3308 lines
93 KiB
C
3308 lines
93 KiB
C
/******************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2007 - 2015 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
|
|
* USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called COPYING.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <linuxwifi@intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2005 - 2015 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*****************************************************************************/
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-aspm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include "iwl-drv.h"
|
|
#include "iwl-trans.h"
|
|
#include "iwl-csr.h"
|
|
#include "iwl-prph.h"
|
|
#include "iwl-scd.h"
|
|
#include "iwl-agn-hw.h"
|
|
#include "fw/error-dump.h"
|
|
#include "internal.h"
|
|
#include "iwl-fh.h"
|
|
|
|
/* extended range in FW SRAM */
|
|
#define IWL_FW_MEM_EXTENDED_START 0x40000
|
|
#define IWL_FW_MEM_EXTENDED_END 0x57FFF
|
|
|
|
static void iwl_trans_pcie_dump_regs(struct iwl_trans *trans)
|
|
{
|
|
#define PCI_DUMP_SIZE 64
|
|
#define PREFIX_LEN 32
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct pci_dev *pdev = trans_pcie->pci_dev;
|
|
u32 i, pos, alloc_size, *ptr, *buf;
|
|
char *prefix;
|
|
|
|
if (trans_pcie->pcie_dbg_dumped_once)
|
|
return;
|
|
|
|
/* Should be a multiple of 4 */
|
|
BUILD_BUG_ON(PCI_DUMP_SIZE > 4096 || PCI_DUMP_SIZE & 0x3);
|
|
/* Alloc a max size buffer */
|
|
if (PCI_ERR_ROOT_ERR_SRC + 4 > PCI_DUMP_SIZE)
|
|
alloc_size = PCI_ERR_ROOT_ERR_SRC + 4 + PREFIX_LEN;
|
|
else
|
|
alloc_size = PCI_DUMP_SIZE + PREFIX_LEN;
|
|
buf = kmalloc(alloc_size, GFP_ATOMIC);
|
|
if (!buf)
|
|
return;
|
|
prefix = (char *)buf + alloc_size - PREFIX_LEN;
|
|
|
|
IWL_ERR(trans, "iwlwifi transaction failed, dumping registers\n");
|
|
|
|
/* Print wifi device registers */
|
|
sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
|
|
IWL_ERR(trans, "iwlwifi device config registers:\n");
|
|
for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
|
|
if (pci_read_config_dword(pdev, i, ptr))
|
|
goto err_read;
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
|
|
|
|
IWL_ERR(trans, "iwlwifi device memory mapped registers:\n");
|
|
for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
|
|
*ptr = iwl_read32(trans, i);
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
|
|
if (pos) {
|
|
IWL_ERR(trans, "iwlwifi device AER capability structure:\n");
|
|
for (i = 0, ptr = buf; i < PCI_ERR_ROOT_COMMAND; i += 4, ptr++)
|
|
if (pci_read_config_dword(pdev, pos + i, ptr))
|
|
goto err_read;
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
|
|
32, 4, buf, i, 0);
|
|
}
|
|
|
|
/* Print parent device registers next */
|
|
if (!pdev->bus->self)
|
|
goto out;
|
|
|
|
pdev = pdev->bus->self;
|
|
sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
|
|
|
|
IWL_ERR(trans, "iwlwifi parent port (%s) config registers:\n",
|
|
pci_name(pdev));
|
|
for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
|
|
if (pci_read_config_dword(pdev, i, ptr))
|
|
goto err_read;
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
|
|
|
|
/* Print root port AER registers */
|
|
pos = 0;
|
|
pdev = pcie_find_root_port(pdev);
|
|
if (pdev)
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
|
|
if (pos) {
|
|
IWL_ERR(trans, "iwlwifi root port (%s) AER cap structure:\n",
|
|
pci_name(pdev));
|
|
sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
|
|
for (i = 0, ptr = buf; i <= PCI_ERR_ROOT_ERR_SRC; i += 4, ptr++)
|
|
if (pci_read_config_dword(pdev, pos + i, ptr))
|
|
goto err_read;
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32,
|
|
4, buf, i, 0);
|
|
}
|
|
goto out;
|
|
|
|
err_read:
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
|
|
IWL_ERR(trans, "Read failed at 0x%X\n", i);
|
|
out:
|
|
trans_pcie->pcie_dbg_dumped_once = 1;
|
|
kfree(buf);
|
|
}
|
|
|
|
static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (!trans_pcie->fw_mon_page)
|
|
return;
|
|
|
|
dma_unmap_page(trans->dev, trans_pcie->fw_mon_phys,
|
|
trans_pcie->fw_mon_size, DMA_FROM_DEVICE);
|
|
__free_pages(trans_pcie->fw_mon_page,
|
|
get_order(trans_pcie->fw_mon_size));
|
|
trans_pcie->fw_mon_page = NULL;
|
|
trans_pcie->fw_mon_phys = 0;
|
|
trans_pcie->fw_mon_size = 0;
|
|
}
|
|
|
|
static void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct page *page = NULL;
|
|
dma_addr_t phys;
|
|
u32 size = 0;
|
|
u8 power;
|
|
|
|
if (!max_power) {
|
|
/* default max_power is maximum */
|
|
max_power = 26;
|
|
} else {
|
|
max_power += 11;
|
|
}
|
|
|
|
if (WARN(max_power > 26,
|
|
"External buffer size for monitor is too big %d, check the FW TLV\n",
|
|
max_power))
|
|
return;
|
|
|
|
if (trans_pcie->fw_mon_page) {
|
|
dma_sync_single_for_device(trans->dev, trans_pcie->fw_mon_phys,
|
|
trans_pcie->fw_mon_size,
|
|
DMA_FROM_DEVICE);
|
|
return;
|
|
}
|
|
|
|
phys = 0;
|
|
for (power = max_power; power >= 11; power--) {
|
|
int order;
|
|
|
|
size = BIT(power);
|
|
order = get_order(size);
|
|
page = alloc_pages(__GFP_COMP | __GFP_NOWARN | __GFP_ZERO,
|
|
order);
|
|
if (!page)
|
|
continue;
|
|
|
|
phys = dma_map_page(trans->dev, page, 0, PAGE_SIZE << order,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(trans->dev, phys)) {
|
|
__free_pages(page, order);
|
|
page = NULL;
|
|
continue;
|
|
}
|
|
IWL_INFO(trans,
|
|
"Allocated 0x%08x bytes (order %d) for firmware monitor.\n",
|
|
size, order);
|
|
break;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!page))
|
|
return;
|
|
|
|
if (power != max_power)
|
|
IWL_ERR(trans,
|
|
"Sorry - debug buffer is only %luK while you requested %luK\n",
|
|
(unsigned long)BIT(power - 10),
|
|
(unsigned long)BIT(max_power - 10));
|
|
|
|
trans_pcie->fw_mon_page = page;
|
|
trans_pcie->fw_mon_phys = phys;
|
|
trans_pcie->fw_mon_size = size;
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg)
|
|
{
|
|
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
|
|
((reg & 0x0000ffff) | (2 << 28)));
|
|
return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val)
|
|
{
|
|
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val);
|
|
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
|
|
((reg & 0x0000ffff) | (3 << 28)));
|
|
}
|
|
|
|
static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux)
|
|
{
|
|
if (trans->cfg->apmg_not_supported)
|
|
return;
|
|
|
|
if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold))
|
|
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
|
|
APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
|
|
~APMG_PS_CTRL_MSK_PWR_SRC);
|
|
else
|
|
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
|
|
APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
|
|
~APMG_PS_CTRL_MSK_PWR_SRC);
|
|
}
|
|
|
|
/* PCI registers */
|
|
#define PCI_CFG_RETRY_TIMEOUT 0x041
|
|
|
|
void iwl_pcie_apm_config(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u16 lctl;
|
|
u16 cap;
|
|
|
|
/*
|
|
* HW bug W/A for instability in PCIe bus L0S->L1 transition.
|
|
* Check if BIOS (or OS) enabled L1-ASPM on this device.
|
|
* If so (likely), disable L0S, so device moves directly L0->L1;
|
|
* costs negligible amount of power savings.
|
|
* If not (unlikely), enable L0S, so there is at least some
|
|
* power savings, even without L1.
|
|
*/
|
|
pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl);
|
|
if (lctl & PCI_EXP_LNKCTL_ASPM_L1)
|
|
iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
else
|
|
iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
|
|
|
|
pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap);
|
|
trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN;
|
|
IWL_DEBUG_POWER(trans, "L1 %sabled - LTR %sabled\n",
|
|
(lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis",
|
|
trans->ltr_enabled ? "En" : "Dis");
|
|
}
|
|
|
|
/*
|
|
* Start up NIC's basic functionality after it has been reset
|
|
* (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop())
|
|
* NOTE: This does not load uCode nor start the embedded processor
|
|
*/
|
|
static int iwl_pcie_apm_init(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
|
|
IWL_DEBUG_INFO(trans, "Init card's basic functions\n");
|
|
|
|
/*
|
|
* Use "set_bit" below rather than "write", to preserve any hardware
|
|
* bits already set by default after reset.
|
|
*/
|
|
|
|
/* Disable L0S exit timer (platform NMI Work/Around) */
|
|
if (trans->cfg->device_family < IWL_DEVICE_FAMILY_8000)
|
|
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
|
|
CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
|
|
|
|
/*
|
|
* Disable L0s without affecting L1;
|
|
* don't wait for ICH L0s (ICH bug W/A)
|
|
*/
|
|
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
|
|
CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
|
|
|
|
/* Set FH wait threshold to maximum (HW error during stress W/A) */
|
|
iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
|
|
|
|
/*
|
|
* Enable HAP INTA (interrupt from management bus) to
|
|
* wake device's PCI Express link L1a -> L0s
|
|
*/
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
|
|
|
|
iwl_pcie_apm_config(trans);
|
|
|
|
/* Configure analog phase-lock-loop before activating to D0A */
|
|
if (trans->cfg->base_params->pll_cfg)
|
|
iwl_set_bit(trans, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL);
|
|
|
|
/*
|
|
* Set "initialization complete" bit to move adapter from
|
|
* D0U* --> D0A* (powered-up active) state.
|
|
*/
|
|
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/*
|
|
* Wait for clock stabilization; once stabilized, access to
|
|
* device-internal resources is supported, e.g. iwl_write_prph()
|
|
* and accesses to uCode SRAM.
|
|
*/
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
|
|
if (ret < 0) {
|
|
IWL_ERR(trans, "Failed to init the card\n");
|
|
return ret;
|
|
}
|
|
|
|
if (trans->cfg->host_interrupt_operation_mode) {
|
|
/*
|
|
* This is a bit of an abuse - This is needed for 7260 / 3160
|
|
* only check host_interrupt_operation_mode even if this is
|
|
* not related to host_interrupt_operation_mode.
|
|
*
|
|
* Enable the oscillator to count wake up time for L1 exit. This
|
|
* consumes slightly more power (100uA) - but allows to be sure
|
|
* that we wake up from L1 on time.
|
|
*
|
|
* This looks weird: read twice the same register, discard the
|
|
* value, set a bit, and yet again, read that same register
|
|
* just to discard the value. But that's the way the hardware
|
|
* seems to like it.
|
|
*/
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL);
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
}
|
|
|
|
/*
|
|
* Enable DMA clock and wait for it to stabilize.
|
|
*
|
|
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0"
|
|
* bits do not disable clocks. This preserves any hardware
|
|
* bits already set by default in "CLK_CTRL_REG" after reset.
|
|
*/
|
|
if (!trans->cfg->apmg_not_supported) {
|
|
iwl_write_prph(trans, APMG_CLK_EN_REG,
|
|
APMG_CLK_VAL_DMA_CLK_RQT);
|
|
udelay(20);
|
|
|
|
/* Disable L1-Active */
|
|
iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
|
|
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
|
|
|
|
/* Clear the interrupt in APMG if the NIC is in RFKILL */
|
|
iwl_write_prph(trans, APMG_RTC_INT_STT_REG,
|
|
APMG_RTC_INT_STT_RFKILL);
|
|
}
|
|
|
|
set_bit(STATUS_DEVICE_ENABLED, &trans->status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enable LP XTAL to avoid HW bug where device may consume much power if
|
|
* FW is not loaded after device reset. LP XTAL is disabled by default
|
|
* after device HW reset. Do it only if XTAL is fed by internal source.
|
|
* Configure device's "persistence" mode to avoid resetting XTAL again when
|
|
* SHRD_HW_RST occurs in S3.
|
|
*/
|
|
static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
u32 apmg_gp1_reg;
|
|
u32 apmg_xtal_cfg_reg;
|
|
u32 dl_cfg_reg;
|
|
|
|
/* Force XTAL ON */
|
|
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
|
|
|
|
iwl_pcie_sw_reset(trans);
|
|
|
|
/*
|
|
* Set "initialization complete" bit to move adapter from
|
|
* D0U* --> D0A* (powered-up active) state.
|
|
*/
|
|
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/*
|
|
* Wait for clock stabilization; once stabilized, access to
|
|
* device-internal resources is possible.
|
|
*/
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
25000);
|
|
if (WARN_ON(ret < 0)) {
|
|
IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n");
|
|
/* Release XTAL ON request */
|
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clear "disable persistence" to avoid LP XTAL resetting when
|
|
* SHRD_HW_RST is applied in S3.
|
|
*/
|
|
iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG,
|
|
APMG_PCIDEV_STT_VAL_PERSIST_DIS);
|
|
|
|
/*
|
|
* Force APMG XTAL to be active to prevent its disabling by HW
|
|
* caused by APMG idle state.
