SIZEOP: \
DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
CONT;
LDST(B, u8)
LDST(H, u16)
LDST(W, u32)
LDST(DW, u64)
#undef LDST
STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
atomic_add((u32) SRC, (atomic_t *)(unsigned long)
(DST + insn->off));
CONT;
STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
(DST + insn->off));
CONT;
LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
off = IMM;
load_word:
/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
* appearing in the programs where ctx == skb
* (see may_access_skb() in the verifier). All programs
* keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
* bpf_convert_filter() saves it in BPF_R6, internal BPF
* verifier will check that BPF_R6 == ctx.
*
* BPF_ABS and BPF_IND are wrappers of function calls,
* so they scratch BPF_R1-BPF_R5 registers, preserve
* BPF_R6-BPF_R9, and store return value into BPF_R0.
*
* Implicit input:
* ctx == skb == BPF_R6 == CTX
*
* Explicit input:
* SRC == any register
* IMM == 32-bit immediate
*
* Output:
* BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
*/
ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
if (likely(ptr != NULL)) {
BPF_R0 = get_unaligned_be32(ptr);
CONT;
}
return 0;
LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
off = IMM;
load_half:
ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
if (likely(ptr != NULL)) {
BPF_R0 = get_unaligned_be16(ptr);
CONT;
}
return 0;
LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
off = IMM;
load_byte:
ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
if (likely(ptr != NULL)) {
BPF_R0 = *(u8 *)ptr;
CONT;
}
return 0;
LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
off = IMM + SRC;
goto load_word;
LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
off = IMM + SRC;
goto load_half;
LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
off = IMM + SRC;
goto load_byte;
default_label:
/* If we ever reach this, we have a bug somewhere. */
WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
return 0;
}
STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
#define DEFINE_BPF_PROG_RUN(stack_size) \
static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
{ \
u64 stack[stack_size / sizeof(u64)]; \
u64 regs[MAX_BPF_REG]; \
\
FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
ARG1 = (u64) (unsigned long) ctx; \
return ___bpf_prog_run(regs, insn, stack); \
}
#define EVAL1(FN, X) FN(X)
#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
static unsigned int (*interpreters[])(const void *ctx,
const struct bpf_insn *insn) = {
EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
};
#else
static unsigned int __bpf_prog_ret0(const void *ctx,
const struct bpf_insn *insn)
{
return 0;
}
#endif
bool bpf_prog_array_compatible(struct bpf_array *array,
const struct bpf_prog *fp)
{
if (!array->owner_prog_type) {
/* There's no owner yet where we could check for
* compatibility.
*/
array->owner_prog_type = fp->type;
array->owner_jited = fp->jited;
return true;
}
return array->owner_prog_type == fp->type &&
array->owner_jited == fp->jited;
}
static int bpf_check_tail_call(const struct bpf_prog *fp)
{
struct bpf_prog_aux *aux = fp->aux;
int i;
for (i = 0; i < aux->used_map_cnt; i++) {
struct bpf_map *map = aux->used_maps[i];
struct bpf_array *array;
if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
continue;
array = container_of(map, struct bpf_array, map);
if (!bpf_prog_array_compatible(array, fp))
return -EINVAL;
}
return 0;
}
/**
* bpf_prog_select_runtime - select exec runtime for BPF program
* @fp: bpf_prog populated with internal BPF program
* @err: pointer to error variable
*
* Try to JIT eBPF program, if JIT is not available, use interpreter.
* The BPF program will be executed via BPF_PROG_RUN() macro.
*/
struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
{
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
#else
fp->bpf_func = __bpf_prog_ret0;
#endif
/* eBPF JITs can rewrite the program in case constant
* blinding is active. However, in case of error during
* blinding, bpf_int_jit_compile() must always return a
* valid program, which in this case would simply not
* be JITed, but falls back to the interpreter.
*/
if (!bpf_prog_is_dev_bound(fp->aux)) {
fp = bpf_int_jit_compile(fp);
#ifdef CONFIG_BPF_JIT_ALWAYS_ON
if (!fp->jited) {
*err = -ENOTSUPP;
return fp;
}
#endif
} else {
*err = bpf_prog_offload_compile(fp);
if (*err)
return fp;
}
bpf_prog_lock_ro(fp);
/* The tail call compatibility check can only be done at
* this late stage as we need to determine, if we deal
* with JITed or non JITed program concatenations and not
* all eBPF JITs might immediately support all features.
