ubuntu-linux-kernel/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c

4550 lines
125 KiB
C

/*******************************************************************************
This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
ST Ethernet IPs are built around a Synopsys IP Core.
Copyright(C) 2007-2011 STMicroelectronics Ltd
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
Documentation available at:
http://www.stlinux.com
Support available at:
https://bugzilla.stlinux.com/
*******************************************************************************/
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/prefetch.h>
#include <linux/pinctrl/consumer.h>
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif /* CONFIG_DEBUG_FS */
#include <linux/net_tstamp.h>
#include "stmmac_ptp.h"
#include "stmmac.h"
#include <linux/reset.h>
#include <linux/of_mdio.h>
#include "dwmac1000.h"
#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
#define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
/* Module parameters */
#define TX_TIMEO 5000
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
static int debug = -1;
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
static int phyaddr = -1;
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");
#define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
#define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");
#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");
#define DEFAULT_BUFSIZE 1536
static int buf_sz = DEFAULT_BUFSIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");
#define STMMAC_RX_COPYBREAK 256
static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFUP |
NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
#define STMMAC_DEFAULT_LPI_TIMER 1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
/* By default the driver will use the ring mode to manage tx and rx descriptors,
* but allow user to force to use the chain instead of the ring
*/
static unsigned int chain_mode;
module_param(chain_mode, int, S_IRUGO);
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
#ifdef CONFIG_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(struct net_device *dev);
#endif
#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
/**
* stmmac_verify_args - verify the driver parameters.
* Description: it checks the driver parameters and set a default in case of
* errors.
*/
static void stmmac_verify_args(void)
{
if (unlikely(watchdog < 0))
watchdog = TX_TIMEO;
if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
buf_sz = DEFAULT_BUFSIZE;
if (unlikely(flow_ctrl > 1))
flow_ctrl = FLOW_AUTO;
else if (likely(flow_ctrl < 0))
flow_ctrl = FLOW_OFF;
if (unlikely((pause < 0) || (pause > 0xffff)))
pause = PAUSE_TIME;
if (eee_timer < 0)
eee_timer = STMMAC_DEFAULT_LPI_TIMER;
}
/**
* stmmac_disable_all_queues - Disable all queues
* @priv: driver private structure
*/
static void stmmac_disable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_queues_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
napi_disable(&rx_q->napi);
}
}
/**
* stmmac_enable_all_queues - Enable all queues
* @priv: driver private structure
*/
static void stmmac_enable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_queues_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
napi_enable(&rx_q->napi);
}
}
/**
* stmmac_stop_all_queues - Stop all queues
* @priv: driver private structure
*/
static void stmmac_stop_all_queues(struct stmmac_priv *priv)
{
u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < tx_queues_cnt; queue++)
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
}
/**
* stmmac_start_all_queues - Start all queues
* @priv: driver private structure
*/
static void stmmac_start_all_queues(struct stmmac_priv *priv)
{
u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < tx_queues_cnt; queue++)
netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
}
/**
* stmmac_clk_csr_set - dynamically set the MDC clock
* @priv: driver private structure
* Description: this is to dynamically set the MDC clock according to the csr
* clock input.
* Note:
* If a specific clk_csr value is passed from the platform
* this means that the CSR Clock Range selection cannot be
* changed at run-time and it is fixed (as reported in the driver
* documentation). Viceversa the driver will try to set the MDC
* clock dynamically according to the actual clock input.
*/
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
u32 clk_rate;
clk_rate = clk_get_rate(priv->plat->stmmac_clk);
/* Platform provided default clk_csr would be assumed valid
* for all other cases except for the below mentioned ones.
* For values higher than the IEEE 802.3 specified frequency
* we can not estimate the proper divider as it is not known
* the frequency of clk_csr_i. So we do not change the default
* divider.
*/
if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
if (clk_rate < CSR_F_35M)
priv->clk_csr = STMMAC_CSR_20_35M;
else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
priv->clk_csr = STMMAC_CSR_35_60M;
else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
priv->clk_csr = STMMAC_CSR_60_100M;
else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
priv->clk_csr = STMMAC_CSR_100_150M;
else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
priv->clk_csr = STMMAC_CSR_150_250M;
else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
priv->clk_csr = STMMAC_CSR_250_300M;
}
if (priv->plat->has_sun8i) {
if (clk_rate > 160000000)
priv->clk_csr = 0x03;
else if (clk_rate > 80000000)
priv->clk_csr = 0x02;
else if (clk_rate > 40000000)
priv->clk_csr = 0x01;
else
priv->clk_csr = 0;
}
}
static void print_pkt(unsigned char *buf, int len)
{
pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
}
static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
u32 avail;
if (tx_q->dirty_tx > tx_q->cur_tx)
avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
else
avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
return avail;
}
/**
* stmmac_rx_dirty - Get RX queue dirty
* @priv: driver private structure
* @queue: RX queue index
*/
static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
u32 dirty;
if (rx_q->dirty_rx <= rx_q->cur_rx)
dirty = rx_q->cur_rx - rx_q->dirty_rx;
else
dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
return dirty;
}
/**
* stmmac_hw_fix_mac_speed - callback for speed selection
* @priv: driver private structure
* Description: on some platforms (e.g. ST), some HW system configuration
* registers have to be set according to the link speed negotiated.
*/
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
struct net_device *ndev = priv->dev;
struct phy_device *phydev = ndev->phydev;
if (likely(priv->plat->fix_mac_speed))
priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
}
/**
* stmmac_enable_eee_mode - check and enter in LPI mode
* @priv: driver private structure
* Description: this function is to verify and enter in LPI mode in case of
* EEE.
*/
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queue;
/* check if all TX queues have the work finished */
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
if (tx_q->dirty_tx != tx_q->cur_tx)
return; /* still unfinished work */
}
/* Check and enter in LPI mode */
if (!priv->tx_path_in_lpi_mode)
priv->hw->mac->set_eee_mode(priv->hw,
priv->plat->en_tx_lpi_clockgating);
}
/**
* stmmac_disable_eee_mode - disable and exit from LPI mode
* @priv: driver private structure
* Description: this function is to exit and disable EEE in case of
* LPI state is true. This is called by the xmit.
*/
void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
priv->hw->mac->reset_eee_mode(priv->hw);
del_timer_sync(&priv->eee_ctrl_timer);
priv->tx_path_in_lpi_mode = false;
}
/**
* stmmac_eee_ctrl_timer - EEE TX SW timer.
* @arg : data hook
* Description:
* if there is no data transfer and if we are not in LPI state,
* then MAC Transmitter can be moved to LPI state.
*/
static void stmmac_eee_ctrl_timer(struct timer_list *t)
{
struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
stmmac_enable_eee_mode(priv);
mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
}
/**
* stmmac_eee_init - init EEE
* @priv: driver private structure
* Description:
* if the GMAC supports the EEE (from the HW cap reg) and the phy device
* can also manage EEE, this function enable the LPI state and start related
* timer.
*/
bool stmmac_eee_init(struct stmmac_priv *priv)
{
struct net_device *ndev = priv->dev;
int interface = priv->plat->interface;
unsigned long flags;
bool ret = false;
if ((interface != PHY_INTERFACE_MODE_MII) &&
(interface != PHY_INTERFACE_MODE_GMII) &&
!phy_interface_mode_is_rgmii(interface))
goto out;
/* Using PCS we cannot dial with the phy registers at this stage
* so we do not support extra feature like EEE.
*/
if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
(priv->hw->pcs == STMMAC_PCS_TBI) ||
(priv->hw->pcs == STMMAC_PCS_RTBI))
goto out;
/* MAC core supports the EEE feature. */
if (priv->dma_cap.eee) {
int tx_lpi_timer = priv->tx_lpi_timer;
/* Check if the PHY supports EEE */
if (phy_init_eee(ndev->phydev, 1)) {
/* To manage at run-time if the EEE cannot be supported
* anymore (for example because the lp caps have been
* changed).
* In that case the driver disable own timers.
*/
spin_lock_irqsave(&priv->lock, flags);
if (priv->eee_active) {
netdev_dbg(priv->dev, "disable EEE\n");
del_timer_sync(&priv->eee_ctrl_timer);
priv->hw->mac->set_eee_timer(priv->hw, 0,
tx_lpi_timer);
}
priv->eee_active = 0;
spin_unlock_irqrestore(&priv->lock, flags);
goto out;
}
/* Activate the EEE and start timers */
spin_lock_irqsave(&priv->lock, flags);
if (!priv->eee_active) {
priv->eee_active = 1;
timer_setup(&priv->eee_ctrl_timer,
stmmac_eee_ctrl_timer, 0);
mod_timer(&priv->eee_ctrl_timer,
STMMAC_LPI_T(eee_timer));
priv->hw->mac->set_eee_timer(priv->hw,
STMMAC_DEFAULT_LIT_LS,
tx_lpi_timer);
}
/* Set HW EEE according to the speed */
priv->hw->mac->set_eee_pls(priv->hw, ndev->phydev->link);
ret = true;
spin_unlock_irqrestore(&priv->lock, flags);
netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
}
out:
return ret;
}
/* stmmac_get_tx_hwtstamp - get HW TX timestamps
* @priv: driver private structure
* @p : descriptor pointer
* @skb : the socket buffer
* Description :
* This function will read timestamp from the descriptor & pass it to stack.
* and also perform some sanity checks.
*/
static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
struct dma_desc *p, struct sk_buff *skb)
{
struct skb_shared_hwtstamps shhwtstamp;
u64 ns;
if (!priv->hwts_tx_en)
return;
/* exit if skb doesn't support hw tstamp */
if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
return;
/* check tx tstamp status */
if (priv->hw->desc->get_tx_timestamp_status(p)) {
/* get the valid tstamp */
ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
shhwtstamp.hwtstamp = ns_to_ktime(ns);
netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
/* pass tstamp to stack */
skb_tstamp_tx(skb, &shhwtstamp);
}
return;
}
/* stmmac_get_rx_hwtstamp - get HW RX timestamps
* @priv: driver private structure
* @p : descriptor pointer
* @np : next descriptor pointer
* @skb : the socket buffer
* Description :
* This function will read received packet's timestamp from the descriptor
* and pass it to stack. It also perform some sanity checks.
*/
static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
struct dma_desc *np, struct sk_buff *skb)
{
struct skb_shared_hwtstamps *shhwtstamp = NULL;
struct dma_desc *desc = p;
u64 ns;
if (!priv->hwts_rx_en)
return;
/* For GMAC4, the valid timestamp is from CTX next desc. */
if (priv->plat->has_gmac4)
desc = np;
/* Check if timestamp is available */
if (priv->hw->desc->get_rx_timestamp_status(p, np, priv->adv_ts)) {
ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
shhwtstamp = skb_hwtstamps(skb);
memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
shhwtstamp->hwtstamp = ns_to_ktime(ns);
} else {
netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
}
}
/**
* stmmac_hwtstamp_ioctl - control hardware timestamping.
* @dev: device pointer.
* @ifr: An IOCTL specific structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* Description:
* This function configures the MAC to enable/disable both outgoing(TX)
* and incoming(RX) packets time stamping based on user input.
* Return Value:
* 0 on success and an appropriate -ve integer on failure.