|
|
*/
|
|
apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans,
|
|
SHR_APMG_XTAL_CFG_REG);
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
|
|
apmg_xtal_cfg_reg |
|
|
SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
|
|
|
|
iwl_pcie_sw_reset(trans);
|
|
|
|
/* Enable LP XTAL by indirect access through CSR */
|
|
apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG);
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg |
|
|
SHR_APMG_GP1_WF_XTAL_LP_EN |
|
|
SHR_APMG_GP1_CHICKEN_BIT_SELECT);
|
|
|
|
/* Clear delay line clock power up */
|
|
dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG);
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg &
|
|
~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP);
|
|
|
|
/*
|
|
* Enable persistence mode to avoid LP XTAL resetting when
|
|
* SHRD_HW_RST is applied in S3.
|
|
*/
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
|
|
|
|
/*
|
|
* Clear "initialization complete" bit to move adapter from
|
|
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
|
|
*/
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/* Activates XTAL resources monitor */
|
|
__iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG,
|
|
CSR_MONITOR_XTAL_RESOURCES);
|
|
|
|
/* Release XTAL ON request */
|
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
|
|
udelay(10);
|
|
|
|
/* Release APMG XTAL */
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
|
|
apmg_xtal_cfg_reg &
|
|
~SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
|
|
}
|
|
|
|
void iwl_pcie_apm_stop_master(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
|
|
/* stop device's busmaster DMA activity */
|
|
iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
|
|
|
|
ret = iwl_poll_bit(trans, CSR_RESET,
|
|
CSR_RESET_REG_FLAG_MASTER_DISABLED,
|
|
CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
|
|
if (ret < 0)
|
|
IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n");
|
|
|
|
IWL_DEBUG_INFO(trans, "stop master\n");
|
|
}
|
|
|
|
static void iwl_pcie_apm_stop(struct iwl_trans *trans, bool op_mode_leave)
|
|
{
|
|
IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n");
|
|
|
|
if (op_mode_leave) {
|
|
if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
|
|
iwl_pcie_apm_init(trans);
|
|
|
|
/* inform ME that we are leaving */
|
|
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000)
|
|
iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
|
|
APMG_PCIDEV_STT_VAL_WAKE_ME);
|
|
else if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
|
|
iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
|
|
CSR_RESET_LINK_PWR_MGMT_DISABLED);
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PREPARE |
|
|
CSR_HW_IF_CONFIG_REG_ENABLE_PME);
|
|
mdelay(1);
|
|
iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
|
|
CSR_RESET_LINK_PWR_MGMT_DISABLED);
|
|
}
|
|
mdelay(5);
|
|
}
|
|
|
|
clear_bit(STATUS_DEVICE_ENABLED, &trans->status);
|
|
|
|
/* Stop device's DMA activity */
|
|
iwl_pcie_apm_stop_master(trans);
|
|
|
|
if (trans->cfg->lp_xtal_workaround) {
|
|
iwl_pcie_apm_lp_xtal_enable(trans);
|
|
return;
|
|
}
|
|
|
|
iwl_pcie_sw_reset(trans);
|
|
|
|
/*
|
|
* Clear "initialization complete" bit to move adapter from
|
|
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
|
|
*/
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
}
|
|
|
|
static int iwl_pcie_nic_init(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int ret;
|
|
|
|
/* nic_init */
|
|
spin_lock(&trans_pcie->irq_lock);
|
|
ret = iwl_pcie_apm_init(trans);
|
|
spin_unlock(&trans_pcie->irq_lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
iwl_pcie_set_pwr(trans, false);
|
|
|
|
iwl_op_mode_nic_config(trans->op_mode);
|
|
|
|
/* Allocate the RX queue, or reset if it is already allocated */
|
|
iwl_pcie_rx_init(trans);
|
|
|
|
/* Allocate or reset and init all Tx and Command queues */
|
|
if (iwl_pcie_tx_init(trans))
|
|
return -ENOMEM;
|
|
|
|
if (trans->cfg->base_params->shadow_reg_enable) {
|
|
/* enable shadow regs in HW */
|
|
iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF);
|
|
IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define HW_READY_TIMEOUT (50)
|
|
|
|
/* Note: returns poll_bit return value, which is >= 0 if success */
|
|
static int iwl_pcie_set_hw_ready(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
|
|
|
|
/* See if we got it */
|
|
ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
HW_READY_TIMEOUT);
|
|
|
|
if (ret >= 0)
|
|
iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE);
|
|
|
|
IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : "");
|
|
return ret;
|
|
}
|
|
|
|
/* Note: returns standard 0/-ERROR code */
|
|
int iwl_pcie_prepare_card_hw(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
int t = 0;
|
|
int iter;
|
|
|
|
IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n");
|
|
|
|
ret = iwl_pcie_set_hw_ready(trans);
|
|
/* If the card is ready, exit 0 */
|
|
if (ret >= 0)
|
|
return 0;
|
|
|
|
iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
|
|
CSR_RESET_LINK_PWR_MGMT_DISABLED);
|
|
usleep_range(1000, 2000);
|
|
|
|
for (iter = 0; iter < 10; iter++) {
|
|
/* If HW is not ready, prepare the conditions to check again */
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PREPARE);
|
|
|
|
do {
|
|
ret = iwl_pcie_set_hw_ready(trans);
|
|
if (ret >= 0)
|
|
return 0;
|
|
|
|
usleep_range(200, 1000);
|
|
t += 200;
|
|
} while (t < 150000);
|
|
msleep(25);
|
|
}
|
|
|
|
IWL_ERR(trans, "Couldn't prepare the card\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ucode
|
|
*/
|
|
static void iwl_pcie_load_firmware_chunk_fh(struct iwl_trans *trans,
|
|
u32 dst_addr, dma_addr_t phy_addr,
|
|
u32 byte_cnt)
|
|
{
|
|
iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
|
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
|
|
|
|
iwl_write32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL),
|
|
dst_addr);
|
|
|
|
iwl_write32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
|
|
phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
|
|
|
|
iwl_write32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
|
|
(iwl_get_dma_hi_addr(phy_addr)
|
|
<< FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
|
|
|
|
iwl_write32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
|
|
BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM) |
|
|
BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX) |
|
|
FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
|
|
|
|
iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
|
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
|
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
|
|
FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
|
|
}
|
|
|
|
static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans,
|
|
u32 dst_addr, dma_addr_t phy_addr,
|
|
u32 byte_cnt)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
trans_pcie->ucode_write_complete = false;
|
|
|
|
if (!iwl_trans_grab_nic_access(trans, &flags))
|
|
return -EIO;
|
|
|
|
iwl_pcie_load_firmware_chunk_fh(trans, dst_addr, phy_addr,
|
|
byte_cnt);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
|
|
ret = wait_event_timeout(trans_pcie->ucode_write_waitq,
|
|
trans_pcie->ucode_write_complete, 5 * HZ);
|
|
if (!ret) {
|
|
IWL_ERR(trans, "Failed to load firmware chunk!\n");
|
|
iwl_trans_pcie_dump_regs(trans);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num,
|
|
const struct fw_desc *section)
|
|
{
|
|
u8 *v_addr;
|
|
dma_addr_t p_addr;
|
|
u32 offset, chunk_sz = min_t(u32, FH_MEM_TB_MAX_LENGTH, section->len);
|
|
int ret = 0;
|
|
|
|
IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n",
|
|
section_num);
|
|
|
|
v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr,
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!v_addr) {
|
|
IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n");
|
|
chunk_sz = PAGE_SIZE;
|
|
v_addr = dma_alloc_coherent(trans->dev, chunk_sz,
|
|
&p_addr, GFP_KERNEL);
|
|
if (!v_addr)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (offset = 0; offset < section->len; offset += chunk_sz) {
|
|
u32 copy_size, dst_addr;
|
|
bool extended_addr = false;
|
|
|
|
copy_size = min_t(u32, chunk_sz, section->len - offset);
|
|
dst_addr = section->offset + offset;
|
|
|
|
if (dst_addr >= IWL_FW_MEM_EXTENDED_START &&
|
|
dst_addr <= IWL_FW_MEM_EXTENDED_END)
|
|
extended_addr = true;
|
|
|
|
if (extended_addr)
|
|
iwl_set_bits_prph(trans, LMPM_CHICK,
|
|
LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
|
|
memcpy(v_addr, (u8 *)section->data + offset, copy_size);
|
|
ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr,
|
|
copy_size);
|
|
|
|
if (extended_addr)
|
|
iwl_clear_bits_prph(trans, LMPM_CHICK,
|
|
LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
|
|
if (ret) {
|
|
IWL_ERR(trans,
|
|
"Could not load the [%d] uCode section\n",
|
|
section_num);
|
|
break;
|
|
}
|
|
}
|
|
|
|
dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr);
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_pcie_load_cpu_sections_8000(struct iwl_trans *trans,
|
|
const struct fw_img *image,
|
|
int cpu,
|
|
int *first_ucode_section)
|
|
{
|
|
int shift_param;
|
|
int i, ret = 0, sec_num = 0x1;
|
|
u32 val, last_read_idx = 0;
|
|
|
|
if (cpu == 1) {
|
|
shift_param = 0;
|
|
*first_ucode_section = 0;
|
|
} else {
|
|
shift_param = 16;
|
|
(*first_ucode_section)++;
|
|
}
|
|
|
|
for (i = *first_ucode_section; i < image->num_sec; i++) {
|
|
last_read_idx = i;
|
|
|
|
/*
|
|
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU1 to CPU2.
|
|
* PAGING_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU2 non paged to CPU2 paging sec.
|
|
*/
|
|
if (!image->sec[i].data ||
|
|
image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
|
|
image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
|
|
IWL_DEBUG_FW(trans,
|
|
"Break since Data not valid or Empty section, sec = %d\n",
|
|
i);
|
|
break;
|
|
}
|
|
|
|
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Notify ucode of loaded section number and status */
|
|
val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS);
|
|
val = val | (sec_num << shift_param);
|
|
iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val);
|
|
|
|
sec_num = (sec_num << 1) | 0x1;
|
|
}
|
|
|
|
*first_ucode_section = last_read_idx;
|
|
|
|
iwl_enable_interrupts(trans);
|
|
|
|
if (trans->cfg->use_tfh) {
|
|
if (cpu == 1)
|
|
iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS,
|
|
0xFFFF);
|
|
else
|
|
iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS,
|
|
0xFFFFFFFF);
|
|
} else {
|
|
if (cpu == 1)
|
|
iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS,
|
|
0xFFFF);
|
|
else
|
|
iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS,
|
|
0xFFFFFFFF);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans,
|
|
const struct fw_img *image,
|
|
int cpu,
|
|
int *first_ucode_section)
|
|
{
|
|
int i, ret = 0;
|
|
u32 last_read_idx = 0;
|
|
|
|
if (cpu == 1)
|
|
*first_ucode_section = 0;
|
|
else
|
|
(*first_ucode_section)++;
|
|
|
|
for (i = *first_ucode_section; i < image->num_sec; i++) {
|
|
last_read_idx = i;
|
|
|
|
/*
|
|
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU1 to CPU2.
|
|
* PAGING_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU2 non paged to CPU2 paging sec.