*/
*err = bpf_check_tail_call(fp);
return fp;
}
EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
static unsigned int __bpf_prog_ret1(const void *ctx,
const struct bpf_insn *insn)
{
return 1;
}
static struct bpf_prog_dummy {
struct bpf_prog prog;
} dummy_bpf_prog = {
.prog = {
.bpf_func = __bpf_prog_ret1,
},
};
/* to avoid allocating empty bpf_prog_array for cgroups that
* don't have bpf program attached use one global 'empty_prog_array'
* It will not be modified the caller of bpf_prog_array_alloc()
* (since caller requested prog_cnt == 0)
* that pointer should be 'freed' by bpf_prog_array_free()
*/
static struct {
struct bpf_prog_array hdr;
struct bpf_prog *null_prog;
} empty_prog_array = {
.null_prog = NULL,
};
struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
{
if (prog_cnt)
return kzalloc(sizeof(struct bpf_prog_array) +
sizeof(struct bpf_prog *) * (prog_cnt + 1),
flags);
return &empty_prog_array.hdr;
}
void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
{
if (!progs ||
progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
return;
kfree_rcu(progs, rcu);
}
int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
{
struct bpf_prog **prog;
u32 cnt = 0;
rcu_read_lock();
prog = rcu_dereference(progs)->progs;
for (; *prog; prog++)
if (*prog != &dummy_bpf_prog.prog)
cnt++;
rcu_read_unlock();
return cnt;
}
int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
__u32 __user *prog_ids, u32 cnt)
{
struct bpf_prog **prog;
u32 i = 0, id;
rcu_read_lock();
prog = rcu_dereference(progs)->progs;
for (; *prog; prog++) {
id = (*prog)->aux->id;
if (copy_to_user(prog_ids + i, &id, sizeof(id))) {
rcu_read_unlock();
return -EFAULT;
}
if (++i == cnt) {
prog++;
break;
}
}
rcu_read_unlock();
if (*prog)
return -ENOSPC;
return 0;
}
void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
struct bpf_prog *old_prog)
{
struct bpf_prog **prog = progs->progs;
for (; *prog; prog++)
if (*prog == old_prog) {
WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
break;
}
}
int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
struct bpf_prog *exclude_prog,
struct bpf_prog *include_prog,
struct bpf_prog_array **new_array)
{
int new_prog_cnt, carry_prog_cnt = 0;
struct bpf_prog **existing_prog;
struct bpf_prog_array *array;
int new_prog_idx = 0;
/* Figure out how many existing progs we need to carry over to
* the new array.
*/
if (old_array) {
existing_prog = old_array->progs;
for (; *existing_prog; existing_prog++) {
if (*existing_prog != exclude_prog &&
*existing_prog != &dummy_bpf_prog.prog)
carry_prog_cnt++;
if (*existing_prog == include_prog)
return -EEXIST;
}
}
/* How many progs (not NULL) will be in the new array? */
new_prog_cnt = carry_prog_cnt;
if (include_prog)
new_prog_cnt += 1;
/* Do we have any prog (not NULL) in the new array? */
if (!new_prog_cnt) {
*new_array = NULL;
return 0;
}
/* +1 as the end of prog_array is marked with NULL */
array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
if (!array)
return -ENOMEM;
/* Fill in the new prog array */
if (carry_prog_cnt) {
existing_prog = old_array->progs;
for (; *existing_prog; existing_prog++)
if (*existing_prog != exclude_prog &&
*existing_prog != &dummy_bpf_prog.prog)
array->progs[new_prog_idx++] = *existing_prog;
}
if (include_prog)
array->progs[new_prog_idx++] = include_prog;
array->progs[new_prog_idx] = NULL;
*new_array = array;
return 0;
}
static void bpf_prog_free_deferred(struct work_struct *work)
{
struct bpf_prog_aux *aux;
aux = container_of(work, struct bpf_prog_aux, work);
if (bpf_prog_is_dev_bound(aux))
bpf_prog_offload_destroy(aux->prog);
bpf_jit_free(aux->prog);
}
/* Free internal BPF program */
void bpf_prog_free(struct bpf_prog *fp)
{
struct bpf_prog_aux *aux = fp->aux;
INIT_WORK(&aux->work, bpf_prog_free_deferred);
schedule_work(&aux->work);
}
EXPORT_SYMBOL_GPL(bpf_prog_free);
/* RNG for unpriviledged user space with separated state from prandom_u32(). */
static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
void bpf_user_rnd_init_once(void)
{
prandom_init_once(&bpf_user_rnd_state);
}
BPF_CALL_0(bpf_user_rnd_u32)
{
/* Should someone ever have the rather unwise idea to use some
* of the registers passed into this function, then note that
* this function is called from native eBPF and classic-to-eBPF
* transformations. Register assignments from both sides are
* different, f.e. classic always sets fn(ctx, A, X) here.
*/
struct rnd_state *state;
u32 res;
state = &get_cpu_var(bpf_user_rnd_state);
res = prandom_u32_state(state);
put_cpu_var(bpf_user_rnd_state);
return res;
}
/* Weak definitions of helper functions in case we don't have bpf syscall. */
const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
const struct bpf_func_proto bpf_map_update_elem_proto __weak;
const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
const struct bpf_func_proto bpf_get_current_comm_proto __weak;
const struct bpf_func_proto bpf_sock_map_update_proto __weak;
const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
{
return NULL;
}
u64 __weak
bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
{
return -ENOTSUPP;
}
/* Always built-in helper functions. */
const struct bpf_func_proto bpf_tail_call_proto = {
.func = NULL,
.gpl_only = false,
.ret_type = RET_VOID,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
* It is encouraged to implement bpf_int_jit_compile() instead, so that
* eBPF and implicitly also cBPF can get JITed!
*/
struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
{
return prog;
}
/* Stub for JITs that support eBPF. All cBPF code gets transformed into
* eBPF by the kernel and is later compiled by bpf_int_jit_compile().
*/
void __weak bpf_jit_compile(struct bpf_prog *prog)
{
}
bool __weak bpf_helper_changes_pkt_data(void *func)
{
return false;
}
/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
* skb_copy_bits(), so provide a weak definition of it for NET-less config.
*/
int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
int len)
{
return -EFAULT;
}
/* All definitions of tracepoints related to BPF. */
#define CREATE_TRACE_POINTS
#include <linux/bpf_trace.h>
EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
/* These are only used within the BPF_SYSCALL code */
#ifdef CONFIG_BPF_SYSCALL
EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
#endif