*/
static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct hwtstamp_config config;
struct timespec64 now;
u64 temp = 0;
u32 ptp_v2 = 0;
u32 tstamp_all = 0;
u32 ptp_over_ipv4_udp = 0;
u32 ptp_over_ipv6_udp = 0;
u32 ptp_over_ethernet = 0;
u32 snap_type_sel = 0;
u32 ts_master_en = 0;
u32 ts_event_en = 0;
u32 value = 0;
u32 sec_inc;
if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
netdev_alert(priv->dev, "No support for HW time stamping\n");
priv->hwts_tx_en = 0;
priv->hwts_rx_en = 0;
return -EOPNOTSUPP;
}
if (copy_from_user(&config, ifr->ifr_data,
sizeof(struct hwtstamp_config)))
return -EFAULT;
netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
__func__, config.flags, config.tx_type, config.rx_filter);
/* reserved for future extensions */
if (config.flags)
return -EINVAL;
if (config.tx_type != HWTSTAMP_TX_OFF &&
config.tx_type != HWTSTAMP_TX_ON)
return -ERANGE;
if (priv->adv_ts) {
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
/* time stamp no incoming packet at all */
config.rx_filter = HWTSTAMP_FILTER_NONE;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
/* PTP v1, UDP, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
/* take time stamp for all event messages */
if (priv->plat->has_gmac4)
snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
else
snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
/* PTP v1, UDP, Sync packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
/* take time stamp for SYNC messages only */
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
/* PTP v1, UDP, Delay_req packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
/* take time stamp for Delay_Req messages only */
ts_master_en = PTP_TCR_TSMSTRENA;
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
/* PTP v2, UDP, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for all event messages */
if (priv->plat->has_gmac4)
snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
else
snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
/* PTP v2, UDP, Sync packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for SYNC messages only */
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
/* PTP v2, UDP, Delay_req packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for Delay_Req messages only */
ts_master_en = PTP_TCR_TSMSTRENA;
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
/* PTP v2/802.AS1 any layer, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for all event messages */
if (priv->plat->has_gmac4)
snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
else
snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
ptp_over_ethernet = PTP_TCR_TSIPENA;
break;
case HWTSTAMP_FILTER_PTP_V2_SYNC:
/* PTP v2/802.AS1, any layer, Sync packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for SYNC messages only */
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
ptp_over_ethernet = PTP_TCR_TSIPENA;
break;
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
/* PTP v2/802.AS1, any layer, Delay_req packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for Delay_Req messages only */
ts_master_en = PTP_TCR_TSMSTRENA;
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
ptp_over_ethernet = PTP_TCR_TSIPENA;
break;
case HWTSTAMP_FILTER_NTP_ALL:
case HWTSTAMP_FILTER_ALL:
/* time stamp any incoming packet */
config.rx_filter = HWTSTAMP_FILTER_ALL;
tstamp_all = PTP_TCR_TSENALL;
break;
default:
return -ERANGE;
}
} else {
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
config.rx_filter = HWTSTAMP_FILTER_NONE;
break;
default:
/* PTP v1, UDP, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
break;
}
}
priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
if (!priv->hwts_tx_en && !priv->hwts_rx_en)
priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, 0);
else {
value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
tstamp_all | ptp_v2 | ptp_over_ethernet |
ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
ts_master_en | snap_type_sel);
priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, value);
/* program Sub Second Increment reg */
sec_inc = priv->hw->ptp->config_sub_second_increment(
priv->ptpaddr, priv->plat->clk_ptp_rate,
priv->plat->has_gmac4);
temp = div_u64(1000000000ULL, sec_inc);
/* calculate default added value:
* formula is :
* addend = (2^32)/freq_div_ratio;
* where, freq_div_ratio = 1e9ns/sec_inc
*/
temp = (u64)(temp << 32);
priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
priv->hw->ptp->config_addend(priv->ptpaddr,
priv->default_addend);
/* initialize system time */
ktime_get_real_ts64(&now);
/* lower 32 bits of tv_sec are safe until y2106 */
priv->hw->ptp->init_systime(priv->ptpaddr, (u32)now.tv_sec,
now.tv_nsec);
}
return copy_to_user(ifr->ifr_data, &config,
sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
}
/**
* stmmac_init_ptp - init PTP
* @priv: driver private structure
* Description: this is to verify if the HW supports the PTPv1 or PTPv2.
* This is done by looking at the HW cap. register.
* This function also registers the ptp driver.
*/
static int stmmac_init_ptp(struct stmmac_priv *priv)
{
if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
return -EOPNOTSUPP;
priv->adv_ts = 0;
/* Check if adv_ts can be enabled for dwmac 4.x core */
if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
priv->adv_ts = 1;
/* Dwmac 3.x core with extend_desc can support adv_ts */
else if (priv->extend_desc && priv->dma_cap.atime_stamp)
priv->adv_ts = 1;
if (priv->dma_cap.time_stamp)
netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
if (priv->adv_ts)
netdev_info(priv->dev,
"IEEE 1588-2008 Advanced Timestamp supported\n");
priv->hw->ptp = &stmmac_ptp;
priv->hwts_tx_en = 0;
priv->hwts_rx_en = 0;
stmmac_ptp_register(priv);
return 0;
}
static void stmmac_release_ptp(struct stmmac_priv *priv)
{
if (priv->plat->clk_ptp_ref)
clk_disable_unprepare(priv->plat->clk_ptp_ref);
stmmac_ptp_unregister(priv);
}
/**
* stmmac_mac_flow_ctrl - Configure flow control in all queues
* @priv: driver private structure
* Description: It is used for configuring the flow control in all queues
*/
static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
{
u32 tx_cnt = priv->plat->tx_queues_to_use;
priv->hw->mac->flow_ctrl(priv->hw, duplex, priv->flow_ctrl,
priv->pause, tx_cnt);
}
/**
* stmmac_adjust_link - adjusts the link parameters
* @dev: net device structure
* Description: this is the helper called by the physical abstraction layer
* drivers to communicate the phy link status. According the speed and duplex
* this driver can invoke registered glue-logic as well.
* It also invoke the eee initialization because it could happen when switch
* on different networks (that are eee capable).
*/
static void stmmac_adjust_link(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct phy_device *phydev = dev->phydev;
unsigned long flags;
bool new_state = false;
if (!phydev)
return;
spin_lock_irqsave(&priv->lock, flags);
if (phydev->link) {
u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if (phydev->duplex != priv->oldduplex) {
new_state = true;
if (!phydev->duplex)
ctrl &= ~priv->hw->link.duplex;
else
ctrl |= priv->hw->link.duplex;
priv->oldduplex = phydev->duplex;
}
/* Flow Control operation */
if (phydev->pause)
stmmac_mac_flow_ctrl(priv, phydev->duplex);
if (phydev->speed != priv->speed) {
new_state = true;
ctrl &= ~priv->hw->link.speed_mask;
switch (phydev->speed) {
case SPEED_1000:
ctrl |= priv->hw->link.speed1000;
break;
case SPEED_100:
ctrl |= priv->hw->link.speed100;
break;
case SPEED_10:
ctrl |= priv->hw->link.speed10;
break;
default:
netif_warn(priv, link, priv->dev,
"broken speed: %d\n", phydev->speed);
phydev->speed = SPEED_UNKNOWN;
break;
}
if (phydev->speed != SPEED_UNKNOWN)
stmmac_hw_fix_mac_speed(priv);
priv->speed = phydev->speed;
}
writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
if (!priv->oldlink) {
new_state = true;
priv->oldlink = true;
}
} else if (priv->oldlink) {
new_state = true;
priv->oldlink = false;
priv->speed = SPEED_UNKNOWN;
priv->oldduplex = DUPLEX_UNKNOWN;
}
if (new_state && netif_msg_link(priv))
phy_print_status(phydev);
spin_unlock_irqrestore(&priv->lock, flags);
if (phydev->is_pseudo_fixed_link)
/* Stop PHY layer to call the hook to adjust the link in case
* of a switch is attached to the stmmac driver.
*/
phydev->irq = PHY_IGNORE_INTERRUPT;
else
/* At this stage, init the EEE if supported.
* Never called in case of fixed_link.
*/
priv->eee_enabled = stmmac_eee_init(priv);
}
/**
* stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
* @priv: driver private structure
* Description: this is to verify if the HW supports the PCS.
* Physical Coding Sublayer (PCS) interface that can be used when the MAC is
* configured for the TBI, RTBI, or SGMII PHY interface.
*/
static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
{
int interface = priv->plat->interface;
if (priv->dma_cap.pcs) {
if ((interface == PHY_INTERFACE_MODE_RGMII) ||
(interface == PHY_INTERFACE_MODE_RGMII_ID) ||
(interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
(interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
priv->hw->pcs = STMMAC_PCS_RGMII;
} else if (interface == PHY_INTERFACE_MODE_SGMII) {
netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
priv->hw->pcs = STMMAC_PCS_SGMII;
}
}
}
/**
* stmmac_init_phy - PHY initialization
* @dev: net device structure
* Description: it initializes the driver's PHY state, and attaches the PHY
* to the mac driver.
* Return value:
* 0 on success
*/
static int stmmac_init_phy(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct phy_device *phydev;
char phy_id_fmt[MII_BUS_ID_SIZE + 3];
char bus_id[MII_BUS_ID_SIZE];
int interface = priv->plat->interface;
int max_speed = priv->plat->max_speed;
priv->oldlink = false;
priv->speed = SPEED_UNKNOWN;
priv->oldduplex = DUPLEX_UNKNOWN;
if (priv->plat->phy_node) {
phydev = of_phy_connect(dev, priv->plat->phy_node,
&stmmac_adjust_link, 0, interface);
} else {
snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
priv->plat->bus_id);
snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
priv->plat->phy_addr);
netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
phy_id_fmt);
phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
interface);
}
if (IS_ERR_OR_NULL(phydev)) {
netdev_err(priv->dev, "Could not attach to PHY\n");
if (!phydev)
return -ENODEV;
return PTR_ERR(phydev);
}
/* Stop Advertising 1000BASE Capability if interface is not GMII */
if ((interface == PHY_INTERFACE_MODE_MII) ||
(interface == PHY_INTERFACE_MODE_RMII) ||
(max_speed < 1000 && max_speed > 0))
phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full);
/*
* Broken HW is sometimes missing the pull-up resistor on the
* MDIO line, which results in reads to non-existent devices returning
* 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
* device as well.
* Note: phydev->phy_id is the result of reading the UID PHY registers.
*/
if (!priv->plat->phy_node && phydev->phy_id == 0) {
phy_disconnect(phydev);
return -ENODEV;
}
/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
* subsequent PHY polling, make sure we force a link transition if
* we have a UP/DOWN/UP transition
*/
if (phydev->is_pseudo_fixed_link)
phydev->irq = PHY_POLL;
phy_attached_info(phydev);
return 0;
}
static void stmmac_display_rx_rings(struct stmmac_priv *priv)
{
u32 rx_cnt = priv->plat->rx_queues_to_use;
void *head_rx;
u32 queue;
/* Display RX rings */
for (queue = 0; queue < rx_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
pr_info("\tRX Queue %u rings\n", queue);
if (priv->extend_desc)
head_rx = (void *)rx_q->dma_erx;
else
head_rx = (void *)rx_q->dma_rx;
/* Display RX ring */
priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
}
}
static void stmmac_display_tx_rings(struct stmmac_priv *priv)
{
u32 tx_cnt = priv->plat->tx_queues_to_use;
void *head_tx;
u32 queue;
/* Display TX rings */
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
pr_info("\tTX Queue %d rings\n", queue);
if (priv->extend_desc)
head_tx = (void *)tx_q->dma_etx;
else
head_tx = (void *)tx_q->dma_tx;
priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
}
}
static void stmmac_display_rings(struct stmmac_priv *priv)
{
/* Display RX ring */
stmmac_display_rx_rings(priv);
/* Display TX ring */
stmmac_display_tx_rings(priv);
}
static int stmmac_set_bfsize(int mtu, int bufsize)
{
int ret = bufsize;
if (mtu >= BUF_SIZE_4KiB)
ret = BUF_SIZE_8KiB;
else if (mtu >= BUF_SIZE_2KiB)
ret = BUF_SIZE_4KiB;
else if (mtu > DEFAULT_BUFSIZE)
ret = BUF_SIZE_2KiB;
else
ret = DEFAULT_BUFSIZE;
return ret;
}
/**
* stmmac_clear_rx_descriptors - clear RX descriptors
* @priv: driver private structure
* @queue: RX queue index
* Description: this function is called to clear the RX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
int i;
/* Clear the RX descriptors */
for (i = 0; i < DMA_RX_SIZE; i++)
if (priv->extend_desc)
priv->hw->desc->init_rx_desc(&rx_q->dma_erx[i].basic,
priv->use_riwt, priv->mode,
(i == DMA_RX_SIZE - 1));
else
priv->hw->desc->init_rx_desc(&rx_q->dma_rx[i],
priv->use_riwt, priv->mode,
(i == DMA_RX_SIZE - 1));
}
/**
* stmmac_clear_tx_descriptors - clear tx descriptors
* @priv: driver private structure
* @queue: TX queue index.