|
|
*/
|
|
if (!image->sec[i].data ||
|
|
image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
|
|
image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
|
|
IWL_DEBUG_FW(trans,
|
|
"Break since Data not valid or Empty section, sec = %d\n",
|
|
i);
|
|
break;
|
|
}
|
|
|
|
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
*first_ucode_section = last_read_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void iwl_pcie_apply_destination(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
const struct iwl_fw_dbg_dest_tlv *dest = trans->dbg_dest_tlv;
|
|
int i;
|
|
|
|
if (dest->version)
|
|
IWL_ERR(trans,
|
|
"DBG DEST version is %d - expect issues\n",
|
|
dest->version);
|
|
|
|
IWL_INFO(trans, "Applying debug destination %s\n",
|
|
get_fw_dbg_mode_string(dest->monitor_mode));
|
|
|
|
if (dest->monitor_mode == EXTERNAL_MODE)
|
|
iwl_pcie_alloc_fw_monitor(trans, dest->size_power);
|
|
else
|
|
IWL_WARN(trans, "PCI should have external buffer debug\n");
|
|
|
|
for (i = 0; i < trans->dbg_dest_reg_num; i++) {
|
|
u32 addr = le32_to_cpu(dest->reg_ops[i].addr);
|
|
u32 val = le32_to_cpu(dest->reg_ops[i].val);
|
|
|
|
switch (dest->reg_ops[i].op) {
|
|
case CSR_ASSIGN:
|
|
iwl_write32(trans, addr, val);
|
|
break;
|
|
case CSR_SETBIT:
|
|
iwl_set_bit(trans, addr, BIT(val));
|
|
break;
|
|
case CSR_CLEARBIT:
|
|
iwl_clear_bit(trans, addr, BIT(val));
|
|
break;
|
|
case PRPH_ASSIGN:
|
|
iwl_write_prph(trans, addr, val);
|
|
break;
|
|
case PRPH_SETBIT:
|
|
iwl_set_bits_prph(trans, addr, BIT(val));
|
|
break;
|
|
case PRPH_CLEARBIT:
|
|
iwl_clear_bits_prph(trans, addr, BIT(val));
|
|
break;
|
|
case PRPH_BLOCKBIT:
|
|
if (iwl_read_prph(trans, addr) & BIT(val)) {
|
|
IWL_ERR(trans,
|
|
"BIT(%u) in address 0x%x is 1, stopping FW configuration\n",
|
|
val, addr);
|
|
goto monitor;
|
|
}
|
|
break;
|
|
default:
|
|
IWL_ERR(trans, "FW debug - unknown OP %d\n",
|
|
dest->reg_ops[i].op);
|
|
break;
|
|
}
|
|
}
|
|
|
|
monitor:
|
|
if (dest->monitor_mode == EXTERNAL_MODE && trans_pcie->fw_mon_size) {
|
|
iwl_write_prph(trans, le32_to_cpu(dest->base_reg),
|
|
trans_pcie->fw_mon_phys >> dest->base_shift);
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
|
|
iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
|
|
(trans_pcie->fw_mon_phys +
|
|
trans_pcie->fw_mon_size - 256) >>
|
|
dest->end_shift);
|
|
else
|
|
iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
|
|
(trans_pcie->fw_mon_phys +
|
|
trans_pcie->fw_mon_size) >>
|
|
dest->end_shift);
|
|
}
|
|
}
|
|
|
|
static int iwl_pcie_load_given_ucode(struct iwl_trans *trans,
|
|
const struct fw_img *image)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int ret = 0;
|
|
int first_ucode_section;
|
|
|
|
IWL_DEBUG_FW(trans, "working with %s CPU\n",
|
|
image->is_dual_cpus ? "Dual" : "Single");
|
|
|
|
/* load to FW the binary non secured sections of CPU1 */
|
|
ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (image->is_dual_cpus) {
|
|
/* set CPU2 header address */
|
|
iwl_write_prph(trans,
|
|
LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
|
|
LMPM_SECURE_CPU2_HDR_MEM_SPACE);
|
|
|
|
/* load to FW the binary sections of CPU2 */
|
|
ret = iwl_pcie_load_cpu_sections(trans, image, 2,
|
|
&first_ucode_section);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* supported for 7000 only for the moment */
|
|
if (iwlwifi_mod_params.fw_monitor &&
|
|
trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
|
|
iwl_pcie_alloc_fw_monitor(trans, 0);
|
|
|
|
if (trans_pcie->fw_mon_size) {
|
|
iwl_write_prph(trans, MON_BUFF_BASE_ADDR,
|
|
trans_pcie->fw_mon_phys >> 4);
|
|
iwl_write_prph(trans, MON_BUFF_END_ADDR,
|
|
(trans_pcie->fw_mon_phys +
|
|
trans_pcie->fw_mon_size) >> 4);
|
|
}
|
|
} else if (trans->dbg_dest_tlv) {
|
|
iwl_pcie_apply_destination(trans);
|
|
}
|
|
|
|
iwl_enable_interrupts(trans);
|
|
|
|
/* release CPU reset */
|
|
iwl_write32(trans, CSR_RESET, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_pcie_load_given_ucode_8000(struct iwl_trans *trans,
|
|
const struct fw_img *image)
|
|
{
|
|
int ret = 0;
|
|
int first_ucode_section;
|
|
|
|
IWL_DEBUG_FW(trans, "working with %s CPU\n",
|
|
image->is_dual_cpus ? "Dual" : "Single");
|
|
|
|
if (trans->dbg_dest_tlv)
|
|
iwl_pcie_apply_destination(trans);
|
|
|
|
IWL_DEBUG_POWER(trans, "Original WFPM value = 0x%08X\n",
|
|
iwl_read_prph(trans, WFPM_GP2));
|
|
|
|
/*
|
|
* Set default value. On resume reading the values that were
|
|
* zeored can provide debug data on the resume flow.
|
|
* This is for debugging only and has no functional impact.
|
|
*/
|
|
iwl_write_prph(trans, WFPM_GP2, 0x01010101);
|
|
|
|
/* configure the ucode to be ready to get the secured image */
|
|
/* release CPU reset */
|
|
iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT);
|
|
|
|
/* load to FW the binary Secured sections of CPU1 */
|
|
ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1,
|
|
&first_ucode_section);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* load to FW the binary sections of CPU2 */
|
|
return iwl_pcie_load_cpu_sections_8000(trans, image, 2,
|
|
&first_ucode_section);
|
|
}
|
|
|
|
bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
bool hw_rfkill = iwl_is_rfkill_set(trans);
|
|
bool prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
bool report;
|
|
|
|
if (hw_rfkill) {
|
|
set_bit(STATUS_RFKILL_HW, &trans->status);
|
|
set_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
} else {
|
|
clear_bit(STATUS_RFKILL_HW, &trans->status);
|
|
if (trans_pcie->opmode_down)
|
|
clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
}
|
|
|
|
report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
|
|
if (prev != report)
|
|
iwl_trans_pcie_rf_kill(trans, report);
|
|
|
|
return hw_rfkill;
|
|
}
|
|
|
|
struct iwl_causes_list {
|
|
u32 cause_num;
|
|
u32 mask_reg;
|
|
u8 addr;
|
|
};
|
|
|
|
static struct iwl_causes_list causes_list[] = {
|
|
{MSIX_FH_INT_CAUSES_D2S_CH0_NUM, CSR_MSIX_FH_INT_MASK_AD, 0},
|
|
{MSIX_FH_INT_CAUSES_D2S_CH1_NUM, CSR_MSIX_FH_INT_MASK_AD, 0x1},
|
|
{MSIX_FH_INT_CAUSES_S2D, CSR_MSIX_FH_INT_MASK_AD, 0x3},
|
|
{MSIX_FH_INT_CAUSES_FH_ERR, CSR_MSIX_FH_INT_MASK_AD, 0x5},
|
|
{MSIX_HW_INT_CAUSES_REG_ALIVE, CSR_MSIX_HW_INT_MASK_AD, 0x10},
|
|
{MSIX_HW_INT_CAUSES_REG_WAKEUP, CSR_MSIX_HW_INT_MASK_AD, 0x11},
|
|
{MSIX_HW_INT_CAUSES_REG_CT_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x16},
|
|
{MSIX_HW_INT_CAUSES_REG_RF_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x17},
|
|
{MSIX_HW_INT_CAUSES_REG_PERIODIC, CSR_MSIX_HW_INT_MASK_AD, 0x18},
|
|
{MSIX_HW_INT_CAUSES_REG_SW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x29},
|
|
{MSIX_HW_INT_CAUSES_REG_SCD, CSR_MSIX_HW_INT_MASK_AD, 0x2A},
|
|
{MSIX_HW_INT_CAUSES_REG_FH_TX, CSR_MSIX_HW_INT_MASK_AD, 0x2B},
|
|
{MSIX_HW_INT_CAUSES_REG_HW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x2D},
|
|
{MSIX_HW_INT_CAUSES_REG_HAP, CSR_MSIX_HW_INT_MASK_AD, 0x2E},
|
|
};
|
|
|
|
static void iwl_pcie_map_non_rx_causes(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int val = trans_pcie->def_irq | MSIX_NON_AUTO_CLEAR_CAUSE;
|
|
int i;
|
|
|
|
/*
|
|
* Access all non RX causes and map them to the default irq.
|
|
* In case we are missing at least one interrupt vector,
|
|
* the first interrupt vector will serve non-RX and FBQ causes.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
|
|
iwl_write8(trans, CSR_MSIX_IVAR(causes_list[i].addr), val);
|
|
iwl_clear_bit(trans, causes_list[i].mask_reg,
|
|
causes_list[i].cause_num);
|
|
}
|
|
}
|
|
|
|
static void iwl_pcie_map_rx_causes(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u32 offset =
|
|
trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
|
|
u32 val, idx;
|
|
|
|
/*
|
|
* The first RX queue - fallback queue, which is designated for
|
|
* management frame, command responses etc, is always mapped to the
|
|
* first interrupt vector. The other RX queues are mapped to
|
|
* the other (N - 2) interrupt vectors.
|
|
*/
|
|
val = BIT(MSIX_FH_INT_CAUSES_Q(0));
|
|
for (idx = 1; idx < trans->num_rx_queues; idx++) {
|
|
iwl_write8(trans, CSR_MSIX_RX_IVAR(idx),
|
|
MSIX_FH_INT_CAUSES_Q(idx - offset));
|
|
val |= BIT(MSIX_FH_INT_CAUSES_Q(idx));
|
|
}
|
|
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~val);
|
|
|
|
val = MSIX_FH_INT_CAUSES_Q(0);
|
|
if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
|
|
val |= MSIX_NON_AUTO_CLEAR_CAUSE;
|
|
iwl_write8(trans, CSR_MSIX_RX_IVAR(0), val);
|
|
|
|
if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
|
|
iwl_write8(trans, CSR_MSIX_RX_IVAR(1), val);
|
|
}
|
|
|
|
void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie)
|
|
{
|
|
struct iwl_trans *trans = trans_pcie->trans;
|
|
|
|
if (!trans_pcie->msix_enabled) {
|
|
if (trans->cfg->mq_rx_supported &&
|
|
test_bit(STATUS_DEVICE_ENABLED, &trans->status))
|
|
iwl_write_prph(trans, UREG_CHICK,
|
|
UREG_CHICK_MSI_ENABLE);
|
|
return;
|
|
}
|
|
/*
|
|
* The IVAR table needs to be configured again after reset,
|
|
* but if the device is disabled, we can't write to
|
|
* prph.
|
|
*/
|
|
if (test_bit(STATUS_DEVICE_ENABLED, &trans->status))
|
|
iwl_write_prph(trans, UREG_CHICK, UREG_CHICK_MSIX_ENABLE);
|
|
|
|
/*
|
|
* Each cause from the causes list above and the RX causes is
|
|
* represented as a byte in the IVAR table. The first nibble
|
|
* represents the bound interrupt vector of the cause, the second
|
|
* represents no auto clear for this cause. This will be set if its
|
|
* interrupt vector is bound to serve other causes.
|
|
*/
|
|
iwl_pcie_map_rx_causes(trans);
|
|
|
|
iwl_pcie_map_non_rx_causes(trans);
|
|
}
|
|
|
|
static void iwl_pcie_init_msix(struct iwl_trans_pcie *trans_pcie)
|
|
{
|
|
struct iwl_trans *trans = trans_pcie->trans;
|
|
|
|
iwl_pcie_conf_msix_hw(trans_pcie);
|
|
|
|
if (!trans_pcie->msix_enabled)
|
|
return;
|
|
|
|
trans_pcie->fh_init_mask = ~iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD);
|
|
trans_pcie->fh_mask = trans_pcie->fh_init_mask;
|
|
trans_pcie->hw_init_mask = ~iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD);
|
|
trans_pcie->hw_mask = trans_pcie->hw_init_mask;
|
|
}
|
|
|
|
static void _iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
lockdep_assert_held(&trans_pcie->mutex);
|
|
|
|
if (trans_pcie->is_down)
|
|
return;
|
|
|
|
trans_pcie->is_down = true;
|
|
|
|
/* Stop dbgc before stopping device */
|
|
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
|
|
iwl_set_bits_prph(trans, MON_BUFF_SAMPLE_CTL, 0x100);
|
|
} else {
|
|
iwl_write_prph(trans, DBGC_IN_SAMPLE, 0);
|
|
udelay(100);
|
|
iwl_write_prph(trans, DBGC_OUT_CTRL, 0);
|
|
}
|
|
|
|
/* tell the device to stop sending interrupts */
|
|
iwl_disable_interrupts(trans);
|
|
|
|
/* device going down, Stop using ICT table */
|
|
iwl_pcie_disable_ict(trans);
|
|
|
|
/*
|
|
* If a HW restart happens during firmware loading,
|
|
* then the firmware loading might call this function
|
|
* and later it might be called again due to the
|
|
* restart. So don't process again if the device is
|
|
* already dead.
|
|
*/
|
|
if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
|
|
IWL_DEBUG_INFO(trans,
|
|
"DEVICE_ENABLED bit was set and is now cleared\n");
|
|
iwl_pcie_tx_stop(trans);
|
|
iwl_pcie_rx_stop(trans);
|
|
|
|
/* Power-down device's busmaster DMA clocks */
|
|
if (!trans->cfg->apmg_not_supported) {
|
|
iwl_write_prph(trans, APMG_CLK_DIS_REG,
|
|
APMG_CLK_VAL_DMA_CLK_RQT);
|
|
udelay(5);
|
|
}
|
|
}
|
|
|
|
/* Make sure (redundant) we've released our request to stay awake */
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
|
|
/* Stop the device, and put it in low power state */
|
|
iwl_pcie_apm_stop(trans, false);
|
|
|
|
iwl_pcie_sw_reset(trans);
|
|
|
|
/*
|
|
* Upon stop, the IVAR table gets erased, so msi-x won't
|
|
* work. This causes a bug in RF-KILL flows, since the interrupt
|
|
* that enables radio won't fire on the correct irq, and the
|
|
* driver won't be able to handle the interrupt.
|
|
* Configure the IVAR table again after reset.
|
|
*/
|
|
iwl_pcie_conf_msix_hw(trans_pcie);
|
|
|
|
/*
|
|
* Upon stop, the APM issues an interrupt if HW RF kill is set.
|
|
* This is a bug in certain verions of the hardware.
|
|
* Certain devices also keep sending HW RF kill interrupt all
|
|
* the time, unless the interrupt is ACKed even if the interrupt
|
|
* should be masked. Re-ACK all the interrupts here.