* Description: this function is called to clear the TX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
int i;
/* Clear the TX descriptors */
for (i = 0; i < DMA_TX_SIZE; i++)
if (priv->extend_desc)
priv->hw->desc->init_tx_desc(&tx_q->dma_etx[i].basic,
priv->mode,
(i == DMA_TX_SIZE - 1));
else
priv->hw->desc->init_tx_desc(&tx_q->dma_tx[i],
priv->mode,
(i == DMA_TX_SIZE - 1));
}
/**
* stmmac_clear_descriptors - clear descriptors
* @priv: driver private structure
* Description: this function is called to clear the TX and RX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_descriptors(struct stmmac_priv *priv)
{
u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
u32 queue;
/* Clear the RX descriptors */
for (queue = 0; queue < rx_queue_cnt; queue++)
stmmac_clear_rx_descriptors(priv, queue);
/* Clear the TX descriptors */
for (queue = 0; queue < tx_queue_cnt; queue++)
stmmac_clear_tx_descriptors(priv, queue);
}
/**
* stmmac_init_rx_buffers - init the RX descriptor buffer.
* @priv: driver private structure
* @p: descriptor pointer
* @i: descriptor index
* @flags: gfp flag
* @queue: RX queue index
* Description: this function is called to allocate a receive buffer, perform
* the DMA mapping and init the descriptor.
*/
static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
int i, gfp_t flags, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
struct sk_buff *skb;
skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
if (!skb) {
netdev_err(priv->dev,
"%s: Rx init fails; skb is NULL\n", __func__);
return -ENOMEM;
}
rx_q->rx_skbuff[i] = skb;
rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
priv->dma_buf_sz,
DMA_FROM_DEVICE);
if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
dev_kfree_skb_any(skb);
return -EINVAL;
}
if (priv->synopsys_id >= DWMAC_CORE_4_00)
p->des0 = cpu_to_le32(rx_q->rx_skbuff_dma[i]);
else
p->des2 = cpu_to_le32(rx_q->rx_skbuff_dma[i]);
if ((priv->hw->mode->init_desc3) &&
(priv->dma_buf_sz == BUF_SIZE_16KiB))
priv->hw->mode->init_desc3(p);
return 0;
}
/**
* stmmac_free_rx_buffer - free RX dma buffers
* @priv: private structure
* @queue: RX queue index
* @i: buffer index.
*/
static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
if (rx_q->rx_skbuff[i]) {
dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
priv->dma_buf_sz, DMA_FROM_DEVICE);
dev_kfree_skb_any(rx_q->rx_skbuff[i]);
}
rx_q->rx_skbuff[i] = NULL;
}
/**
* stmmac_free_tx_buffer - free RX dma buffers
* @priv: private structure
* @queue: RX queue index
* @i: buffer index.
*/
static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
if (tx_q->tx_skbuff_dma[i].buf) {
if (tx_q->tx_skbuff_dma[i].map_as_page)
dma_unmap_page(priv->device,
tx_q->tx_skbuff_dma[i].buf,
tx_q->tx_skbuff_dma[i].len,
DMA_TO_DEVICE);
else
dma_unmap_single(priv->device,
tx_q->tx_skbuff_dma[i].buf,
tx_q->tx_skbuff_dma[i].len,
DMA_TO_DEVICE);
}
if (tx_q->tx_skbuff[i]) {
dev_kfree_skb_any(tx_q->tx_skbuff[i]);
tx_q->tx_skbuff[i] = NULL;
tx_q->tx_skbuff_dma[i].buf = 0;
tx_q->tx_skbuff_dma[i].map_as_page = false;
}
}
/**
* init_dma_rx_desc_rings - init the RX descriptor rings
* @dev: net device structure
* @flags: gfp flag.
* Description: this function initializes the DMA RX descriptors
* and allocates the socket buffers. It supports the chained and ring
* modes.
*/
static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_count = priv->plat->rx_queues_to_use;
unsigned int bfsize = 0;
int ret = -ENOMEM;
int queue;
int i;
if (priv->hw->mode->set_16kib_bfsize)
bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
if (bfsize < BUF_SIZE_16KiB)
bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
priv->dma_buf_sz = bfsize;
/* RX INITIALIZATION */
netif_dbg(priv, probe, priv->dev,
"SKB addresses:\nskb\t\tskb data\tdma data\n");
for (queue = 0; queue < rx_count; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
netif_dbg(priv, probe, priv->dev,
"(%s) dma_rx_phy=0x%08x\n", __func__,
(u32)rx_q->dma_rx_phy);
for (i = 0; i < DMA_RX_SIZE; i++) {
struct dma_desc *p;
if (priv->extend_desc)
p = &((rx_q->dma_erx + i)->basic);
else
p = rx_q->dma_rx + i;
ret = stmmac_init_rx_buffers(priv, p, i, flags,
queue);
if (ret)
goto err_init_rx_buffers;
netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
(unsigned int)rx_q->rx_skbuff_dma[i]);
}
rx_q->cur_rx = 0;
rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
stmmac_clear_rx_descriptors(priv, queue);
/* Setup the chained descriptor addresses */
if (priv->mode == STMMAC_CHAIN_MODE) {
if (priv->extend_desc)
priv->hw->mode->init(rx_q->dma_erx,
rx_q->dma_rx_phy,
DMA_RX_SIZE, 1);
else
priv->hw->mode->init(rx_q->dma_rx,
rx_q->dma_rx_phy,
DMA_RX_SIZE, 0);
}
}
buf_sz = bfsize;
return 0;
err_init_rx_buffers:
while (queue >= 0) {
while (--i >= 0)
stmmac_free_rx_buffer(priv, queue, i);
if (queue == 0)
break;
i = DMA_RX_SIZE;
queue--;
}
return ret;
}
/**
* init_dma_tx_desc_rings - init the TX descriptor rings
* @dev: net device structure.
* Description: this function initializes the DMA TX descriptors
* and allocates the socket buffers. It supports the chained and ring
* modes.
*/
static int init_dma_tx_desc_rings(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
u32 queue;
int i;
for (queue = 0; queue < tx_queue_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
netif_dbg(priv, probe, priv->dev,
"(%s) dma_tx_phy=0x%08x\n", __func__,
(u32)tx_q->dma_tx_phy);
/* Setup the chained descriptor addresses */
if (priv->mode == STMMAC_CHAIN_MODE) {
if (priv->extend_desc)
priv->hw->mode->init(tx_q->dma_etx,
tx_q->dma_tx_phy,
DMA_TX_SIZE, 1);
else
priv->hw->mode->init(tx_q->dma_tx,
tx_q->dma_tx_phy,
DMA_TX_SIZE, 0);
}
for (i = 0; i < DMA_TX_SIZE; i++) {
struct dma_desc *p;
if (priv->extend_desc)
p = &((tx_q->dma_etx + i)->basic);
else
p = tx_q->dma_tx + i;
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
p->des0 = 0;
p->des1 = 0;
p->des2 = 0;
p->des3 = 0;
} else {
p->des2 = 0;
}
tx_q->tx_skbuff_dma[i].buf = 0;
tx_q->tx_skbuff_dma[i].map_as_page = false;
tx_q->tx_skbuff_dma[i].len = 0;
tx_q->tx_skbuff_dma[i].last_segment = false;
tx_q->tx_skbuff[i] = NULL;
}
tx_q->dirty_tx = 0;
tx_q->cur_tx = 0;
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
}
return 0;
}
/**
* init_dma_desc_rings - init the RX/TX descriptor rings
* @dev: net device structure
* @flags: gfp flag.
* Description: this function initializes the DMA RX/TX descriptors
* and allocates the socket buffers. It supports the chained and ring
* modes.
*/
static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret;
ret = init_dma_rx_desc_rings(dev, flags);
if (ret)
return ret;
ret = init_dma_tx_desc_rings(dev);
stmmac_clear_descriptors(priv);
if (netif_msg_hw(priv))
stmmac_display_rings(priv);
return ret;
}
/**
* dma_free_rx_skbufs - free RX dma buffers
* @priv: private structure
* @queue: RX queue index
*/
static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
{
int i;
for (i = 0; i < DMA_RX_SIZE; i++)
stmmac_free_rx_buffer(priv, queue, i);
}
/**
* dma_free_tx_skbufs - free TX dma buffers
* @priv: private structure
* @queue: TX queue index
*/
static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
{
int i;
for (i = 0; i < DMA_TX_SIZE; i++)
stmmac_free_tx_buffer(priv, queue, i);
}
/**
* free_dma_rx_desc_resources - free RX dma desc resources
* @priv: private structure
*/
static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
{
u32 rx_count = priv->plat->rx_queues_to_use;
u32 queue;
/* Free RX queue resources */
for (queue = 0; queue < rx_count; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
/* Release the DMA RX socket buffers */
dma_free_rx_skbufs(priv, queue);
/* Free DMA regions of consistent memory previously allocated */
if (!priv->extend_desc)
dma_free_coherent(priv->device,
DMA_RX_SIZE * sizeof(struct dma_desc),
rx_q->dma_rx, rx_q->dma_rx_phy);
else
dma_free_coherent(priv->device, DMA_RX_SIZE *
sizeof(struct dma_extended_desc),
rx_q->dma_erx, rx_q->dma_rx_phy);
kfree(rx_q->rx_skbuff_dma);
kfree(rx_q->rx_skbuff);
}
}
/**
* free_dma_tx_desc_resources - free TX dma desc resources
* @priv: private structure
*/
static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
{
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue;
/* Free TX queue resources */
for (queue = 0; queue < tx_count; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
/* Release the DMA TX socket buffers */
dma_free_tx_skbufs(priv, queue);
/* Free DMA regions of consistent memory previously allocated */
if (!priv->extend_desc)
dma_free_coherent(priv->device,
DMA_TX_SIZE * sizeof(struct dma_desc),
tx_q->dma_tx, tx_q->dma_tx_phy);
else
dma_free_coherent(priv->device, DMA_TX_SIZE *
sizeof(struct dma_extended_desc),
tx_q->dma_etx, tx_q->dma_tx_phy);
kfree(tx_q->tx_skbuff_dma);
kfree(tx_q->tx_skbuff);
}
}
/**
* alloc_dma_rx_desc_resources - alloc RX resources.
* @priv: private structure
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
{
u32 rx_count = priv->plat->rx_queues_to_use;
int ret = -ENOMEM;
u32 queue;
/* RX queues buffers and DMA */
for (queue = 0; queue < rx_count; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
rx_q->queue_index = queue;
rx_q->priv_data = priv;
rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
sizeof(dma_addr_t),
GFP_KERNEL);
if (!rx_q->rx_skbuff_dma)
goto err_dma;
rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
sizeof(struct sk_buff *),
GFP_KERNEL);
if (!rx_q->rx_skbuff)
goto err_dma;
if (priv->extend_desc) {
rx_q->dma_erx = dma_zalloc_coherent(priv->device,
DMA_RX_SIZE *
sizeof(struct
dma_extended_desc),
&rx_q->dma_rx_phy,
GFP_KERNEL);
if (!rx_q->dma_erx)
goto err_dma;
} else {
rx_q->dma_rx = dma_zalloc_coherent(priv->device,
DMA_RX_SIZE *
sizeof(struct
dma_desc),
&rx_q->dma_rx_phy,
GFP_KERNEL);
if (!rx_q->dma_rx)
goto err_dma;
}
}
return 0;
err_dma:
free_dma_rx_desc_resources(priv);
return ret;
}
/**
* alloc_dma_tx_desc_resources - alloc TX resources.
* @priv: private structure
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
{
u32 tx_count = priv->plat->tx_queues_to_use;
int ret = -ENOMEM;
u32 queue;
/* TX queues buffers and DMA */
for (queue = 0; queue < tx_count; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
tx_q->queue_index = queue;
tx_q->priv_data = priv;
tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
sizeof(*tx_q->tx_skbuff_dma),
GFP_KERNEL);
if (!tx_q->tx_skbuff_dma)
goto err_dma;
tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
sizeof(struct sk_buff *),
GFP_KERNEL);
if (!tx_q->tx_skbuff)
goto err_dma;
if (priv->extend_desc) {
tx_q->dma_etx = dma_zalloc_coherent(priv->device,
DMA_TX_SIZE *
sizeof(struct
dma_extended_desc),
&tx_q->dma_tx_phy,
GFP_KERNEL);
if (!tx_q->dma_etx)
goto err_dma;
} else {
tx_q->dma_tx = dma_zalloc_coherent(priv->device,
DMA_TX_SIZE *
sizeof(struct
dma_desc),
&tx_q->dma_tx_phy,
GFP_KERNEL);
if (!tx_q->dma_tx)
goto err_dma;
}
}
return 0;
err_dma:
free_dma_tx_desc_resources(priv);
return ret;
}
/**
* alloc_dma_desc_resources - alloc TX/RX resources.
* @priv: private structure
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int alloc_dma_desc_resources(struct stmmac_priv *priv)
{
/* RX Allocation */
int ret = alloc_dma_rx_desc_resources(priv);
if (ret)
return ret;
ret = alloc_dma_tx_desc_resources(priv);
return ret;
}
/**
* free_dma_desc_resources - free dma desc resources
* @priv: private structure
*/
static void free_dma_desc_resources(struct stmmac_priv *priv)
{
/* Release the DMA RX socket buffers */
free_dma_rx_desc_resources(priv);
/* Release the DMA TX socket buffers */
free_dma_tx_desc_resources(priv);
}
/**
* stmmac_mac_enable_rx_queues - Enable MAC rx queues
* @priv: driver private structure
* Description: It is used for enabling the rx queues in the MAC
*/
static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
int queue;
u8 mode;
for (queue = 0; queue < rx_queues_count; queue++) {
mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
priv->hw->mac->rx_queue_enable(priv->hw, mode, queue);
}
}
/**
* stmmac_start_rx_dma - start RX DMA channel
* @priv: driver private structure
* @chan: RX channel index
* Description:
* This starts a RX DMA channel
*/
static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
priv->hw->dma->start_rx(priv->ioaddr, chan);
}
/**
* stmmac_start_tx_dma - start TX DMA channel
* @priv: driver private structure
* @chan: TX channel index
* Description:
* This starts a TX DMA channel
*/
static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
priv->hw->dma->start_tx(priv->ioaddr, chan);
}
/**
* stmmac_stop_rx_dma - stop RX DMA channel
* @priv: driver private structure
* @chan: RX channel index
* Description:
* This stops a RX DMA channel
*/
static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
priv->hw->dma->stop_rx(priv->ioaddr, chan);
}
/**
* stmmac_stop_tx_dma - stop TX DMA channel
* @priv: driver private structure
* @chan: TX channel index
* Description:
* This stops a TX DMA channel
*/
static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
priv->hw->dma->stop_tx(priv->ioaddr, chan);
}
/**
* stmmac_start_all_dma - start all RX and TX DMA channels
* @priv: driver private structure
* Description:
* This starts all the RX and TX DMA channels
*/
static void stmmac_start_all_dma(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 chan = 0;
for (chan = 0; chan < rx_channels_count; chan++)
stmmac_start_rx_dma(priv, chan);
for (chan = 0; chan < tx_channels_count; chan++)
stmmac_start_tx_dma(priv, chan);
}
/**
* stmmac_stop_all_dma - stop all RX and TX DMA channels
* @priv: driver private structure
* Description:
* This stops the RX and TX DMA channels
*/
static void stmmac_stop_all_dma(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 chan = 0;
for (chan = 0; chan < rx_channels_count; chan++)
stmmac_stop_rx_dma(priv, chan);
for (chan = 0; chan < tx_channels_count; chan++)
stmmac_stop_tx_dma(priv, chan);
}
/**
* stmmac_dma_operation_mode - HW DMA operation mode
* @priv: driver private structure
* Description: it is used for configuring the DMA operation mode register in
* order to program the tx/rx DMA thresholds or Store-And-Forward mode.
*/
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
int rxfifosz = priv->plat->rx_fifo_size;
int txfifosz = priv->plat->tx_fifo_size;
u32 txmode = 0;
u32 rxmode = 0;
u32 chan = 0;
u8 qmode = 0;
if (rxfifosz == 0)
rxfifosz = priv->dma_cap.rx_fifo_size;
if (txfifosz == 0)
txfifosz = priv->dma_cap.tx_fifo_size;
/* Adjust for real per queue fifo size */
rxfifosz /= rx_channels_count;
txfifosz /= tx_channels_count;
if (priv->plat->force_thresh_dma_mode) {
txmode = tc;
rxmode = tc;
} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
/*
* In case of GMAC, SF mode can be enabled
* to perform the TX COE in HW. This depends on:
* 1) TX COE if actually supported
* 2) There is no bugged Jumbo frame support
* that needs to not insert csum in the TDES.
*/
txmode = SF_DMA_MODE;
rxmode = SF_DMA_MODE;
priv->xstats.threshold = SF_DMA_MODE;
} else {
txmode = tc;
rxmode = SF_DMA_MODE;
}
/* configure all channels */
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
for (chan = 0; chan < rx_channels_count; chan++) {
qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
priv->hw->dma->dma_rx_mode(priv->ioaddr, rxmode, chan,
rxfifosz, qmode);
}
for (chan = 0; chan < tx_channels_count; chan++) {
qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
priv->hw->dma->dma_tx_mode(priv->ioaddr, txmode, chan,
txfifosz, qmode);
}
} else {
priv->hw->dma->dma_mode(priv->ioaddr, txmode, rxmode,
rxfifosz);
}
}
/**
* stmmac_tx_clean - to manage the transmission completion
* @priv: driver private structure
* @queue: TX queue index
* Description: it reclaims the transmit resources after transmission completes.
*/
static void stmmac_tx_clean(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
unsigned int bytes_compl = 0, pkts_compl = 0;
unsigned int entry;
netif_tx_lock(priv->dev);
priv->xstats.tx_clean++;
entry = tx_q->dirty_tx;
while (entry != tx_q->cur_tx) {
struct sk_buff *skb = tx_q->tx_skbuff[entry];
struct dma_desc *p;
int status;
if (priv->extend_desc)
p = (struct dma_desc *)(tx_q->dma_etx + entry);
else
p = tx_q->dma_tx + entry;
status = priv->hw->desc->tx_status(&priv->dev->stats,
&priv->xstats, p,
priv->ioaddr);
/* Check if the descriptor is owned by the DMA */
if (unlikely(status & tx_dma_own))
break;
/* Just consider the last segment and ...*/
if (likely(!(status & tx_not_ls))) {
/* ... verify the status error condition */
if (unlikely(status & tx_err)) {
priv->dev->stats.tx_errors++;
} else {
priv->dev->stats.tx_packets++;
priv->xstats.tx_pkt_n++;
}
stmmac_get_tx_hwtstamp(priv, p, skb);
}
if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
if (tx_q->tx_skbuff_dma[entry].map_as_page)
dma_unmap_page(priv->device,
tx_q->tx_skbuff_dma[entry].buf,
tx_q->tx_skbuff_dma[entry].len,
DMA_TO_DEVICE);
else
dma_unmap_single(priv->device,
tx_q->tx_skbuff_dma[entry].buf,
tx_q->tx_skbuff_dma[entry].len,
DMA_TO_DEVICE);
tx_q->tx_skbuff_dma[entry].buf = 0;
tx_q->tx_skbuff_dma[entry].len = 0;
tx_q->tx_skbuff_dma[entry].map_as_page = false;
}
if (priv->hw->mode->clean_desc3)
priv->hw->mode->clean_desc3(tx_q, p);
tx_q->tx_skbuff_dma[entry].last_segment = false;
tx_q->tx_skbuff_dma[entry].is_jumbo = false;
if (likely(skb != NULL)) {
pkts_compl++;
bytes_compl += skb->len;
dev_consume_skb_any(skb);
tx_q->tx_skbuff[entry] = NULL;
}
priv->hw->desc->release_tx_desc(p, priv->mode);
entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
}
tx_q->dirty_tx = entry;
netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
pkts_compl, bytes_compl);
if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
queue))) &&
stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
netif_dbg(priv, tx_done, priv->dev,
"%s: restart transmit\n", __func__);
netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
}
if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
stmmac_enable_eee_mode(priv);
mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
}
netif_tx_unlock(priv->dev);
}
static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv, u32 chan)
{
priv->hw->dma->enable_dma_irq(priv->ioaddr, chan);
}
static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv, u32 chan)
{
priv->hw->dma->disable_dma_irq(priv->ioaddr, chan);
}
/**
* stmmac_tx_err - to manage the tx error
* @priv: driver private structure
* @chan: channel index
* Description: it cleans the descriptors and restarts the transmission
* in case of transmission errors.
*/
static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
int i;
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
stmmac_stop_tx_dma(priv, chan);
dma_free_tx_skbufs(priv, chan);
for (i = 0; i < DMA_TX_SIZE; i++)
if (priv->extend_desc)
priv->hw->desc->init_tx_desc(&tx_q->dma_etx[i].basic,
priv->mode,
(i == DMA_TX_SIZE - 1));
else
priv->hw->desc->init_tx_desc(&tx_q->dma_tx[i],
priv->mode,
(i == DMA_TX_SIZE - 1));
tx_q->dirty_tx = 0;
tx_q->cur_tx = 0;
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
stmmac_start_tx_dma(priv, chan);
priv->dev->stats.tx_errors++;
netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
}
/**
* stmmac_set_dma_operation_mode - Set DMA operation mode by channel
* @priv: driver private structure
* @txmode: TX operating mode
* @rxmode: RX operating mode
* @chan: channel index
* Description: it is used for configuring of the DMA operation mode in
* runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
* mode.