|
|
*/
|
|
iwl_disable_interrupts(trans);
|
|
|
|
/* clear all status bits */
|
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
|
clear_bit(STATUS_INT_ENABLED, &trans->status);
|
|
clear_bit(STATUS_TPOWER_PMI, &trans->status);
|
|
|
|
/*
|
|
* Even if we stop the HW, we still want the RF kill
|
|
* interrupt
|
|
*/
|
|
iwl_enable_rfkill_int(trans);
|
|
|
|
/* re-take ownership to prevent other users from stealing the device */
|
|
iwl_pcie_prepare_card_hw(trans);
|
|
}
|
|
|
|
void iwl_pcie_synchronize_irqs(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (trans_pcie->msix_enabled) {
|
|
int i;
|
|
|
|
for (i = 0; i < trans_pcie->alloc_vecs; i++)
|
|
synchronize_irq(trans_pcie->msix_entries[i].vector);
|
|
} else {
|
|
synchronize_irq(trans_pcie->pci_dev->irq);
|
|
}
|
|
}
|
|
|
|
static int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
|
|
const struct fw_img *fw, bool run_in_rfkill)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
bool hw_rfkill;
|
|
int ret;
|
|
|
|
/* This may fail if AMT took ownership of the device */
|
|
if (iwl_pcie_prepare_card_hw(trans)) {
|
|
IWL_WARN(trans, "Exit HW not ready\n");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
iwl_enable_rfkill_int(trans);
|
|
|
|
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* We enabled the RF-Kill interrupt and the handler may very
|
|
* well be running. Disable the interrupts to make sure no other
|
|
* interrupt can be fired.
|
|
*/
|
|
iwl_disable_interrupts(trans);
|
|
|
|
/* Make sure it finished running */
|
|
iwl_pcie_synchronize_irqs(trans);
|
|
|
|
mutex_lock(&trans_pcie->mutex);
|
|
|
|
/* If platform's RF_KILL switch is NOT set to KILL */
|
|
hw_rfkill = iwl_pcie_check_hw_rf_kill(trans);
|
|
if (hw_rfkill && !run_in_rfkill) {
|
|
ret = -ERFKILL;
|
|
goto out;
|
|
}
|
|
|
|
/* Someone called stop_device, don't try to start_fw */
|
|
if (trans_pcie->is_down) {
|
|
IWL_WARN(trans,
|
|
"Can't start_fw since the HW hasn't been started\n");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* make sure rfkill handshake bits are cleared */
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR,
|
|
CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
|
|
|
|
/* clear (again), then enable host interrupts */
|
|
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
|
|
|
|
ret = iwl_pcie_nic_init(trans);
|
|
if (ret) {
|
|
IWL_ERR(trans, "Unable to init nic\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Now, we load the firmware and don't want to be interrupted, even
|
|
* by the RF-Kill interrupt (hence mask all the interrupt besides the
|
|
* FH_TX interrupt which is needed to load the firmware). If the
|
|
* RF-Kill switch is toggled, we will find out after having loaded
|
|
* the firmware and return the proper value to the caller.
|
|
*/
|
|
iwl_enable_fw_load_int(trans);
|
|
|
|
/* really make sure rfkill handshake bits are cleared */
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
|
|
|
|
/* Load the given image to the HW */
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
|
|
ret = iwl_pcie_load_given_ucode_8000(trans, fw);
|
|
else
|
|
ret = iwl_pcie_load_given_ucode(trans, fw);
|
|
|
|
/* re-check RF-Kill state since we may have missed the interrupt */
|
|
hw_rfkill = iwl_pcie_check_hw_rf_kill(trans);
|
|
if (hw_rfkill && !run_in_rfkill)
|
|
ret = -ERFKILL;
|
|
|
|
out:
|
|
mutex_unlock(&trans_pcie->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr)
|
|
{
|
|
iwl_pcie_reset_ict(trans);
|
|
iwl_pcie_tx_start(trans, scd_addr);
|
|
}
|
|
|
|
void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
|
|
bool was_in_rfkill)
|
|
{
|
|
bool hw_rfkill;
|
|
|
|
/*
|
|
* Check again since the RF kill state may have changed while
|
|
* all the interrupts were disabled, in this case we couldn't
|
|
* receive the RF kill interrupt and update the state in the
|
|
* op_mode.
|
|
* Don't call the op_mode if the rkfill state hasn't changed.
|
|
* This allows the op_mode to call stop_device from the rfkill
|
|
* notification without endless recursion. Under very rare
|
|
* circumstances, we might have a small recursion if the rfkill
|
|
* state changed exactly now while we were called from stop_device.
|
|
* This is very unlikely but can happen and is supported.
|
|
*/
|
|
hw_rfkill = iwl_is_rfkill_set(trans);
|
|
if (hw_rfkill) {
|
|
set_bit(STATUS_RFKILL_HW, &trans->status);
|
|
set_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
} else {
|
|
clear_bit(STATUS_RFKILL_HW, &trans->status);
|
|
clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
}
|
|
if (hw_rfkill != was_in_rfkill)
|
|
iwl_trans_pcie_rf_kill(trans, hw_rfkill);
|
|
}
|
|
|
|
static void iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
bool was_in_rfkill;
|
|
|
|
mutex_lock(&trans_pcie->mutex);
|
|
trans_pcie->opmode_down = true;
|
|
was_in_rfkill = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
_iwl_trans_pcie_stop_device(trans, low_power);
|
|
iwl_trans_pcie_handle_stop_rfkill(trans, was_in_rfkill);
|
|
mutex_unlock(&trans_pcie->mutex);
|
|
}
|
|
|
|
void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state)
|
|
{
|
|
struct iwl_trans_pcie __maybe_unused *trans_pcie =
|
|
IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
lockdep_assert_held(&trans_pcie->mutex);
|
|
|
|
IWL_WARN(trans, "reporting RF_KILL (radio %s)\n",
|
|
state ? "disabled" : "enabled");
|
|
if (iwl_op_mode_hw_rf_kill(trans->op_mode, state)) {
|
|
if (trans->cfg->gen2)
|
|
_iwl_trans_pcie_gen2_stop_device(trans, true);
|
|
else
|
|
_iwl_trans_pcie_stop_device(trans, true);
|
|
}
|
|
}
|
|
|
|
static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test,
|
|
bool reset)
|
|
{
|
|
if (!reset) {
|
|
/* Enable persistence mode to avoid reset */
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
|
|
}
|
|
|
|
iwl_disable_interrupts(trans);
|
|
|
|
/*
|
|
* in testing mode, the host stays awake and the
|
|
* hardware won't be reset (not even partially)
|
|
*/
|
|
if (test)
|
|
return;
|
|
|
|
iwl_pcie_disable_ict(trans);
|
|
|
|
iwl_pcie_synchronize_irqs(trans);
|
|
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
iwl_pcie_enable_rx_wake(trans, false);
|
|
|
|
if (reset) {
|
|
/*
|
|
* reset TX queues -- some of their registers reset during S3
|
|
* so if we don't reset everything here the D3 image would try
|
|
* to execute some invalid memory upon resume
|
|
*/
|
|
iwl_trans_pcie_tx_reset(trans);
|
|
}
|
|
|
|
iwl_pcie_set_pwr(trans, true);
|
|
}
|
|
|
|
static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
|
|
enum iwl_d3_status *status,
|
|
bool test, bool reset)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u32 val;
|
|
int ret;
|
|
|
|
if (test) {
|
|
iwl_enable_interrupts(trans);
|
|
*status = IWL_D3_STATUS_ALIVE;
|
|
return 0;
|
|
}
|
|
|
|
iwl_pcie_enable_rx_wake(trans, true);
|
|
|
|
/*
|
|
* Reconfigure IVAR table in case of MSIX or reset ict table in
|
|
* MSI mode since HW reset erased it.
|
|
* Also enables interrupts - none will happen as
|
|
* the device doesn't know we're waking it up, only when
|
|
* the opmode actually tells it after this call.
|
|
*/
|
|
iwl_pcie_conf_msix_hw(trans_pcie);
|
|
if (!trans_pcie->msix_enabled)
|
|
iwl_pcie_reset_ict(trans);
|
|
iwl_enable_interrupts(trans);
|
|
|
|
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
|
|
udelay(2);
|
|
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
25000);
|
|
if (ret < 0) {
|
|
IWL_ERR(trans, "Failed to resume the device (mac ready)\n");
|
|
return ret;
|
|
}
|
|
|
|
iwl_pcie_set_pwr(trans, false);
|
|
|
|
if (!reset) {
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
} else {
|
|
iwl_trans_pcie_tx_reset(trans);
|
|
|
|
ret = iwl_pcie_rx_init(trans);
|
|
if (ret) {
|
|
IWL_ERR(trans,
|
|
"Failed to resume the device (RX reset)\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
IWL_DEBUG_POWER(trans, "WFPM value upon resume = 0x%08X\n",
|
|
iwl_read_prph(trans, WFPM_GP2));
|
|
|
|
val = iwl_read32(trans, CSR_RESET);
|
|
if (val & CSR_RESET_REG_FLAG_NEVO_RESET)
|
|
*status = IWL_D3_STATUS_RESET;
|
|
else
|
|
*status = IWL_D3_STATUS_ALIVE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_pcie_set_interrupt_capa(struct pci_dev *pdev,
|
|
struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int max_irqs, num_irqs, i, ret, nr_online_cpus;
|
|
u16 pci_cmd;
|
|
|
|
if (!trans->cfg->mq_rx_supported)
|
|
goto enable_msi;
|
|
|
|
nr_online_cpus = num_online_cpus();
|
|
max_irqs = min_t(u32, nr_online_cpus + 2, IWL_MAX_RX_HW_QUEUES);
|
|
for (i = 0; i < max_irqs; i++)
|
|
trans_pcie->msix_entries[i].entry = i;
|
|
|
|
num_irqs = pci_enable_msix_range(pdev, trans_pcie->msix_entries,
|
|
MSIX_MIN_INTERRUPT_VECTORS,
|
|
max_irqs);
|
|
if (num_irqs < 0) {
|
|
IWL_DEBUG_INFO(trans,
|
|
"Failed to enable msi-x mode (ret %d). Moving to msi mode.\n",
|
|
num_irqs);
|
|
goto enable_msi;
|
|
}
|
|
trans_pcie->def_irq = (num_irqs == max_irqs) ? num_irqs - 1 : 0;
|
|
|
|
IWL_DEBUG_INFO(trans,
|
|
"MSI-X enabled. %d interrupt vectors were allocated\n",
|
|
num_irqs);
|
|
|
|
/*
|
|
* In case the OS provides fewer interrupts than requested, different
|
|
* causes will share the same interrupt vector as follows:
|
|
* One interrupt less: non rx causes shared with FBQ.
|
|
* Two interrupts less: non rx causes shared with FBQ and RSS.
|
|
* More than two interrupts: we will use fewer RSS queues.
|
|
*/
|
|
if (num_irqs <= nr_online_cpus) {
|
|
trans_pcie->trans->num_rx_queues = num_irqs + 1;
|
|
trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX |
|
|
IWL_SHARED_IRQ_FIRST_RSS;
|
|
} else if (num_irqs == nr_online_cpus + 1) {
|
|
trans_pcie->trans->num_rx_queues = num_irqs;
|
|
trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX;
|
|
} else {
|
|
trans_pcie->trans->num_rx_queues = num_irqs - 1;
|
|
}
|
|
|
|
trans_pcie->alloc_vecs = num_irqs;
|
|
trans_pcie->msix_enabled = true;
|
|
return;
|
|
|
|
enable_msi:
|
|
ret = pci_enable_msi(pdev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "pci_enable_msi failed - %d\n", ret);
|
|
/* enable rfkill interrupt: hw bug w/a */
|
|
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
|
|
if (pci_cmd & PCI_COMMAND_INTX_DISABLE) {
|
|
pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
|
|
pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void iwl_pcie_irq_set_affinity(struct iwl_trans *trans)
|
|
{
|
|
int iter_rx_q, i, ret, cpu, offset;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
i = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 0 : 1;
|
|
iter_rx_q = trans_pcie->trans->num_rx_queues - 1 + i;
|
|
offset = 1 + i;
|
|
for (; i < iter_rx_q ; i++) {
|
|
/*
|
|
* Get the cpu prior to the place to search
|
|
* (i.e. return will be > i - 1).
|
|
*/
|
|
cpu = cpumask_next(i - offset, cpu_online_mask);
|
|
cpumask_set_cpu(cpu, &trans_pcie->affinity_mask[i]);
|
|
ret = irq_set_affinity_hint(trans_pcie->msix_entries[i].vector,
|
|
&trans_pcie->affinity_mask[i]);
|
|
if (ret)
|
|
IWL_ERR(trans_pcie->trans,
|
|
"Failed to set affinity mask for IRQ %d\n",
|
|
i);
|
|
}
|
|
}
|
|
|
|
static const char *queue_name(struct device *dev,
|
|
struct iwl_trans_pcie *trans_p, int i)
|
|
{
|
|
if (trans_p->shared_vec_mask) {
|
|
int vec = trans_p->shared_vec_mask &
|
|
IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
|
|
|
|
if (i == 0)
|
|
return DRV_NAME ": shared IRQ";
|
|
|
|
return devm_kasprintf(dev, GFP_KERNEL,
|
|
DRV_NAME ": queue %d", i + vec);
|
|
}
|
|
if (i == 0)
|
|
return DRV_NAME ": default queue";
|
|
|
|
if (i == trans_p->alloc_vecs - 1)
|
|
return DRV_NAME ": exception";
|
|
|
|
return devm_kasprintf(dev, GFP_KERNEL,
|
|
DRV_NAME ": queue %d", i);
|
|
}
|
|
|
|
static int iwl_pcie_init_msix_handler(struct pci_dev *pdev,
|
|
struct iwl_trans_pcie *trans_pcie)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < trans_pcie->alloc_vecs; i++) {
|
|
int ret;
|
|
struct msix_entry *msix_entry;
|
|
const char *qname = queue_name(&pdev->dev, trans_pcie, i);
|
|
|
|
if (!qname)
|
|
return -ENOMEM;
|
|
|
|
msix_entry = &trans_pcie->msix_entries[i];
|
|
ret = devm_request_threaded_irq(&pdev->dev,
|
|
msix_entry->vector,
|
|
iwl_pcie_msix_isr,
|
|
(i == trans_pcie->def_irq) ?
|
|
iwl_pcie_irq_msix_handler :
|
|
iwl_pcie_irq_rx_msix_handler,
|
|
IRQF_SHARED,
|
|
qname,
|
|
msix_entry);
|
|
if (ret) {
|
|
IWL_ERR(trans_pcie->trans,
|
|
"Error allocating IRQ %d\n", i);
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
iwl_pcie_irq_set_affinity(trans_pcie->trans);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int err;
|
|
|
|
lockdep_assert_held(&trans_pcie->mutex);
|
|
|
|
err = iwl_pcie_prepare_card_hw(trans);
|
|
if (err) {
|
|
IWL_ERR(trans, "Error while preparing HW: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
iwl_pcie_sw_reset(trans);
|
|
|
|
err = iwl_pcie_apm_init(trans);
|
|
if (err)
|
|
return err;
|
|
|
|
iwl_pcie_init_msix(trans_pcie);
|
|
|
|
/* From now on, the op_mode will be kept updated about RF kill state */
|
|
iwl_enable_rfkill_int(trans);
|
|
|
|
trans_pcie->opmode_down = false;
|
|
|
|
/* Set is_down to false here so that...*/
|
|
trans_pcie->is_down = false;
|
|
|
|
/* ...rfkill can call stop_device and set it false if needed */
|
|
iwl_pcie_check_hw_rf_kill(trans);
|
|
|
|
/* Make sure we sync here, because we'll need full access later */
|
|
if (low_power)
|
|
pm_runtime_resume(trans->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int ret;
|
|
|
|
mutex_lock(&trans_pcie->mutex);
|
|
ret = _iwl_trans_pcie_start_hw(trans, low_power);
|
|
mutex_unlock(&trans_pcie->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
mutex_lock(&trans_pcie->mutex);
|
|
|
|
/* disable interrupts - don't enable HW RF kill interrupt */
|
|
iwl_disable_interrupts(trans);
|
|
|
|
iwl_pcie_apm_stop(trans, true);
|
|
|
|
iwl_disable_interrupts(trans);
|
|
|
|
iwl_pcie_disable_ict(trans);
|
|
|
|
mutex_unlock(&trans_pcie->mutex);
|
|
|
|
iwl_pcie_synchronize_irqs(trans);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val)
|
|
{
|
|
writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val)
|
|
{
|
|
writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs)
|
|
{
|
|
return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg)
|
|
{
|
|
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR,
|
|
((reg & 0x000FFFFF) | (3 << 24)));
|
|
return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr,
|
|
u32 val)
|
|
{
|
|
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR,
|
|
((addr & 0x000FFFFF) | (3 << 24)));
|
|
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val);
|
|
}
|
|
|
|
static void iwl_trans_pcie_configure(struct iwl_trans *trans,
|
|
const struct iwl_trans_config *trans_cfg)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
trans_pcie->cmd_queue = trans_cfg->cmd_queue;
|
|
trans_pcie->cmd_fifo = trans_cfg->cmd_fifo;
|
|
trans_pcie->cmd_q_wdg_timeout = trans_cfg->cmd_q_wdg_timeout;
|
|
if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS))
|
|
trans_pcie->n_no_reclaim_cmds = 0;
|
|
else
|
|
trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds;
|
|
if (trans_pcie->n_no_reclaim_cmds)
|
|
memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds,
|
|
trans_pcie->n_no_reclaim_cmds * sizeof(u8));
|
|
|
|
trans_pcie->rx_buf_size = trans_cfg->rx_buf_size;
|
|
trans_pcie->rx_page_order =
|
|
iwl_trans_get_rb_size_order(trans_pcie->rx_buf_size);
|
|
|
|
trans_pcie->bc_table_dword = trans_cfg->bc_table_dword;
|
|
trans_pcie->scd_set_active = trans_cfg->scd_set_active;
|
|
trans_pcie->sw_csum_tx = trans_cfg->sw_csum_tx;
|
|
|
|
trans_pcie->page_offs = trans_cfg->cb_data_offs;
|
|
trans_pcie->dev_cmd_offs = trans_cfg->cb_data_offs + sizeof(void *);
|
|
|
|
trans->command_groups = trans_cfg->command_groups;
|
|
trans->command_groups_size = trans_cfg->command_groups_size;
|
|
|
|
/* Initialize NAPI here - it should be before registering to mac80211
|
|
* in the opmode but after the HW struct is allocated.
|
|
* As this function may be called again in some corner cases don't
|
|
* do anything if NAPI was already initialized.
|
|
*/
|
|
if (trans_pcie->napi_dev.reg_state != NETREG_DUMMY)
|
|
init_dummy_netdev(&trans_pcie->napi_dev);
|
|
}
|
|
|
|
void iwl_trans_pcie_free(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int i;
|
|
|
|
iwl_pcie_synchronize_irqs(trans);
|
|
|
|
if (trans->cfg->gen2)
|
|
iwl_pcie_gen2_tx_free(trans);
|
|
else
|
|
iwl_pcie_tx_free(trans);
|
|
iwl_pcie_rx_free(trans);
|
|
|
|
if (trans_pcie->rba.alloc_wq) {
|
|
destroy_workqueue(trans_pcie->rba.alloc_wq);
|
|
trans_pcie->rba.alloc_wq = NULL;
|
|
}
|
|
|
|
if (trans_pcie->msix_enabled) {
|
|
for (i = 0; i < trans_pcie->alloc_vecs; i++) {
|
|
irq_set_affinity_hint(
|
|
trans_pcie->msix_entries[i].vector,
|
|
NULL);
|
|
}
|
|
|
|
trans_pcie->msix_enabled = false;
|
|
} else {
|
|
iwl_pcie_free_ict(trans);
|
|
}
|
|
|
|
iwl_pcie_free_fw_monitor(trans);
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct iwl_tso_hdr_page *p =
|
|
per_cpu_ptr(trans_pcie->tso_hdr_page, i);
|
|
|
|
if (p->page)
|
|
__free_page(p->page);
|
|
}
|
|
|
|
free_percpu(trans_pcie->tso_hdr_page);
|
|
mutex_destroy(&trans_pcie->mutex);
|
|
iwl_trans_free(trans);
|
|
}
|
|
|
|
static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state)
|
|
{
|
|
if (state)
|
|
set_bit(STATUS_TPOWER_PMI, &trans->status);
|
|
else
|
|
clear_bit(STATUS_TPOWER_PMI, &trans->status);
|
|
}
|
|
|
|
static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans,
|
|
unsigned long *flags)
|
|
{
|
|
int ret;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
spin_lock_irqsave(&trans_pcie->reg_lock, *flags);
|
|
|
|
if (trans_pcie->cmd_hold_nic_awake)
|
|
goto out;
|
|
|
|
/* this bit wakes up the NIC */
|
|
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
|
|
udelay(2);
|
|
|
|
/*
|
|
* These bits say the device is running, and should keep running for
|
|
* at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
|
|
* but they do not indicate that embedded SRAM is restored yet;
|
|
* HW with volatile SRAM must save/restore contents to/from
|
|
* host DRAM when sleeping/waking for power-saving.
|
|
* Each direction takes approximately 1/4 millisecond; with this
|
|
* overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
|
|
* series of register accesses are expected (e.g. reading Event Log),
|
|
* to keep device from sleeping.
|
|
*
|
|
* CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
|
|
* SRAM is okay/restored. We don't check that here because this call
|
|
* is just for hardware register access; but GP1 MAC_SLEEP
|
|
* check is a good idea before accessing the SRAM of HW with
|
|
* volatile SRAM (e.g. reading Event Log).
|
|
*
|
|
* 5000 series and later (including 1000 series) have non-volatile SRAM,
|
|
* and do not save/restore SRAM when power cycling.
|
|
*/
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
|
|
(CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
|
|
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
|
|
if (unlikely(ret < 0)) {
|
|
iwl_trans_pcie_dump_regs(trans);
|
|
iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
|
|
WARN_ONCE(1,
|
|
"Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n",
|
|
iwl_read32(trans, CSR_GP_CNTRL));
|
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
|
|
return false;
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* Fool sparse by faking we release the lock - sparse will
|
|
* track nic_access anyway.
|
|
*/
|
|
__release(&trans_pcie->reg_lock);
|
|
return true;
|
|
}
|
|
|
|
static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans,
|
|
unsigned long *flags)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
lockdep_assert_held(&trans_pcie->reg_lock);
|
|
|
|
/*
|
|
* Fool sparse by faking we acquiring the lock - sparse will
|
|
* track nic_access anyway.
|
|
*/
|
|
__acquire(&trans_pcie->reg_lock);
|
|
|
|
if (trans_pcie->cmd_hold_nic_awake)
|
|
goto out;
|
|
|
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
/*
|
|
* Above we read the CSR_GP_CNTRL register, which will flush
|
|
* any previous writes, but we need the write that clears the
|
|
* MAC_ACCESS_REQ bit to be performed before any other writes
|
|
* scheduled on different CPUs (after we drop reg_lock).
|
|
*/
|
|
mmiowb();
|
|
out:
|
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
|
|
}
|
|
|
|
static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
|
|
void *buf, int dwords)
|
|
{
|
|
unsigned long flags;
|
|
int offs, ret = 0;
|
|
u32 *vals = buf;
|
|
|
|
if (iwl_trans_grab_nic_access(trans, &flags)) {
|
|
iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr);
|
|
for (offs = 0; offs < dwords; offs++)
|
|
vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
} else {
|
|
ret = -EBUSY;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
|
|
const void *buf, int dwords)
|
|
{
|
|
unsigned long flags;
|
|
int offs, ret = 0;
|
|
const u32 *vals = buf;
|
|
|
|
if (iwl_trans_grab_nic_access(trans, &flags)) {
|
|
iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr);
|
|
for (offs = 0; offs < dwords; offs++)
|
|
iwl_write32(trans, HBUS_TARG_MEM_WDAT,
|
|
vals ? vals[offs] : 0);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
} else {
|
|
ret = -EBUSY;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_trans_pcie_freeze_txq_timer(struct iwl_trans *trans,
|
|
unsigned long txqs,
|
|
bool freeze)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int queue;
|
|
|
|
for_each_set_bit(queue, &txqs, BITS_PER_LONG) {
|
|
struct iwl_txq *txq = trans_pcie->txq[queue];
|
|
unsigned long now;
|
|
|
|
spin_lock_bh(&txq->lock);
|
|
|
|
now = jiffies;
|
|
|
|
if (txq->frozen == freeze)
|
|
goto next_queue;
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n",
|
|
freeze ? "Freezing" : "Waking", queue);
|
|
|
|
txq->frozen = freeze;
|
|
|
|
if (txq->read_ptr == txq->write_ptr)
|
|
goto next_queue;
|
|
|
|
if (freeze) {
|
|
if (unlikely(time_after(now,
|
|
txq->stuck_timer.expires))) {
|
|
/*
|
|
* The timer should have fired, maybe it is
|
|
* spinning right now on the lock.