*/
static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
u32 rxmode, u32 chan)
{
u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
int rxfifosz = priv->plat->rx_fifo_size;
int txfifosz = priv->plat->tx_fifo_size;
if (rxfifosz == 0)
rxfifosz = priv->dma_cap.rx_fifo_size;
if (txfifosz == 0)
txfifosz = priv->dma_cap.tx_fifo_size;
/* Adjust for real per queue fifo size */
rxfifosz /= rx_channels_count;
txfifosz /= tx_channels_count;
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
priv->hw->dma->dma_rx_mode(priv->ioaddr, rxmode, chan,
rxfifosz, rxqmode);
priv->hw->dma->dma_tx_mode(priv->ioaddr, txmode, chan,
txfifosz, txqmode);
} else {
priv->hw->dma->dma_mode(priv->ioaddr, txmode, rxmode,
rxfifosz);
}
}
/**
* stmmac_dma_interrupt - DMA ISR
* @priv: driver private structure
* Description: this is the DMA ISR. It is called by the main ISR.
* It calls the dwmac dma routine and schedule poll method in case of some
* work can be done.
*/
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
u32 tx_channel_count = priv->plat->tx_queues_to_use;
int status;
u32 chan;
for (chan = 0; chan < tx_channel_count; chan++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
status = priv->hw->dma->dma_interrupt(priv->ioaddr,
&priv->xstats, chan);
if (likely((status & handle_rx)) || (status & handle_tx)) {
if (likely(napi_schedule_prep(&rx_q->napi))) {
stmmac_disable_dma_irq(priv, chan);
__napi_schedule(&rx_q->napi);
}
}
if (unlikely(status & tx_hard_error_bump_tc)) {
/* Try to bump up the dma threshold on this failure */
if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
(tc <= 256)) {
tc += 64;
if (priv->plat->force_thresh_dma_mode)
stmmac_set_dma_operation_mode(priv,
tc,
tc,
chan);
else
stmmac_set_dma_operation_mode(priv,
tc,
SF_DMA_MODE,
chan);
priv->xstats.threshold = tc;
}
} else if (unlikely(status == tx_hard_error)) {
stmmac_tx_err(priv, chan);
}
}
}
/**
* stmmac_mmc_setup: setup the Mac Management Counters (MMC)
* @priv: driver private structure
* Description: this masks the MMC irq, in fact, the counters are managed in SW.
*/
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
priv->ptpaddr = priv->ioaddr + PTP_GMAC4_OFFSET;
priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
} else {
priv->ptpaddr = priv->ioaddr + PTP_GMAC3_X_OFFSET;
priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
}
dwmac_mmc_intr_all_mask(priv->mmcaddr);
if (priv->dma_cap.rmon) {
dwmac_mmc_ctrl(priv->mmcaddr, mode);
memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
} else
netdev_info(priv->dev, "No MAC Management Counters available\n");
}
/**
* stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
* @priv: driver private structure
* Description: select the Enhanced/Alternate or Normal descriptors.
* In case of Enhanced/Alternate, it checks if the extended descriptors are
* supported by the HW capability register.
*/
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
if (priv->plat->enh_desc) {
dev_info(priv->device, "Enhanced/Alternate descriptors\n");
/* GMAC older than 3.50 has no extended descriptors */
if (priv->synopsys_id >= DWMAC_CORE_3_50) {
dev_info(priv->device, "Enabled extended descriptors\n");
priv->extend_desc = 1;
} else
dev_warn(priv->device, "Extended descriptors not supported\n");
priv->hw->desc = &enh_desc_ops;
} else {
dev_info(priv->device, "Normal descriptors\n");
priv->hw->desc = &ndesc_ops;
}
}
/**
* stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
* @priv: driver private structure
* Description:
* new GMAC chip generations have a new register to indicate the
* presence of the optional feature/functions.
* This can be also used to override the value passed through the
* platform and necessary for old MAC10/100 and GMAC chips.
*/
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
u32 ret = 0;
if (priv->hw->dma->get_hw_feature) {
priv->hw->dma->get_hw_feature(priv->ioaddr,
&priv->dma_cap);
ret = 1;
}
return ret;
}
/**
* stmmac_check_ether_addr - check if the MAC addr is valid
* @priv: driver private structure
* Description:
* it is to verify if the MAC address is valid, in case of failures it
* generates a random MAC address
*/
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
if (!is_valid_ether_addr(priv->dev->dev_addr)) {
priv->hw->mac->get_umac_addr(priv->hw,
priv->dev->dev_addr, 0);
if (!is_valid_ether_addr(priv->dev->dev_addr))
eth_hw_addr_random(priv->dev);
netdev_info(priv->dev, "device MAC address %pM\n",
priv->dev->dev_addr);
}
}
/**
* stmmac_init_dma_engine - DMA init.
* @priv: driver private structure
* Description:
* It inits the DMA invoking the specific MAC/GMAC callback.
* Some DMA parameters can be passed from the platform;
* in case of these are not passed a default is kept for the MAC or GMAC.
*/
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
struct stmmac_rx_queue *rx_q;
struct stmmac_tx_queue *tx_q;
u32 dummy_dma_rx_phy = 0;
u32 dummy_dma_tx_phy = 0;
u32 chan = 0;
int atds = 0;
int ret = 0;
if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
dev_err(priv->device, "Invalid DMA configuration\n");
return -EINVAL;
}
if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
atds = 1;
ret = priv->hw->dma->reset(priv->ioaddr);
if (ret) {
dev_err(priv->device, "Failed to reset the dma\n");
return ret;
}
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
/* DMA Configuration */
priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg,
dummy_dma_tx_phy, dummy_dma_rx_phy, atds);
/* DMA RX Channel Configuration */
for (chan = 0; chan < rx_channels_count; chan++) {
rx_q = &priv->rx_queue[chan];
priv->hw->dma->init_rx_chan(priv->ioaddr,
priv->plat->dma_cfg,
rx_q->dma_rx_phy, chan);
rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(DMA_RX_SIZE * sizeof(struct dma_desc));
priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
rx_q->rx_tail_addr,
chan);
}
/* DMA TX Channel Configuration */
for (chan = 0; chan < tx_channels_count; chan++) {
tx_q = &priv->tx_queue[chan];
priv->hw->dma->init_chan(priv->ioaddr,
priv->plat->dma_cfg,
chan);
priv->hw->dma->init_tx_chan(priv->ioaddr,
priv->plat->dma_cfg,
tx_q->dma_tx_phy, chan);
tx_q->tx_tail_addr = tx_q->dma_tx_phy +
(DMA_TX_SIZE * sizeof(struct dma_desc));
priv->hw->dma->set_tx_tail_ptr(priv->ioaddr,
tx_q->tx_tail_addr,
chan);
}
} else {
rx_q = &priv->rx_queue[chan];
tx_q = &priv->tx_queue[chan];
priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg,
tx_q->dma_tx_phy, rx_q->dma_rx_phy, atds);
}
if (priv->plat->axi && priv->hw->dma->axi)
priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
return ret;
}
/**
* stmmac_tx_timer - mitigation sw timer for tx.
* @data: data pointer
* Description:
* This is the timer handler to directly invoke the stmmac_tx_clean.
*/
static void stmmac_tx_timer(struct timer_list *t)
{
struct stmmac_priv *priv = from_timer(priv, t, txtimer);
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 queue;
/* let's scan all the tx queues */
for (queue = 0; queue < tx_queues_count; queue++)
stmmac_tx_clean(priv, queue);
}
/**
* stmmac_init_tx_coalesce - init tx mitigation options.
* @priv: driver private structure
* Description:
* This inits the transmit coalesce parameters: i.e. timer rate,
* timer handler and default threshold used for enabling the
* interrupt on completion bit.
*/
static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
{
priv->tx_coal_frames = STMMAC_TX_FRAMES;
priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
timer_setup(&priv->txtimer, stmmac_tx_timer, 0);
priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
add_timer(&priv->txtimer);
}
static void stmmac_set_rings_length(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 chan;
/* set TX ring length */
if (priv->hw->dma->set_tx_ring_len) {
for (chan = 0; chan < tx_channels_count; chan++)
priv->hw->dma->set_tx_ring_len(priv->ioaddr,
(DMA_TX_SIZE - 1), chan);
}
/* set RX ring length */
if (priv->hw->dma->set_rx_ring_len) {
for (chan = 0; chan < rx_channels_count; chan++)
priv->hw->dma->set_rx_ring_len(priv->ioaddr,
(DMA_RX_SIZE - 1), chan);
}
}
/**
* stmmac_set_tx_queue_weight - Set TX queue weight
* @priv: driver private structure
* Description: It is used for setting TX queues weight
*/
static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 weight;
u32 queue;
for (queue = 0; queue < tx_queues_count; queue++) {
weight = priv->plat->tx_queues_cfg[queue].weight;
priv->hw->mac->set_mtl_tx_queue_weight(priv->hw, weight, queue);
}
}
/**
* stmmac_configure_cbs - Configure CBS in TX queue
* @priv: driver private structure
* Description: It is used for configuring CBS in AVB TX queues
*/
static void stmmac_configure_cbs(struct stmmac_priv *priv)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 mode_to_use;
u32 queue;
/* queue 0 is reserved for legacy traffic */
for (queue = 1; queue < tx_queues_count; queue++) {
mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
if (mode_to_use == MTL_QUEUE_DCB)
continue;
priv->hw->mac->config_cbs(priv->hw,
priv->plat->tx_queues_cfg[queue].send_slope,
priv->plat->tx_queues_cfg[queue].idle_slope,
priv->plat->tx_queues_cfg[queue].high_credit,
priv->plat->tx_queues_cfg[queue].low_credit,
queue);
}
}
/**
* stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
* @priv: driver private structure
* Description: It is used for mapping RX queues to RX dma channels
*/
static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 queue;
u32 chan;
for (queue = 0; queue < rx_queues_count; queue++) {
chan = priv->plat->rx_queues_cfg[queue].chan;
priv->hw->mac->map_mtl_to_dma(priv->hw, queue, chan);
}
}
/**
* stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
* @priv: driver private structure
* Description: It is used for configuring the RX Queue Priority
*/
static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 queue;
u32 prio;
for (queue = 0; queue < rx_queues_count; queue++) {
if (!priv->plat->rx_queues_cfg[queue].use_prio)
continue;
prio = priv->plat->rx_queues_cfg[queue].prio;
priv->hw->mac->rx_queue_prio(priv->hw, prio, queue);
}
}
/**
* stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
* @priv: driver private structure
* Description: It is used for configuring the TX Queue Priority
*/
static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 queue;
u32 prio;
for (queue = 0; queue < tx_queues_count; queue++) {
if (!priv->plat->tx_queues_cfg[queue].use_prio)
continue;
prio = priv->plat->tx_queues_cfg[queue].prio;
priv->hw->mac->tx_queue_prio(priv->hw, prio, queue);
}
}
/**
* stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
* @priv: driver private structure
* Description: It is used for configuring the RX queue routing
*/
static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 queue;
u8 packet;
for (queue = 0; queue < rx_queues_count; queue++) {
/* no specific packet type routing specified for the queue */
if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
continue;
packet = priv->plat->rx_queues_cfg[queue].pkt_route;
priv->hw->mac->rx_queue_prio(priv->hw, packet, queue);
}
}
/**
* stmmac_mtl_configuration - Configure MTL
* @priv: driver private structure
* Description: It is used for configurring MTL
*/
static void stmmac_mtl_configuration(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 tx_queues_count = priv->plat->tx_queues_to_use;
if (tx_queues_count > 1 && priv->hw->mac->set_mtl_tx_queue_weight)
stmmac_set_tx_queue_weight(priv);
/* Configure MTL RX algorithms */
if (rx_queues_count > 1 && priv->hw->mac->prog_mtl_rx_algorithms)
priv->hw->mac->prog_mtl_rx_algorithms(priv->hw,
priv->plat->rx_sched_algorithm);
/* Configure MTL TX algorithms */
if (tx_queues_count > 1 && priv->hw->mac->prog_mtl_tx_algorithms)
priv->hw->mac->prog_mtl_tx_algorithms(priv->hw,
priv->plat->tx_sched_algorithm);
/* Configure CBS in AVB TX queues */
if (tx_queues_count > 1 && priv->hw->mac->config_cbs)
stmmac_configure_cbs(priv);
/* Map RX MTL to DMA channels */
if (priv->hw->mac->map_mtl_to_dma)
stmmac_rx_queue_dma_chan_map(priv);
/* Enable MAC RX Queues */
if (priv->hw->mac->rx_queue_enable)
stmmac_mac_enable_rx_queues(priv);
/* Set RX priorities */
if (rx_queues_count > 1 && priv->hw->mac->rx_queue_prio)
stmmac_mac_config_rx_queues_prio(priv);
/* Set TX priorities */
if (tx_queues_count > 1 && priv->hw->mac->tx_queue_prio)
stmmac_mac_config_tx_queues_prio(priv);
/* Set RX routing */
if (rx_queues_count > 1 && priv->hw->mac->rx_queue_routing)
stmmac_mac_config_rx_queues_routing(priv);
}
/**
* stmmac_hw_setup - setup mac in a usable state.