|
|
*/
|
|
goto next_queue;
|
|
}
|
|
/* remember how long until the timer fires */
|
|
txq->frozen_expiry_remainder =
|
|
txq->stuck_timer.expires - now;
|
|
del_timer(&txq->stuck_timer);
|
|
goto next_queue;
|
|
}
|
|
|
|
/*
|
|
* Wake a non-empty queue -> arm timer with the
|
|
* remainder before it froze
|
|
*/
|
|
mod_timer(&txq->stuck_timer,
|
|
now + txq->frozen_expiry_remainder);
|
|
|
|
next_queue:
|
|
spin_unlock_bh(&txq->lock);
|
|
}
|
|
}
|
|
|
|
static void iwl_trans_pcie_block_txq_ptrs(struct iwl_trans *trans, bool block)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int i;
|
|
|
|
for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
|
|
struct iwl_txq *txq = trans_pcie->txq[i];
|
|
|
|
if (i == trans_pcie->cmd_queue)
|
|
continue;
|
|
|
|
spin_lock_bh(&txq->lock);
|
|
|
|
if (!block && !(WARN_ON_ONCE(!txq->block))) {
|
|
txq->block--;
|
|
if (!txq->block) {
|
|
iwl_write32(trans, HBUS_TARG_WRPTR,
|
|
txq->write_ptr | (i << 8));
|
|
}
|
|
} else if (block) {
|
|
txq->block++;
|
|
}
|
|
|
|
spin_unlock_bh(&txq->lock);
|
|
}
|
|
}
|
|
|
|
#define IWL_FLUSH_WAIT_MS 2000
|
|
|
|
void iwl_trans_pcie_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq)
|
|
{
|
|
u32 txq_id = txq->id;
|
|
u32 status;
|
|
bool active;
|
|
u8 fifo;
|
|
|
|
if (trans->cfg->use_tfh) {
|
|
IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id,
|
|
txq->read_ptr, txq->write_ptr);
|
|
/* TODO: access new SCD registers and dump them */
|
|
return;
|
|
}
|
|
|
|
status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id));
|
|
fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7;
|
|
active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE));
|
|
|
|
IWL_ERR(trans,
|
|
"Queue %d is %sactive on fifo %d and stuck for %u ms. SW [%d, %d] HW [%d, %d] FH TRB=0x0%x\n",
|
|
txq_id, active ? "" : "in", fifo,
|
|
jiffies_to_msecs(txq->wd_timeout),
|
|
txq->read_ptr, txq->write_ptr,
|
|
iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) &
|
|
(TFD_QUEUE_SIZE_MAX - 1),
|
|
iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) &
|
|
(TFD_QUEUE_SIZE_MAX - 1),
|
|
iwl_read_direct32(trans, FH_TX_TRB_REG(fifo)));
|
|
}
|
|
|
|
static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq;
|
|
unsigned long now = jiffies;
|
|
u8 wr_ptr;
|
|
|
|
if (!test_bit(txq_idx, trans_pcie->queue_used))
|
|
return -EINVAL;
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", txq_idx);
|
|
txq = trans_pcie->txq[txq_idx];
|
|
wr_ptr = READ_ONCE(txq->write_ptr);
|
|
|
|
while (txq->read_ptr != READ_ONCE(txq->write_ptr) &&
|
|
!time_after(jiffies,
|
|
now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) {
|
|
u8 write_ptr = READ_ONCE(txq->write_ptr);
|
|
|
|
if (WARN_ONCE(wr_ptr != write_ptr,
|
|
"WR pointer moved while flushing %d -> %d\n",
|
|
wr_ptr, write_ptr))
|
|
return -ETIMEDOUT;
|
|
usleep_range(1000, 2000);
|
|
}
|
|
|
|
if (txq->read_ptr != txq->write_ptr) {
|
|
IWL_ERR(trans,
|
|
"fail to flush all tx fifo queues Q %d\n", txq_idx);
|
|
iwl_trans_pcie_log_scd_error(trans, txq);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", txq_idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int cnt;
|
|
int ret = 0;
|
|
|
|
/* waiting for all the tx frames complete might take a while */
|
|
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
|
|
|
|
if (cnt == trans_pcie->cmd_queue)
|
|
continue;
|
|
if (!test_bit(cnt, trans_pcie->queue_used))
|
|
continue;
|
|
if (!(BIT(cnt) & txq_bm))
|
|
continue;
|
|
|
|
ret = iwl_trans_pcie_wait_txq_empty(trans, cnt);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
|
|
u32 mask, u32 value)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&trans_pcie->reg_lock, flags);
|
|
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, value);
|
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
|
|
}
|
|
|
|
static void iwl_trans_pcie_ref(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (iwlwifi_mod_params.d0i3_disable)
|
|
return;
|
|
|
|
pm_runtime_get(&trans_pcie->pci_dev->dev);
|
|
|
|
#ifdef CONFIG_PM
|
|
IWL_DEBUG_RPM(trans, "runtime usage count: %d\n",
|
|
atomic_read(&trans_pcie->pci_dev->dev.power.usage_count));
|
|
#endif /* CONFIG_PM */
|
|
}
|
|
|
|
static void iwl_trans_pcie_unref(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (iwlwifi_mod_params.d0i3_disable)
|
|
return;
|
|
|
|
pm_runtime_mark_last_busy(&trans_pcie->pci_dev->dev);
|
|
pm_runtime_put_autosuspend(&trans_pcie->pci_dev->dev);
|
|
|
|
#ifdef CONFIG_PM
|
|
IWL_DEBUG_RPM(trans, "runtime usage count: %d\n",
|
|
atomic_read(&trans_pcie->pci_dev->dev.power.usage_count));
|
|
#endif /* CONFIG_PM */
|
|
}
|
|
|
|
static const char *get_csr_string(int cmd)
|
|
{
|
|
#define IWL_CMD(x) case x: return #x
|
|
switch (cmd) {
|
|
IWL_CMD(CSR_HW_IF_CONFIG_REG);
|
|
IWL_CMD(CSR_INT_COALESCING);
|
|
IWL_CMD(CSR_INT);
|
|
IWL_CMD(CSR_INT_MASK);
|
|
IWL_CMD(CSR_FH_INT_STATUS);
|
|
IWL_CMD(CSR_GPIO_IN);
|
|
IWL_CMD(CSR_RESET);
|
|
IWL_CMD(CSR_GP_CNTRL);
|
|
IWL_CMD(CSR_HW_REV);
|
|
IWL_CMD(CSR_EEPROM_REG);
|
|
IWL_CMD(CSR_EEPROM_GP);
|
|
IWL_CMD(CSR_OTP_GP_REG);
|
|
IWL_CMD(CSR_GIO_REG);
|
|
IWL_CMD(CSR_GP_UCODE_REG);
|
|
IWL_CMD(CSR_GP_DRIVER_REG);
|
|
IWL_CMD(CSR_UCODE_DRV_GP1);
|
|
IWL_CMD(CSR_UCODE_DRV_GP2);
|
|
IWL_CMD(CSR_LED_REG);
|
|
IWL_CMD(CSR_DRAM_INT_TBL_REG);
|
|
IWL_CMD(CSR_GIO_CHICKEN_BITS);
|
|
IWL_CMD(CSR_ANA_PLL_CFG);
|
|
IWL_CMD(CSR_HW_REV_WA_REG);
|
|
IWL_CMD(CSR_MONITOR_STATUS_REG);
|
|
IWL_CMD(CSR_DBG_HPET_MEM_REG);
|
|
default:
|
|
return "UNKNOWN";
|
|
}
|
|
#undef IWL_CMD
|
|
}
|
|
|
|
void iwl_pcie_dump_csr(struct iwl_trans *trans)
|
|
{
|
|
int i;
|
|
static const u32 csr_tbl[] = {
|
|
CSR_HW_IF_CONFIG_REG,
|
|
CSR_INT_COALESCING,
|
|
CSR_INT,
|
|
CSR_INT_MASK,
|
|
CSR_FH_INT_STATUS,
|
|
CSR_GPIO_IN,
|
|
CSR_RESET,
|
|
CSR_GP_CNTRL,
|
|
CSR_HW_REV,
|
|
CSR_EEPROM_REG,
|
|
CSR_EEPROM_GP,
|
|
CSR_OTP_GP_REG,
|
|
CSR_GIO_REG,
|
|
CSR_GP_UCODE_REG,
|
|
CSR_GP_DRIVER_REG,
|
|
CSR_UCODE_DRV_GP1,
|
|
CSR_UCODE_DRV_GP2,
|
|
CSR_LED_REG,
|
|
CSR_DRAM_INT_TBL_REG,
|
|
CSR_GIO_CHICKEN_BITS,
|
|
CSR_ANA_PLL_CFG,
|
|
CSR_MONITOR_STATUS_REG,
|
|
CSR_HW_REV_WA_REG,
|
|
CSR_DBG_HPET_MEM_REG
|
|
};
|
|
IWL_ERR(trans, "CSR values:\n");
|
|
IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is "
|
|
"CSR_INT_PERIODIC_REG)\n");
|
|
for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) {
|
|
IWL_ERR(trans, " %25s: 0X%08x\n",
|
|
get_csr_string(csr_tbl[i]),
|
|
iwl_read32(trans, csr_tbl[i]));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_IWLWIFI_DEBUGFS
|
|
/* create and remove of files */
|
|
#define DEBUGFS_ADD_FILE(name, parent, mode) do { \
|
|
if (!debugfs_create_file(#name, mode, parent, trans, \
|
|
&iwl_dbgfs_##name##_ops)) \
|
|
goto err; \
|
|
} while (0)
|
|
|
|
/* file operation */
|
|
#define DEBUGFS_READ_FILE_OPS(name) \
|
|
static const struct file_operations iwl_dbgfs_##name##_ops = { \
|
|
.read = iwl_dbgfs_##name##_read, \
|
|
.open = simple_open, \
|
|
.llseek = generic_file_llseek, \
|
|
};
|
|
|
|
#define DEBUGFS_WRITE_FILE_OPS(name) \
|
|
static const struct file_operations iwl_dbgfs_##name##_ops = { \
|
|
.write = iwl_dbgfs_##name##_write, \
|
|
.open = simple_open, \
|
|
.llseek = generic_file_llseek, \
|
|
};
|
|
|
|
#define DEBUGFS_READ_WRITE_FILE_OPS(name) \
|
|
static const struct file_operations iwl_dbgfs_##name##_ops = { \
|
|
.write = iwl_dbgfs_##name##_write, \
|
|
.read = iwl_dbgfs_##name##_read, \
|
|
.open = simple_open, \
|
|
.llseek = generic_file_llseek, \
|
|
};
|
|
|
|
static ssize_t iwl_dbgfs_tx_queue_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq;
|
|
char *buf;
|
|
int pos = 0;
|
|
int cnt;
|
|
int ret;
|
|
size_t bufsz;
|
|
|
|
bufsz = sizeof(char) * 75 * trans->cfg->base_params->num_of_queues;
|
|
|
|
if (!trans_pcie->txq_memory)
|
|
return -EAGAIN;
|
|
|
|
buf = kzalloc(bufsz, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
|
|
txq = trans_pcie->txq[cnt];
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d frozen=%d%s\n",
|
|
cnt, txq->read_ptr, txq->write_ptr,
|
|
!!test_bit(cnt, trans_pcie->queue_used),
|
|
!!test_bit(cnt, trans_pcie->queue_stopped),
|
|
txq->need_update, txq->frozen,
|
|
(cnt == trans_pcie->cmd_queue ? " HCMD" : ""));
|
|
}
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_rx_queue_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
char *buf;
|
|
int pos = 0, i, ret;
|
|
size_t bufsz = sizeof(buf);
|
|
|
|
bufsz = sizeof(char) * 121 * trans->num_rx_queues;
|
|
|
|
if (!trans_pcie->rxq)
|
|
return -EAGAIN;
|
|
|
|
buf = kzalloc(bufsz, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < trans->num_rx_queues && pos < bufsz; i++) {
|
|
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "queue#: %2d\n",
|
|
i);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\tread: %u\n",
|
|
rxq->read);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\twrite: %u\n",
|
|
rxq->write);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\twrite_actual: %u\n",
|
|
rxq->write_actual);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\tneed_update: %2d\n",
|
|
rxq->need_update);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\tfree_count: %u\n",
|
|
rxq->free_count);
|
|
if (rxq->rb_stts) {
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"\tclosed_rb_num: %u\n",
|
|
le16_to_cpu(rxq->rb_stts->closed_rb_num) &
|
|
0x0FFF);
|
|
} else {
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"\tclosed_rb_num: Not Allocated\n");
|
|
}
|
|
}
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
kfree(buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_interrupt_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
|
|
|
|
int pos = 0;
|
|
char *buf;
|
|
int bufsz = 24 * 64; /* 24 items * 64 char per item */
|
|
ssize_t ret;
|
|
|
|
buf = kzalloc(bufsz, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"Interrupt Statistics Report:\n");
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n",
|
|
isr_stats->hw);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n",
|
|
isr_stats->sw);
|
|
if (isr_stats->sw || isr_stats->hw) {
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"\tLast Restarting Code: 0x%X\n",
|
|
isr_stats->err_code);
|
|
}
|
|
#ifdef CONFIG_IWLWIFI_DEBUG
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n",
|
|
isr_stats->sch);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n",
|
|
isr_stats->alive);
|
|
#endif
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n",
|
|
isr_stats->ctkill);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n",
|
|
isr_stats->wakeup);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"Rx command responses:\t\t %u\n", isr_stats->rx);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n",
|
|
isr_stats->tx);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n",
|
|
isr_stats->unhandled);
|
|
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_interrupt_write(struct file *file,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
|
|
u32 reset_flag;
|
|
int ret;
|
|
|
|
ret = kstrtou32_from_user(user_buf, count, 16, &reset_flag);
|
|
if (ret)
|
|
return ret;
|
|
if (reset_flag == 0)
|
|
memset(isr_stats, 0, sizeof(*isr_stats));
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_csr_write(struct file *file,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
|
|
iwl_pcie_dump_csr(trans);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_fh_reg_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
char *buf = NULL;
|
|
ssize_t ret;
|
|
|
|
ret = iwl_dump_fh(trans, &buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!buf)
|
|
return -EINVAL;
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_rfkill_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
char buf[100];
|
|
int pos;
|
|
|
|
pos = scnprintf(buf, sizeof(buf), "debug: %d\nhw: %d\n",
|
|
trans_pcie->debug_rfkill,
|
|
!(iwl_read32(trans, CSR_GP_CNTRL) &
|
|
CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW));
|
|
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_rfkill_write(struct file *file,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
bool old = trans_pcie->debug_rfkill;
|
|
int ret;
|
|
|
|
ret = kstrtobool_from_user(user_buf, count, &trans_pcie->debug_rfkill);
|
|
if (ret)
|
|
return ret;
|
|
if (old == trans_pcie->debug_rfkill)
|
|
return count;
|
|
IWL_WARN(trans, "changing debug rfkill %d->%d\n",
|
|
old, trans_pcie->debug_rfkill);
|
|
iwl_pcie_handle_rfkill_irq(trans);
|
|
|
|
return count;
|
|
}
|
|
|
|
DEBUGFS_READ_WRITE_FILE_OPS(interrupt);
|
|
DEBUGFS_READ_FILE_OPS(fh_reg);
|
|
DEBUGFS_READ_FILE_OPS(rx_queue);
|
|
DEBUGFS_READ_FILE_OPS(tx_queue);
|
|
DEBUGFS_WRITE_FILE_OPS(csr);
|
|
DEBUGFS_READ_WRITE_FILE_OPS(rfkill);
|
|
|
|
/* Create the debugfs files and directories */
|
|
int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans)
|
|
{
|
|
struct dentry *dir = trans->dbgfs_dir;
|
|
|
|
DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR);
|
|
DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR);
|
|
DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR);
|
|
DEBUGFS_ADD_FILE(csr, dir, S_IWUSR);
|
|
DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR);
|
|
DEBUGFS_ADD_FILE(rfkill, dir, S_IWUSR | S_IRUSR);
|
|
return 0;
|
|
|
|
err:
|
|
IWL_ERR(trans, "failed to create the trans debugfs entry\n");
|
|
return -ENOMEM;
|
|
}
|
|
#endif /*CONFIG_IWLWIFI_DEBUGFS */
|
|
|
|
static u32 iwl_trans_pcie_get_cmdlen(struct iwl_trans *trans, void *tfd)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u32 cmdlen = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < trans_pcie->max_tbs; i++)
|
|
cmdlen += iwl_pcie_tfd_tb_get_len(trans, tfd, i);
|
|
|
|
return cmdlen;
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_dump_rbs(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data,
|
|
int allocated_rb_nums)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
|
|
/* Dump RBs is supported only for pre-9000 devices (1 queue) */
|
|
struct iwl_rxq *rxq = &trans_pcie->rxq[0];
|
|
u32 i, r, j, rb_len = 0;
|
|
|
|
spin_lock(&rxq->lock);
|
|
|
|
r = le16_to_cpu(READ_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
|
|
|
|
for (i = rxq->read, j = 0;
|
|
i != r && j < allocated_rb_nums;
|
|
i = (i + 1) & RX_QUEUE_MASK, j++) {
|
|
struct iwl_rx_mem_buffer *rxb = rxq->queue[i];
|
|
struct iwl_fw_error_dump_rb *rb;
|
|
|
|
dma_unmap_page(trans->dev, rxb->page_dma, max_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
rb_len += sizeof(**data) + sizeof(*rb) + max_len;
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_RB);
|
|
(*data)->len = cpu_to_le32(sizeof(*rb) + max_len);
|
|
rb = (void *)(*data)->data;
|
|
rb->index = cpu_to_le32(i);
|
|
memcpy(rb->data, page_address(rxb->page), max_len);
|
|
/* remap the page for the free benefit */
|
|
rxb->page_dma = dma_map_page(trans->dev, rxb->page, 0,
|
|
max_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
*data = iwl_fw_error_next_data(*data);
|
|
}
|
|
|
|
spin_unlock(&rxq->lock);
|
|
|
|
return rb_len;
|
|
}
|
|
#define IWL_CSR_TO_DUMP (0x250)
|
|
|
|
static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data)
|
|
{
|
|
u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP;
|
|
__le32 *val;
|
|
int i;
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR);
|
|
(*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP);
|
|
val = (void *)(*data)->data;
|
|
|
|
for (i = 0; i < IWL_CSR_TO_DUMP; i += 4)
|
|
*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
|
|
|
|
*data = iwl_fw_error_next_data(*data);
|
|
|
|
return csr_len;
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_fh_regs_dump(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data)
|
|
{
|
|
u32 fh_regs_len = FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND;
|
|
unsigned long flags;
|
|
__le32 *val;
|
|
int i;
|
|
|
|
if (!iwl_trans_grab_nic_access(trans, &flags))
|
|
return 0;
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FH_REGS);
|
|
(*data)->len = cpu_to_le32(fh_regs_len);
|
|
val = (void *)(*data)->data;
|
|
|
|
if (!trans->cfg->gen2)
|
|
for (i = FH_MEM_LOWER_BOUND; i < FH_MEM_UPPER_BOUND;
|
|
i += sizeof(u32))
|
|
*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
|
|
else
|
|
for (i = FH_MEM_LOWER_BOUND_GEN2; i < FH_MEM_UPPER_BOUND_GEN2;
|
|
i += sizeof(u32))
|
|
*val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans,
|
|
i));
|
|
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
|
|
*data = iwl_fw_error_next_data(*data);
|
|
|
|
return sizeof(**data) + fh_regs_len;
|
|
}
|
|
|
|
static u32
|
|
iwl_trans_pci_dump_marbh_monitor(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_fw_mon *fw_mon_data,
|
|
u32 monitor_len)
|
|
{
|
|
u32 buf_size_in_dwords = (monitor_len >> 2);
|
|
u32 *buffer = (u32 *)fw_mon_data->data;
|
|
unsigned long flags;
|
|
u32 i;
|
|
|
|
if (!iwl_trans_grab_nic_access(trans, &flags))
|
|
return 0;
|
|
|
|
iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x1);
|
|
for (i = 0; i < buf_size_in_dwords; i++)
|
|
buffer[i] = iwl_read_prph_no_grab(trans,
|
|
MON_DMARB_RD_DATA_ADDR);
|
|
iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x0);
|
|
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
|
|
return monitor_len;
|
|
}
|
|
|
|
static u32
|
|
iwl_trans_pcie_dump_monitor(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data,
|
|
u32 monitor_len)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u32 len = 0;
|
|
|
|
if ((trans_pcie->fw_mon_page &&
|
|
trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) ||
|
|
trans->dbg_dest_tlv) {
|
|
struct iwl_fw_error_dump_fw_mon *fw_mon_data;
|
|
u32 base, write_ptr, wrap_cnt;
|
|
|
|
/* If there was a dest TLV - use the values from there */
|
|
if (trans->dbg_dest_tlv) {
|
|
write_ptr =
|
|
le32_to_cpu(trans->dbg_dest_tlv->write_ptr_reg);
|
|
wrap_cnt = le32_to_cpu(trans->dbg_dest_tlv->wrap_count);
|
|
base = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
|
|
} else {
|
|
base = MON_BUFF_BASE_ADDR;
|
|
write_ptr = MON_BUFF_WRPTR;
|
|
wrap_cnt = MON_BUFF_CYCLE_CNT;
|
|
}
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR);
|
|
fw_mon_data = (void *)(*data)->data;
|
|
fw_mon_data->fw_mon_wr_ptr =
|
|
cpu_to_le32(iwl_read_prph(trans, write_ptr));
|
|
fw_mon_data->fw_mon_cycle_cnt =
|
|
cpu_to_le32(iwl_read_prph(trans, wrap_cnt));
|
|
fw_mon_data->fw_mon_base_ptr =
|
|
cpu_to_le32(iwl_read_prph(trans, base));
|
|
|
|
len += sizeof(**data) + sizeof(*fw_mon_data);
|
|
if (trans_pcie->fw_mon_page) {
|
|
/*
|
|
* The firmware is now asserted, it won't write anything
|
|
* to the buffer. CPU can take ownership to fetch the
|
|
* data. The buffer will be handed back to the device
|
|
* before the firmware will be restarted.
|
|
*/
|
|
dma_sync_single_for_cpu(trans->dev,
|
|
trans_pcie->fw_mon_phys,
|
|
trans_pcie->fw_mon_size,
|
|
DMA_FROM_DEVICE);
|
|
memcpy(fw_mon_data->data,
|
|
page_address(trans_pcie->fw_mon_page),
|
|
trans_pcie->fw_mon_size);
|
|
|
|
monitor_len = trans_pcie->fw_mon_size;
|
|
} else if (trans->dbg_dest_tlv->monitor_mode == SMEM_MODE) {
|
|
/*
|
|
* Update pointers to reflect actual values after
|
|
* shifting
|
|
*/
|
|
base = iwl_read_prph(trans, base) <<
|
|
trans->dbg_dest_tlv->base_shift;
|
|
iwl_trans_read_mem(trans, base, fw_mon_data->data,
|
|
monitor_len / sizeof(u32));
|
|
} else if (trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) {
|
|
monitor_len =
|
|
iwl_trans_pci_dump_marbh_monitor(trans,
|
|
fw_mon_data,
|
|
monitor_len);
|
|
} else {
|
|
/* Didn't match anything - output no monitor data */
|
|
monitor_len = 0;
|
|
}
|
|
|
|
len += monitor_len;
|
|
(*data)->len = cpu_to_le32(monitor_len + sizeof(*fw_mon_data));
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static struct iwl_trans_dump_data
|
|
*iwl_trans_pcie_dump_data(struct iwl_trans *trans,
|
|
const struct iwl_fw_dbg_trigger_tlv *trigger)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_fw_error_dump_data *data;
|
|
struct iwl_txq *cmdq = trans_pcie->txq[trans_pcie->cmd_queue];
|
|
struct iwl_fw_error_dump_txcmd *txcmd;
|
|
struct iwl_trans_dump_data *dump_data;
|
|
u32 len, num_rbs;
|
|
u32 monitor_len;
|
|
int i, ptr;
|
|
bool dump_rbs = test_bit(STATUS_FW_ERROR, &trans->status) &&
|
|
!trans->cfg->mq_rx_supported;
|
|
|
|
/* transport dump header */
|
|
len = sizeof(*dump_data);
|
|
|
|
/* host commands */
|
|
len += sizeof(*data) +
|
|
cmdq->n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE);
|
|
|
|
/* FW monitor */
|
|
if (trans_pcie->fw_mon_page) {
|
|
len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) +
|
|
trans_pcie->fw_mon_size;
|
|
monitor_len = trans_pcie->fw_mon_size;
|
|
} else if (trans->dbg_dest_tlv) {
|
|
u32 base, end;
|
|
|
|
base = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
|
|
end = le32_to_cpu(trans->dbg_dest_tlv->end_reg);
|
|
|
|
base = iwl_read_prph(trans, base) <<
|
|
trans->dbg_dest_tlv->base_shift;
|
|
end = iwl_read_prph(trans, end) <<
|
|
trans->dbg_dest_tlv->end_shift;
|
|
|
|
/* Make "end" point to the actual end */
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000 ||
|
|
trans->dbg_dest_tlv->monitor_mode == MARBH_MODE)
|
|
end += (1 << trans->dbg_dest_tlv->end_shift);
|
|
monitor_len = end - base;
|
|
len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) +
|
|
monitor_len;
|
|
} else {
|
|
monitor_len = 0;
|
|
}
|
|
|
|
if (trigger && (trigger->mode & IWL_FW_DBG_TRIGGER_MONITOR_ONLY)) {
|
|
dump_data = vzalloc(len);
|
|
if (!dump_data)
|
|
return NULL;
|
|
|
|
data = (void *)dump_data->data;
|
|
len = iwl_trans_pcie_dump_monitor(trans, &data, monitor_len);
|
|
dump_data->len = len;
|
|
|
|
return dump_data;
|
|
}
|
|
|
|
/* CSR registers */
|
|
len += sizeof(*data) + IWL_CSR_TO_DUMP;
|
|
|
|
/* FH registers */
|
|
if (trans->cfg->gen2)
|
|
len += sizeof(*data) +
|
|
(FH_MEM_UPPER_BOUND_GEN2 - FH_MEM_LOWER_BOUND_GEN2);
|
|
else
|
|
len += sizeof(*data) +
|
|
(FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND);
|
|
|
|
if (dump_rbs) {
|
|
/* Dump RBs is supported only for pre-9000 devices (1 queue) */
|
|
struct iwl_rxq *rxq = &trans_pcie->rxq[0];
|
|
/* RBs */
|
|
num_rbs = le16_to_cpu(READ_ONCE(rxq->rb_stts->closed_rb_num))
|
|
& 0x0FFF;
|
|
num_rbs = (num_rbs - rxq->read) & RX_QUEUE_MASK;
|
|
len += num_rbs * (sizeof(*data) +
|
|
sizeof(struct iwl_fw_error_dump_rb) +
|
|
(PAGE_SIZE << trans_pcie->rx_page_order));
|
|
}
|
|
|
|
/* Paged memory for gen2 HW */
|
|
if (trans->cfg->gen2)
|
|
for (i = 0; i < trans_pcie->init_dram.paging_cnt; i++)
|
|
len += sizeof(*data) +
|
|
sizeof(struct iwl_fw_error_dump_paging) +
|
|
trans_pcie->init_dram.paging[i].size;
|
|
|
|
dump_data = vzalloc(len);
|
|
if (!dump_data)
|
|
return NULL;
|
|
|
|
len = 0;
|
|
data = (void *)dump_data->data;
|
|
data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD);
|
|
txcmd = (void *)data->data;
|
|
spin_lock_bh(&cmdq->lock);
|
|
ptr = cmdq->write_ptr;
|
|
for (i = 0; i < cmdq->n_window; i++) {