* @dev : pointer to the device structure.
* Description:
* this is the main function to setup the HW in a usable state because the
* dma engine is reset, the core registers are configured (e.g. AXI,
* Checksum features, timers). The DMA is ready to start receiving and
* transmitting.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 chan;
int ret;
/* DMA initialization and SW reset */
ret = stmmac_init_dma_engine(priv);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
__func__);
return ret;
}
/* Copy the MAC addr into the HW */
priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
/* PS and related bits will be programmed according to the speed */
if (priv->hw->pcs) {
int speed = priv->plat->mac_port_sel_speed;
if ((speed == SPEED_10) || (speed == SPEED_100) ||
(speed == SPEED_1000)) {
priv->hw->ps = speed;
} else {
dev_warn(priv->device, "invalid port speed\n");
priv->hw->ps = 0;
}
}
/* Initialize the MAC Core */
priv->hw->mac->core_init(priv->hw, dev->mtu);
/* Initialize MTL*/
if (priv->synopsys_id >= DWMAC_CORE_4_00)
stmmac_mtl_configuration(priv);
ret = priv->hw->mac->rx_ipc(priv->hw);
if (!ret) {
netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
priv->plat->rx_coe = STMMAC_RX_COE_NONE;
priv->hw->rx_csum = 0;
}
/* Enable the MAC Rx/Tx */
priv->hw->mac->set_mac(priv->ioaddr, true);
/* Set the HW DMA mode and the COE */
stmmac_dma_operation_mode(priv);
stmmac_mmc_setup(priv);
if (init_ptp) {
ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
if (ret < 0)
netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
ret = stmmac_init_ptp(priv);
if (ret == -EOPNOTSUPP)
netdev_warn(priv->dev, "PTP not supported by HW\n");
else if (ret)
netdev_warn(priv->dev, "PTP init failed\n");
}
#ifdef CONFIG_DEBUG_FS
ret = stmmac_init_fs(dev);
if (ret < 0)
netdev_warn(priv->dev, "%s: failed debugFS registration\n",
__func__);
#endif
/* Start the ball rolling... */
stmmac_start_all_dma(priv);
priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
priv->rx_riwt = MAX_DMA_RIWT;
priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
}
if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
/* set TX and RX rings length */
stmmac_set_rings_length(priv);
/* Enable TSO */
if (priv->tso) {
for (chan = 0; chan < tx_cnt; chan++)
priv->hw->dma->enable_tso(priv->ioaddr, 1, chan);
}
return 0;
}
static void stmmac_hw_teardown(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
clk_disable_unprepare(priv->plat->clk_ptp_ref);
}
/**
* stmmac_open - open entry point of the driver
* @dev : pointer to the device structure.
* Description:
* This function is the open entry point of the driver.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int stmmac_open(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret;
stmmac_check_ether_addr(priv);
if (priv->hw->pcs != STMMAC_PCS_RGMII &&
priv->hw->pcs != STMMAC_PCS_TBI &&
priv->hw->pcs != STMMAC_PCS_RTBI) {
ret = stmmac_init_phy(dev);
if (ret) {
netdev_err(priv->dev,
"%s: Cannot attach to PHY (error: %d)\n",
__func__, ret);
return ret;
}
}
/* Extra statistics */
memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
priv->xstats.threshold = tc;
priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
priv->rx_copybreak = STMMAC_RX_COPYBREAK;
priv->mss = 0;
ret = alloc_dma_desc_resources(priv);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
__func__);
goto dma_desc_error;
}
ret = init_dma_desc_rings(dev, GFP_KERNEL);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
__func__);
goto init_error;
}
ret = stmmac_hw_setup(dev, true);
if (ret < 0) {
netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
goto init_error;
}
stmmac_init_tx_coalesce(priv);
if (dev->phydev)
phy_start(dev->phydev);
/* Request the IRQ lines */
ret = request_irq(dev->irq, stmmac_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the IRQ %d (error: %d)\n",
__func__, dev->irq, ret);
goto irq_error;
}
/* Request the Wake IRQ in case of another line is used for WoL */
if (priv->wol_irq != dev->irq) {
ret = request_irq(priv->wol_irq, stmmac_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the WoL IRQ %d (%d)\n",
__func__, priv->wol_irq, ret);
goto wolirq_error;
}
}
/* Request the IRQ lines */
if (priv->lpi_irq > 0) {
ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the LPI IRQ %d (%d)\n",
__func__, priv->lpi_irq, ret);
goto lpiirq_error;
}
}
stmmac_enable_all_queues(priv);
stmmac_start_all_queues(priv);
return 0;
lpiirq_error:
if (priv->wol_irq != dev->irq)
free_irq(priv->wol_irq, dev);
wolirq_error:
free_irq(dev->irq, dev);
irq_error:
if (dev->phydev)
phy_stop(dev->phydev);
del_timer_sync(&priv->txtimer);
stmmac_hw_teardown(dev);
init_error:
free_dma_desc_resources(priv);
dma_desc_error:
if (dev->phydev)
phy_disconnect(dev->phydev);
return ret;
}
/**
* stmmac_release - close entry point of the driver
* @dev : device pointer.
* Description:
* This is the stop entry point of the driver.
*/
static int stmmac_release(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
if (priv->eee_enabled)
del_timer_sync(&priv->eee_ctrl_timer);
/* Stop and disconnect the PHY */
if (dev->phydev) {
phy_stop(dev->phydev);
phy_disconnect(dev->phydev);
}
stmmac_stop_all_queues(priv);
stmmac_disable_all_queues(priv);
del_timer_sync(&priv->txtimer);
/* Free the IRQ lines */
free_irq(dev->irq, dev);
if (priv->wol_irq != dev->irq)
free_irq(priv->wol_irq, dev);
if (priv->lpi_irq > 0)
free_irq(priv->lpi_irq, dev);
/* Stop TX/RX DMA and clear the descriptors */
stmmac_stop_all_dma(priv);
/* Release and free the Rx/Tx resources */
free_dma_desc_resources(priv);
/* Disable the MAC Rx/Tx */
priv->hw->mac->set_mac(priv->ioaddr, false);
netif_carrier_off(dev);
#ifdef CONFIG_DEBUG_FS
stmmac_exit_fs(dev);
#endif
stmmac_release_ptp(priv);
return 0;
}
/**
* stmmac_tso_allocator - close entry point of the driver
* @priv: driver private structure
* @des: buffer start address
* @total_len: total length to fill in descriptors
* @last_segmant: condition for the last descriptor
* @queue: TX queue index
* Description:
* This function fills descriptor and request new descriptors according to
* buffer length to fill
*/
static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
int total_len, bool last_segment, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
struct dma_desc *desc;
u32 buff_size;
int tmp_len;
tmp_len = total_len;
while (tmp_len > 0) {
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
desc = tx_q->dma_tx + tx_q->cur_tx;
desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
TSO_MAX_BUFF_SIZE : tmp_len;
priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
0, 1,
(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
0, 0);
tmp_len -= TSO_MAX_BUFF_SIZE;
}
}
/**
* stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
* @skb : the socket buffer
* @dev : device pointer
* Description: this is the transmit function that is called on TSO frames
* (support available on GMAC4 and newer chips).
* Diagram below show the ring programming in case of TSO frames:
*
* First Descriptor
* --------
* | DES0 |---> buffer1 = L2/L3/L4 header
* | DES1 |---> TCP Payload (can continue on next descr...)
* | DES2 |---> buffer 1 and 2 len
* | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
* --------
* |
* ...
* |
* --------
* | DES0 | --| Split TCP Payload on Buffers 1 and 2
* | DES1 | --|
* | DES2 | --> buffer 1 and 2 len
* | DES3 |
* --------
*
* mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
*/
static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct dma_desc *desc, *first, *mss_desc = NULL;
struct stmmac_priv *priv = netdev_priv(dev);
int nfrags = skb_shinfo(skb)->nr_frags;
u32 queue = skb_get_queue_mapping(skb);
unsigned int first_entry, des;
struct stmmac_tx_queue *tx_q;
int tmp_pay_len = 0;
u32 pay_len, mss;
u8 proto_hdr_len;
int i;
tx_q = &priv->tx_queue[queue];
/* Compute header lengths */
proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
/* Desc availability based on threshold should be enough safe */
if (unlikely(stmmac_tx_avail(priv, queue) <
(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
queue));
/* This is a hard error, log it. */
netdev_err(priv->dev,
"%s: Tx Ring full when queue awake\n",
__func__);
}
return NETDEV_TX_BUSY;
}
pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
mss = skb_shinfo(skb)->gso_size;
/* set new MSS value if needed */
if (mss != priv->mss) {
mss_desc = tx_q->dma_tx + tx_q->cur_tx;
priv->hw->desc->set_mss(mss_desc, mss);
priv->mss = mss;
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
}
if (netif_msg_tx_queued(priv)) {
pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
skb->data_len);
}
first_entry = tx_q->cur_tx;
desc = tx_q->dma_tx + first_entry;
first = desc;
/* first descriptor: fill Headers on Buf1 */
des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
tx_q->tx_skbuff_dma[first_entry].buf = des;
tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
first->des0 = cpu_to_le32(des);
/* Fill start of payload in buff2 of first descriptor */
if (pay_len)
first->des1 = cpu_to_le32(des + proto_hdr_len);
/* If needed take extra descriptors to fill the remaining payload */
tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
/* Prepare fragments */
for (i = 0; i < nfrags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
des = skb_frag_dma_map(priv->device, frag, 0,
skb_frag_size(frag),
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
stmmac_tso_allocator(priv, des, skb_frag_size(frag),
(i == nfrags - 1), queue);
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
tx_q->tx_skbuff[tx_q->cur_tx] = NULL;
tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
}
tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
/* Only the last descriptor gets to point to the skb. */
tx_q->tx_skbuff[tx_q->cur_tx] = skb;
/* We've used all descriptors we need for this skb, however,
* advance cur_tx so that it references a fresh descriptor.
* ndo_start_xmit will fill this descriptor the next time it's
* called and stmmac_tx_clean may clean up to this descriptor.
*/
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
__func__);
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
}
dev->stats.tx_bytes += skb->len;
priv->xstats.tx_tso_frames++;
priv->xstats.tx_tso_nfrags += nfrags;
/* Manage tx mitigation */
priv->tx_count_frames += nfrags + 1;
if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
mod_timer(&priv->txtimer,
STMMAC_COAL_TIMER(priv->tx_coal_timer));
} else {
priv->tx_count_frames = 0;
priv->hw->desc->set_tx_ic(desc);
priv->xstats.tx_set_ic_bit++;
}
skb_tx_timestamp(skb);
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
priv->hwts_tx_en)) {
/* declare that device is doing timestamping */
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
priv->hw->desc->enable_tx_timestamp(first);
}
/* Complete the first descriptor before granting the DMA */
priv->hw->desc->prepare_tso_tx_desc(first, 1,
proto_hdr_len,
pay_len,
1, tx_q->tx_skbuff_dma[first_entry].last_segment,
tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
/* If context desc is used to change MSS */
if (mss_desc)
priv->hw->desc->set_tx_owner(mss_desc);
/* The own bit must be the latest setting done when prepare the
* descriptor and then barrier is needed to make sure that
* all is coherent before granting the DMA engine.
*/
dma_wmb();
if (netif_msg_pktdata(priv)) {
pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
tx_q->cur_tx, first, nfrags);
priv->hw->desc->display_ring((void *)tx_q->dma_tx, DMA_TX_SIZE,
0);
pr_info(">>> frame to be transmitted: ");
print_pkt(skb->data, skb_headlen(skb));
}
netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, tx_q->tx_tail_addr,
queue);
return NETDEV_TX_OK;
dma_map_err:
dev_err(priv->device, "Tx dma map failed\n");
dev_kfree_skb(skb);
priv->dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
/**
* stmmac_xmit - Tx entry point of the driver
* @skb : the socket buffer
* @dev : device pointer
* Description : this is the tx entry point of the driver.
* It programs the chain or the ring and supports oversized frames
* and SG feature.
*/
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
unsigned int nopaged_len = skb_headlen(skb);
int i, csum_insertion = 0, is_jumbo = 0;
u32 queue = skb_get_queue_mapping(skb);
int nfrags = skb_shinfo(skb)->nr_frags;
int entry;
unsigned int first_entry;
struct dma_desc *desc, *first;
struct stmmac_tx_queue *tx_q;
unsigned int enh_desc;
unsigned int des;
tx_q = &priv->tx_queue[queue];
/* Manage oversized TCP frames for GMAC4 device */
if (skb_is_gso(skb) && priv->tso) {
if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
return stmmac_tso_xmit(skb, dev);
}
if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
queue));
/* This is a hard error, log it. */
netdev_err(priv->dev,
"%s: Tx Ring full when queue awake\n",
__func__);
}
return NETDEV_TX_BUSY;
}
if (priv->tx_path_in_lpi_mode)
stmmac_disable_eee_mode(priv);
entry = tx_q->cur_tx;
first_entry = entry;
csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
if (likely(priv->extend_desc))
desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else
desc = tx_q->dma_tx + entry;
first = desc;
enh_desc = priv->plat->enh_desc;
/* To program the descriptors according to the size of the frame */
if (enh_desc)
is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
if (unlikely(is_jumbo) && likely(priv->synopsys_id <
DWMAC_CORE_4_00)) {
entry = priv->hw->mode->jumbo_frm(tx_q, skb, csum_insertion);
if (unlikely(entry < 0))
goto dma_map_err;
}
for (i = 0; i < nfrags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
int len = skb_frag_size(frag);
bool last_segment = (i == (nfrags - 1));
entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
if (likely(priv->extend_desc))
desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else
desc = tx_q->dma_tx + entry;
des = skb_frag_dma_map(priv->device, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err; /* should reuse desc w/o issues */
tx_q->tx_skbuff[entry] = NULL;
tx_q->tx_skbuff_dma[entry].buf = des;
if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
desc->des0 = cpu_to_le32(des);
else
desc->des2 = cpu_to_le32(des);
tx_q->tx_skbuff_dma[entry].map_as_page = true;
tx_q->tx_skbuff_dma[entry].len = len;
tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
/* Prepare the descriptor and set the own bit too */
priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
priv->mode, 1, last_segment,
skb->len);
}
/* Only the last descriptor gets to point to the skb. */
tx_q->tx_skbuff[entry] = skb;
/* We've used all descriptors we need for this skb, however,
* advance cur_tx so that it references a fresh descriptor.
* ndo_start_xmit will fill this descriptor the next time it's
* called and stmmac_tx_clean may clean up to this descriptor.
*/
entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
tx_q->cur_tx = entry;
if (netif_msg_pktdata(priv)) {
void *tx_head;
netdev_dbg(priv->dev,
"%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
entry, first, nfrags);
if (priv->extend_desc)
tx_head = (void *)tx_q->dma_etx;
else
tx_head = (void *)tx_q->dma_tx;
priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
print_pkt(skb->data, skb->len);
}
if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
__func__);
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
}
dev->stats.tx_bytes += skb->len;
/* According to the coalesce parameter the IC bit for the latest
* segment is reset and the timer re-started to clean the tx status.
* This approach takes care about the fragments: desc is the first
* element in case of no SG.
*/
priv->tx_count_frames += nfrags + 1;
if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
mod_timer(&priv->txtimer,
STMMAC_COAL_TIMER(priv->tx_coal_timer));
} else {
priv->tx_count_frames = 0;
priv->hw->desc->set_tx_ic(desc);
priv->xstats.tx_set_ic_bit++;
}
skb_tx_timestamp(skb);
/* Ready to fill the first descriptor and set the OWN bit w/o any
* problems because all the descriptors are actually ready to be
* passed to the DMA engine.
*/
if (likely(!is_jumbo)) {
bool last_segment = (nfrags == 0);
des = dma_map_single(priv->device, skb->data,
nopaged_len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
tx_q->tx_skbuff_dma[first_entry].buf = des;
if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
first->des0 = cpu_to_le32(des);
else
first->des2 = cpu_to_le32(des);
tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
priv->hwts_tx_en)) {
/* declare that device is doing timestamping */
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
priv->hw->desc->enable_tx_timestamp(first);
}
/* Prepare the first descriptor setting the OWN bit too */
priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
csum_insertion, priv->mode, 1,
last_segment, skb->len);
/* The own bit must be the latest setting done when prepare the
* descriptor and then barrier is needed to make sure that
* all is coherent before granting the DMA engine.
*/
dma_wmb();
}
netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
if (priv->synopsys_id < DWMAC_CORE_4_00)
priv->hw->dma->enable_dma_transmission(priv->ioaddr);
else
priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, tx_q->tx_tail_addr,
queue);
return NETDEV_TX_OK;
dma_map_err:
netdev_err(priv->dev, "Tx DMA map failed\n");
dev_kfree_skb(skb);
priv->dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
{
struct ethhdr *ehdr;
u16 vlanid;
if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
NETIF_F_HW_VLAN_CTAG_RX &&
!__vlan_get_tag(skb, &vlanid)) {
/* pop the vlan tag */
ehdr = (struct ethhdr *)skb->data;
memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
skb_pull(skb, VLAN_HLEN);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
}
}
static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
{
if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
return 0;
return 1;
}
/**
* stmmac_rx_refill - refill used skb preallocated buffers
* @priv: driver private structure
* @queue: RX queue index
* Description : this is to reallocate the skb for the reception process
* that is based on zero-copy.
*/
static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
int dirty = stmmac_rx_dirty(priv, queue);
unsigned int entry = rx_q->dirty_rx;
int bfsize = priv->dma_buf_sz;
while (dirty-- > 0) {
struct dma_desc *p;
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + entry);
else
p = rx_q->dma_rx + entry;
if (likely(!rx_q->rx_skbuff[entry])) {
struct sk_buff *skb;
skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
if (unlikely(!skb)) {
/* so for a while no zero-copy! */
rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
if (unlikely(net_ratelimit()))
dev_err(priv->device,
"fail to alloc skb entry %d\n",
entry);
break;
}
rx_q->rx_skbuff[entry] = skb;
rx_q->rx_skbuff_dma[entry] =
dma_map_single(priv->device, skb->data, bfsize,
DMA_FROM_DEVICE);
if (dma_mapping_error(priv->device,
rx_q->rx_skbuff_dma[entry])) {
netdev_err(priv->dev, "Rx DMA map failed\n");
dev_kfree_skb(skb);
break;
}
if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
p->des0 = cpu_to_le32(rx_q->rx_skbuff_dma[entry]);
p->des1 = 0;
} else {
p->des2 = cpu_to_le32(rx_q->rx_skbuff_dma[entry]);
}
if (priv->hw->mode->refill_desc3)
priv->hw->mode->refill_desc3(rx_q, p);
if (rx_q->rx_zeroc_thresh > 0)
rx_q->rx_zeroc_thresh--;
netif_dbg(priv, rx_status, priv->dev,
"refill entry #%d\n", entry);
}
dma_wmb();
if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
else
priv->hw->desc->set_rx_owner(p);
dma_wmb();
entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
}
rx_q->dirty_rx = entry;
}
/**
* stmmac_rx - manage the receive process
* @priv: driver private structure
* @limit: napi bugget
* @queue: RX queue index.
* Description : this the function called by the napi poll method.
* It gets all the frames inside the ring.
*/
static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
unsigned int entry = rx_q->cur_rx;
int coe = priv->hw->rx_csum;
unsigned int next_entry;
unsigned int count = 0;
if (netif_msg_rx_status(priv)) {
void *rx_head;
netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
if (priv->extend_desc)
rx_head = (void *)rx_q->dma_erx;
else
rx_head = (void *)rx_q->dma_rx;
priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
}
while (count < limit) {
int status;
struct dma_desc *p;
struct dma_desc *np;
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + entry);
else
p = rx_q->dma_rx + entry;
/* read the status of the incoming frame */
status = priv->hw->desc->rx_status(&priv->dev->stats,
&priv->xstats, p);
/* check if managed by the DMA otherwise go ahead */
if (unlikely(status & dma_own))
break;
count++;
rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
next_entry = rx_q->cur_rx;
if (priv->extend_desc)
np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
else
np = rx_q->dma_rx + next_entry;
prefetch(np);
if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
priv->hw->desc->rx_extended_status(&priv->dev->stats,
&priv->xstats,
rx_q->dma_erx +
entry);
if (unlikely(status == discard_frame)) {
priv->dev->stats.rx_errors++;
if (priv->hwts_rx_en && !priv->extend_desc) {
/* DESC2 & DESC3 will be overwritten by device
* with timestamp value, hence reinitialize
* them in stmmac_rx_refill() function so that
* device can reuse it.
*/
dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
rx_q->rx_skbuff[entry] = NULL;
dma_unmap_single(priv->device,
rx_q->rx_skbuff_dma[entry],
priv->dma_buf_sz,
DMA_FROM_DEVICE);
}
} else {
struct sk_buff *skb;
int frame_len;
unsigned int des;
if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
des = le32_to_cpu(p->des0);
else
des = le32_to_cpu(p->des2);
frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
/* If frame length is greater than skb buffer size
* (preallocated during init) then the packet is
* ignored
*/
if (frame_len > priv->dma_buf_sz) {
netdev_err(priv->dev,
"len %d larger than size (%d)\n",
frame_len, priv->dma_buf_sz);
priv->dev->stats.rx_length_errors++;
break;
}
/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
* Type frames (LLC/LLC-SNAP)
*/
if (unlikely(status != llc_snap))
frame_len -= ETH_FCS_LEN;
if (netif_msg_rx_status(priv)) {
netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
p, entry, des);
if (frame_len > ETH_FRAME_LEN)
netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
frame_len, status);
}
/* The zero-copy is always used for all the sizes
* in case of GMAC4 because it needs
* to refill the used descriptors, always.