|
|
u8 idx = iwl_pcie_get_cmd_index(cmdq, ptr);
|
|
u32 caplen, cmdlen;
|
|
|
|
cmdlen = iwl_trans_pcie_get_cmdlen(trans, cmdq->tfds +
|
|
trans_pcie->tfd_size * ptr);
|
|
caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen);
|
|
|
|
if (cmdlen) {
|
|
len += sizeof(*txcmd) + caplen;
|
|
txcmd->cmdlen = cpu_to_le32(cmdlen);
|
|
txcmd->caplen = cpu_to_le32(caplen);
|
|
memcpy(txcmd->data, cmdq->entries[idx].cmd, caplen);
|
|
txcmd = (void *)((u8 *)txcmd->data + caplen);
|
|
}
|
|
|
|
ptr = iwl_queue_dec_wrap(ptr);
|
|
}
|
|
spin_unlock_bh(&cmdq->lock);
|
|
|
|
data->len = cpu_to_le32(len);
|
|
len += sizeof(*data);
|
|
data = iwl_fw_error_next_data(data);
|
|
|
|
len += iwl_trans_pcie_dump_csr(trans, &data);
|
|
len += iwl_trans_pcie_fh_regs_dump(trans, &data);
|
|
if (dump_rbs)
|
|
len += iwl_trans_pcie_dump_rbs(trans, &data, num_rbs);
|
|
|
|
/* Paged memory for gen2 HW */
|
|
if (trans->cfg->gen2) {
|
|
for (i = 0; i < trans_pcie->init_dram.paging_cnt; i++) {
|
|
struct iwl_fw_error_dump_paging *paging;
|
|
dma_addr_t addr =
|
|
trans_pcie->init_dram.paging[i].physical;
|
|
u32 page_len = trans_pcie->init_dram.paging[i].size;
|
|
|
|
data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PAGING);
|
|
data->len = cpu_to_le32(sizeof(*paging) + page_len);
|
|
paging = (void *)data->data;
|
|
paging->index = cpu_to_le32(i);
|
|
dma_sync_single_for_cpu(trans->dev, addr, page_len,
|
|
DMA_BIDIRECTIONAL);
|
|
memcpy(paging->data,
|
|
trans_pcie->init_dram.paging[i].block, page_len);
|
|
data = iwl_fw_error_next_data(data);
|
|
|
|
len += sizeof(*data) + sizeof(*paging) + page_len;
|
|
}
|
|
}
|
|
|
|
len += iwl_trans_pcie_dump_monitor(trans, &data, monitor_len);
|
|
|
|
dump_data->len = len;
|
|
|
|
return dump_data;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int iwl_trans_pcie_suspend(struct iwl_trans *trans)
|
|
{
|
|
if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 &&
|
|
(trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3))
|
|
return iwl_pci_fw_enter_d0i3(trans);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_trans_pcie_resume(struct iwl_trans *trans)
|
|
{
|
|
if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 &&
|
|
(trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3))
|
|
iwl_pci_fw_exit_d0i3(trans);
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
#define IWL_TRANS_COMMON_OPS \
|
|
.op_mode_leave = iwl_trans_pcie_op_mode_leave, \
|
|
.write8 = iwl_trans_pcie_write8, \
|
|
.write32 = iwl_trans_pcie_write32, \
|
|
.read32 = iwl_trans_pcie_read32, \
|
|
.read_prph = iwl_trans_pcie_read_prph, \
|
|
.write_prph = iwl_trans_pcie_write_prph, \
|
|
.read_mem = iwl_trans_pcie_read_mem, \
|
|
.write_mem = iwl_trans_pcie_write_mem, \
|
|
.configure = iwl_trans_pcie_configure, \
|
|
.set_pmi = iwl_trans_pcie_set_pmi, \
|
|
.grab_nic_access = iwl_trans_pcie_grab_nic_access, \
|
|
.release_nic_access = iwl_trans_pcie_release_nic_access, \
|
|
.set_bits_mask = iwl_trans_pcie_set_bits_mask, \
|
|
.ref = iwl_trans_pcie_ref, \
|
|
.unref = iwl_trans_pcie_unref, \
|
|
.dump_data = iwl_trans_pcie_dump_data, \
|
|
.dump_regs = iwl_trans_pcie_dump_regs, \
|
|
.d3_suspend = iwl_trans_pcie_d3_suspend, \
|
|
.d3_resume = iwl_trans_pcie_d3_resume
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
#define IWL_TRANS_PM_OPS \
|
|
.suspend = iwl_trans_pcie_suspend, \
|
|
.resume = iwl_trans_pcie_resume,
|
|
#else
|
|
#define IWL_TRANS_PM_OPS
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static const struct iwl_trans_ops trans_ops_pcie = {
|
|
IWL_TRANS_COMMON_OPS,
|
|
IWL_TRANS_PM_OPS
|
|
.start_hw = iwl_trans_pcie_start_hw,
|
|
.fw_alive = iwl_trans_pcie_fw_alive,
|
|
.start_fw = iwl_trans_pcie_start_fw,
|
|
.stop_device = iwl_trans_pcie_stop_device,
|
|
|
|
.send_cmd = iwl_trans_pcie_send_hcmd,
|
|
|
|
.tx = iwl_trans_pcie_tx,
|
|
.reclaim = iwl_trans_pcie_reclaim,
|
|
|
|
.txq_disable = iwl_trans_pcie_txq_disable,
|
|
.txq_enable = iwl_trans_pcie_txq_enable,
|
|
|
|
.txq_set_shared_mode = iwl_trans_pcie_txq_set_shared_mode,
|
|
|
|
.wait_tx_queues_empty = iwl_trans_pcie_wait_txqs_empty,
|
|
|
|
.freeze_txq_timer = iwl_trans_pcie_freeze_txq_timer,
|
|
.block_txq_ptrs = iwl_trans_pcie_block_txq_ptrs,
|
|
};
|
|
|
|
static const struct iwl_trans_ops trans_ops_pcie_gen2 = {
|
|
IWL_TRANS_COMMON_OPS,
|
|
IWL_TRANS_PM_OPS
|
|
.start_hw = iwl_trans_pcie_start_hw,
|
|
.fw_alive = iwl_trans_pcie_gen2_fw_alive,
|
|
.start_fw = iwl_trans_pcie_gen2_start_fw,
|
|
.stop_device = iwl_trans_pcie_gen2_stop_device,
|
|
|
|
.send_cmd = iwl_trans_pcie_gen2_send_hcmd,
|
|
|
|
.tx = iwl_trans_pcie_gen2_tx,
|
|
.reclaim = iwl_trans_pcie_reclaim,
|
|
|
|
.txq_alloc = iwl_trans_pcie_dyn_txq_alloc,
|
|
.txq_free = iwl_trans_pcie_dyn_txq_free,
|
|
.wait_txq_empty = iwl_trans_pcie_wait_txq_empty,
|
|
};
|
|
|
|
struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent,
|
|
const struct iwl_cfg *cfg)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie;
|
|
struct iwl_trans *trans;
|
|
int ret, addr_size;
|
|
|
|
ret = pcim_enable_device(pdev);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
if (cfg->gen2)
|
|
trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie),
|
|
&pdev->dev, cfg, &trans_ops_pcie_gen2);
|
|
else
|
|
trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie),
|
|
&pdev->dev, cfg, &trans_ops_pcie);
|
|
if (!trans)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
trans_pcie->trans = trans;
|
|
trans_pcie->opmode_down = true;
|
|
spin_lock_init(&trans_pcie->irq_lock);
|
|
spin_lock_init(&trans_pcie->reg_lock);
|
|
mutex_init(&trans_pcie->mutex);
|
|
init_waitqueue_head(&trans_pcie->ucode_write_waitq);
|
|
trans_pcie->tso_hdr_page = alloc_percpu(struct iwl_tso_hdr_page);
|
|
if (!trans_pcie->tso_hdr_page) {
|
|
ret = -ENOMEM;
|
|
goto out_no_pci;
|
|
}
|
|
|
|
|
|
if (!cfg->base_params->pcie_l1_allowed) {
|
|
/*
|
|
* W/A - seems to solve weird behavior. We need to remove this
|
|
* if we don't want to stay in L1 all the time. This wastes a
|
|
* lot of power.
|
|
*/
|
|
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S |
|
|
PCIE_LINK_STATE_L1 |
|
|
PCIE_LINK_STATE_CLKPM);
|
|
}
|
|
|
|
if (cfg->use_tfh) {
|
|
addr_size = 64;
|
|
trans_pcie->max_tbs = IWL_TFH_NUM_TBS;
|
|
trans_pcie->tfd_size = sizeof(struct iwl_tfh_tfd);
|
|
} else {
|
|
addr_size = 36;
|
|
trans_pcie->max_tbs = IWL_NUM_OF_TBS;
|
|
trans_pcie->tfd_size = sizeof(struct iwl_tfd);
|
|
}
|
|
trans->max_skb_frags = IWL_PCIE_MAX_FRAGS(trans_pcie);
|
|
|
|
pci_set_master(pdev);
|
|
|
|
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(addr_size));
|
|
if (!ret)
|
|
ret = pci_set_consistent_dma_mask(pdev,
|
|
DMA_BIT_MASK(addr_size));
|
|
if (ret) {
|
|
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (!ret)
|
|
ret = pci_set_consistent_dma_mask(pdev,
|
|
DMA_BIT_MASK(32));
|
|
/* both attempts failed: */
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "No suitable DMA available\n");
|
|
goto out_no_pci;
|
|
}
|
|
}
|
|
|
|
ret = pcim_iomap_regions_request_all(pdev, BIT(0), DRV_NAME);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "pcim_iomap_regions_request_all failed\n");
|
|
goto out_no_pci;
|
|
}
|
|
|
|
trans_pcie->hw_base = pcim_iomap_table(pdev)[0];
|
|
if (!trans_pcie->hw_base) {
|
|
dev_err(&pdev->dev, "pcim_iomap_table failed\n");
|
|
ret = -ENODEV;
|
|
goto out_no_pci;
|
|
}
|
|
|
|
/* We disable the RETRY_TIMEOUT register (0x41) to keep
|
|
* PCI Tx retries from interfering with C3 CPU state */
|
|
pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
|
|
|
|
trans_pcie->pci_dev = pdev;
|
|
iwl_disable_interrupts(trans);
|
|
|
|
trans->hw_rev = iwl_read32(trans, CSR_HW_REV);
|
|
/*
|
|
* In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
|
|
* changed, and now the revision step also includes bit 0-1 (no more
|
|
* "dash" value). To keep hw_rev backwards compatible - we'll store it
|
|
* in the old format.
|
|
*/
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
|
|
unsigned long flags;
|
|
|
|
trans->hw_rev = (trans->hw_rev & 0xfff0) |
|
|
(CSR_HW_REV_STEP(trans->hw_rev << 2) << 2);
|
|
|
|
ret = iwl_pcie_prepare_card_hw(trans);
|
|
if (ret) {
|
|
IWL_WARN(trans, "Exit HW not ready\n");
|
|
goto out_no_pci;
|
|
}
|
|
|
|
/*
|
|
* in-order to recognize C step driver should read chip version
|
|
* id located at the AUX bus MISC address space.
|
|
*/
|
|
iwl_set_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
udelay(2);
|
|
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
25000);
|
|
if (ret < 0) {
|
|
IWL_DEBUG_INFO(trans, "Failed to wake up the nic\n");
|
|
goto out_no_pci;
|
|
}
|
|
|
|
if (iwl_trans_grab_nic_access(trans, &flags)) {
|
|
u32 hw_step;
|
|
|
|
hw_step = iwl_read_prph_no_grab(trans, WFPM_CTRL_REG);
|
|
hw_step |= ENABLE_WFPM;
|
|
iwl_write_prph_no_grab(trans, WFPM_CTRL_REG, hw_step);
|
|
hw_step = iwl_read_prph_no_grab(trans, AUX_MISC_REG);
|
|
hw_step = (hw_step >> HW_STEP_LOCATION_BITS) & 0xF;
|
|
if (hw_step == 0x3)
|
|
trans->hw_rev = (trans->hw_rev & 0xFFFFFFF3) |
|
|
(SILICON_C_STEP << 2);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 9000-series integrated A-step has a problem with suspend/resume
|
|
* and sometimes even causes the whole platform to get stuck. This
|
|
* workaround makes the hardware not go into the problematic state.
|
|
*/
|
|
if (trans->cfg->integrated &&
|
|
trans->cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
|
|
CSR_HW_REV_STEP(trans->hw_rev) == SILICON_A_STEP)
|
|
iwl_set_bit(trans, CSR_HOST_CHICKEN,
|
|
CSR_HOST_CHICKEN_PM_IDLE_SRC_DIS_SB_PME);
|
|
|
|
#if IS_ENABLED(CONFIG_IWLMVM)
|
|
trans->hw_rf_id = iwl_read32(trans, CSR_HW_RF_ID);
|
|
if (trans->hw_rf_id == CSR_HW_RF_ID_TYPE_HR) {
|
|
u32 hw_status;
|
|
|
|
hw_status = iwl_read_prph(trans, UMAG_GEN_HW_STATUS);
|
|
if (hw_status & UMAG_GEN_HW_IS_FPGA)
|
|
trans->cfg = &iwla000_2ax_cfg_qnj_hr_f0;
|
|
else
|
|
trans->cfg = &iwla000_2ac_cfg_hr;
|
|
}
|
|
#endif
|
|
|
|
iwl_pcie_set_interrupt_capa(pdev, trans);
|
|
trans->hw_id = (pdev->device << 16) + pdev->subsystem_device;
|
|
snprintf(trans->hw_id_str, sizeof(trans->hw_id_str),
|
|
"PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device);
|
|
|
|
/* Initialize the wait queue for commands */
|
|
init_waitqueue_head(&trans_pcie->wait_command_queue);
|
|
|
|
init_waitqueue_head(&trans_pcie->d0i3_waitq);
|
|
|
|
if (trans_pcie->msix_enabled) {
|
|
ret = iwl_pcie_init_msix_handler(pdev, trans_pcie);
|
|
if (ret)
|
|
goto out_no_pci;
|
|
} else {
|
|
ret = iwl_pcie_alloc_ict(trans);
|
|
if (ret)
|
|
goto out_no_pci;
|
|
|
|
ret = devm_request_threaded_irq(&pdev->dev, pdev->irq,
|
|
iwl_pcie_isr,
|
|
iwl_pcie_irq_handler,
|
|
IRQF_SHARED, DRV_NAME, trans);
|
|
if (ret) {
|
|
IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq);
|
|
goto out_free_ict;
|
|
}
|
|
trans_pcie->inta_mask = CSR_INI_SET_MASK;
|
|
}
|
|
|
|
trans_pcie->rba.alloc_wq = alloc_workqueue("rb_allocator",
|
|
WQ_HIGHPRI | WQ_UNBOUND, 1);
|
|
INIT_WORK(&trans_pcie->rba.rx_alloc, iwl_pcie_rx_allocator_work);
|
|
|
|
#ifdef CONFIG_IWLWIFI_PCIE_RTPM
|
|
trans->runtime_pm_mode = IWL_PLAT_PM_MODE_D0I3;
|
|
#else
|
|
trans->runtime_pm_mode = IWL_PLAT_PM_MODE_DISABLED;
|
|
#endif /* CONFIG_IWLWIFI_PCIE_RTPM */
|
|
|
|
return trans;
|
|
|
|
out_free_ict:
|
|
iwl_pcie_free_ict(trans);
|
|
out_no_pci:
|
|
free_percpu(trans_pcie->tso_hdr_page);
|
|
iwl_trans_free(trans);
|
|
return ERR_PTR(ret);
|
|
}
|