*/
if (unlikely(!priv->plat->has_gmac4 &&
((frame_len < priv->rx_copybreak) ||
stmmac_rx_threshold_count(rx_q)))) {
skb = netdev_alloc_skb_ip_align(priv->dev,
frame_len);
if (unlikely(!skb)) {
if (net_ratelimit())
dev_warn(priv->device,
"packet dropped\n");
priv->dev->stats.rx_dropped++;
break;
}
dma_sync_single_for_cpu(priv->device,
rx_q->rx_skbuff_dma
[entry], frame_len,
DMA_FROM_DEVICE);
skb_copy_to_linear_data(skb,
rx_q->
rx_skbuff[entry]->data,
frame_len);
skb_put(skb, frame_len);
dma_sync_single_for_device(priv->device,
rx_q->rx_skbuff_dma
[entry], frame_len,
DMA_FROM_DEVICE);
} else {
skb = rx_q->rx_skbuff[entry];
if (unlikely(!skb)) {
netdev_err(priv->dev,
"%s: Inconsistent Rx chain\n",
priv->dev->name);
priv->dev->stats.rx_dropped++;
break;
}
prefetch(skb->data - NET_IP_ALIGN);
rx_q->rx_skbuff[entry] = NULL;
rx_q->rx_zeroc_thresh++;
skb_put(skb, frame_len);
dma_unmap_single(priv->device,
rx_q->rx_skbuff_dma[entry],
priv->dma_buf_sz,
DMA_FROM_DEVICE);
}
if (netif_msg_pktdata(priv)) {
netdev_dbg(priv->dev, "frame received (%dbytes)",
frame_len);
print_pkt(skb->data, frame_len);
}
stmmac_get_rx_hwtstamp(priv, p, np, skb);
stmmac_rx_vlan(priv->dev, skb);
skb->protocol = eth_type_trans(skb, priv->dev);
if (unlikely(!coe))
skb_checksum_none_assert(skb);
else
skb->ip_summed = CHECKSUM_UNNECESSARY;
napi_gro_receive(&rx_q->napi, skb);
priv->dev->stats.rx_packets++;
priv->dev->stats.rx_bytes += frame_len;
}
entry = next_entry;
}
stmmac_rx_refill(priv, queue);
priv->xstats.rx_pkt_n += count;
return count;
}
/**
* stmmac_poll - stmmac poll method (NAPI)
* @napi : pointer to the napi structure.
* @budget : maximum number of packets that the current CPU can receive from
* all interfaces.
* Description :
* To look at the incoming frames and clear the tx resources.
*/
static int stmmac_poll(struct napi_struct *napi, int budget)
{
struct stmmac_rx_queue *rx_q =
container_of(napi, struct stmmac_rx_queue, napi);
struct stmmac_priv *priv = rx_q->priv_data;
u32 tx_count = priv->plat->tx_queues_to_use;
u32 chan = rx_q->queue_index;
int work_done = 0;
u32 queue;
priv->xstats.napi_poll++;
/* check all the queues */
for (queue = 0; queue < tx_count; queue++)
stmmac_tx_clean(priv, queue);
work_done = stmmac_rx(priv, budget, rx_q->queue_index);
if (work_done < budget) {
napi_complete_done(napi, work_done);
stmmac_enable_dma_irq(priv, chan);
}
return work_done;
}
/**
* stmmac_tx_timeout
* @dev : Pointer to net device structure
* Description: this function is called when a packet transmission fails to
* complete within a reasonable time. The driver will mark the error in the
* netdev structure and arrange for the device to be reset to a sane state
* in order to transmit a new packet.
*/
static void stmmac_tx_timeout(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 tx_count = priv->plat->tx_queues_to_use;
u32 chan;
/* Clear Tx resources and restart transmitting again */
for (chan = 0; chan < tx_count; chan++)
stmmac_tx_err(priv, chan);
}
/**
* stmmac_set_rx_mode - entry point for multicast addressing
* @dev : pointer to the device structure
* Description:
* This function is a driver entry point which gets called by the kernel
* whenever multicast addresses must be enabled/disabled.
* Return value:
* void.
*/
static void stmmac_set_rx_mode(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
priv->hw->mac->set_filter(priv->hw, dev);
}
/**
* stmmac_change_mtu - entry point to change MTU size for the device.
* @dev : device pointer.
* @new_mtu : the new MTU size for the device.
* Description: the Maximum Transfer Unit (MTU) is used by the network layer
* to drive packet transmission. Ethernet has an MTU of 1500 octets
* (ETH_DATA_LEN). This value can be changed with ifconfig.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
struct stmmac_priv *priv = netdev_priv(dev);
if (netif_running(dev)) {
netdev_err(priv->dev, "must be stopped to change its MTU\n");
return -EBUSY;
}
dev->mtu = new_mtu;
netdev_update_features(dev);
return 0;
}
static netdev_features_t stmmac_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct stmmac_priv *priv = netdev_priv(dev);
if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
features &= ~NETIF_F_RXCSUM;
if (!priv->plat->tx_coe)
features &= ~NETIF_F_CSUM_MASK;
/* Some GMAC devices have a bugged Jumbo frame support that
* needs to have the Tx COE disabled for oversized frames
* (due to limited buffer sizes). In this case we disable
* the TX csum insertion in the TDES and not use SF.
*/
if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
features &= ~NETIF_F_CSUM_MASK;
/* Disable tso if asked by ethtool */
if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
if (features & NETIF_F_TSO)
priv->tso = true;
else
priv->tso = false;
}
return features;
}
static int stmmac_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct stmmac_priv *priv = netdev_priv(netdev);
/* Keep the COE Type in case of csum is supporting */
if (features & NETIF_F_RXCSUM)
priv->hw->rx_csum = priv->plat->rx_coe;
else
priv->hw->rx_csum = 0;
/* No check needed because rx_coe has been set before and it will be
* fixed in case of issue.
*/
priv->hw->mac->rx_ipc(priv->hw);
return 0;
}
/**
* stmmac_interrupt - main ISR
* @irq: interrupt number.
* @dev_id: to pass the net device pointer.
* Description: this is the main driver interrupt service routine.
* It can call:
* o DMA service routine (to manage incoming frame reception and transmission
* status)
* o Core interrupts to manage: remote wake-up, management counter, LPI
* interrupts.
*/
static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queues_count;
u32 queue;
queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
if (priv->irq_wake)
pm_wakeup_event(priv->device, 0);
if (unlikely(!dev)) {
netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
return IRQ_NONE;
}
/* To handle GMAC own interrupts */
if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
int status = priv->hw->mac->host_irq_status(priv->hw,
&priv->xstats);
if (unlikely(status)) {
/* For LPI we need to save the tx status */
if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
priv->tx_path_in_lpi_mode = true;
if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
priv->tx_path_in_lpi_mode = false;
}
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
for (queue = 0; queue < queues_count; queue++) {
struct stmmac_rx_queue *rx_q =
&priv->rx_queue[queue];
status |=
priv->hw->mac->host_mtl_irq_status(priv->hw,
queue);
if (status & CORE_IRQ_MTL_RX_OVERFLOW &&
priv->hw->dma->set_rx_tail_ptr)
priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
rx_q->rx_tail_addr,
queue);
}
}
/* PCS link status */
if (priv->hw->pcs) {
if (priv->xstats.pcs_link)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
}
}
/* To handle DMA interrupts */
stmmac_dma_interrupt(priv);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
* to allow network I/O with interrupts disabled.
*/
static void stmmac_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
stmmac_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/**
* stmmac_ioctl - Entry point for the Ioctl
* @dev: Device pointer.
* @rq: An IOCTL specefic structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* @cmd: IOCTL command
* Description:
* Currently it supports the phy_mii_ioctl(...) and HW time stamping.
*/
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
int ret = -EOPNOTSUPP;
if (!netif_running(dev))
return -EINVAL;
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
if (!dev->phydev)
return -EINVAL;
ret = phy_mii_ioctl(dev->phydev, rq, cmd);
break;
case SIOCSHWTSTAMP:
ret = stmmac_hwtstamp_ioctl(dev, rq);
break;
default:
break;
}
return ret;
}
static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
{
struct stmmac_priv *priv = netdev_priv(ndev);
int ret = 0;
ret = eth_mac_addr(ndev, addr);
if (ret)
return ret;
priv->hw->mac->set_umac_addr(priv->hw, ndev->dev_addr, 0);
return ret;
}
#ifdef CONFIG_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static void sysfs_display_ring(void *head, int size, int extend_desc,
struct seq_file *seq)
{
int i;
struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
struct dma_desc *p = (struct dma_desc *)head;
for (i = 0; i < size; i++) {
if (extend_desc) {
seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
i, (unsigned int)virt_to_phys(ep),
le32_to_cpu(ep->basic.des0),
le32_to_cpu(ep->basic.des1),
le32_to_cpu(ep->basic.des2),
le32_to_cpu(ep->basic.des3));
ep++;
} else {
seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
i, (unsigned int)virt_to_phys(p),
le32_to_cpu(p->des0), le32_to_cpu(p->des1),
le32_to_cpu(p->des2), le32_to_cpu(p->des3));
p++;
}
seq_printf(seq, "\n");
}
}
static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
struct net_device *dev = seq->private;
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_count = priv->plat->rx_queues_to_use;
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_count; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
seq_printf(seq, "RX Queue %d:\n", queue);
if (priv->extend_desc) {
seq_printf(seq, "Extended descriptor ring:\n");
sysfs_display_ring((void *)rx_q->dma_erx,
DMA_RX_SIZE, 1, seq);
} else {
seq_printf(seq, "Descriptor ring:\n");
sysfs_display_ring((void *)rx_q->dma_rx,
DMA_RX_SIZE, 0, seq);
}
}
for (queue = 0; queue < tx_count; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
seq_printf(seq, "TX Queue %d:\n", queue);
if (priv->extend_desc) {
seq_printf(seq, "Extended descriptor ring:\n");
sysfs_display_ring((void *)tx_q->dma_etx,
DMA_TX_SIZE, 1, seq);
} else {
seq_printf(seq, "Descriptor ring:\n");
sysfs_display_ring((void *)tx_q->dma_tx,
DMA_TX_SIZE, 0, seq);
}
}
return 0;
}
static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}
/* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
static const struct file_operations stmmac_rings_status_fops = {
.owner = THIS_MODULE,
.open = stmmac_sysfs_ring_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
struct net_device *dev = seq->private;
struct stmmac_priv *priv = netdev_priv(dev);
if (!priv->hw_cap_support) {
seq_printf(seq, "DMA HW features not supported\n");
return 0;
}
seq_printf(seq, "==============================\n");
seq_printf(seq, "\tDMA HW features\n");
seq_printf(seq, "==============================\n");
seq_printf(seq, "\t10/100 Mbps: %s\n",
(priv->dma_cap.mbps_10_100) ? "Y" : "N");
seq_printf(seq, "\t1000 Mbps: %s\n",
(priv->dma_cap.mbps_1000) ? "Y" : "N");
seq_printf(seq, "\tHalf duplex: %s\n",
(priv->dma_cap.half_duplex) ? "Y" : "N");
seq_printf(seq, "\tHash Filter: %s\n",
(priv->dma_cap.hash_filter) ? "Y" : "N");
seq_printf(seq, "\tMultiple MAC address registers: %s\n",
(priv->dma_cap.multi_addr) ? "Y" : "N");
seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
(priv->dma_cap.pcs) ? "Y" : "N");
seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
(priv->dma_cap.sma_mdio) ? "Y" : "N");
seq_printf(seq, "\tPMT Remote wake up: %s\n",
(priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
seq_printf(seq, "\tPMT Magic Frame: %s\n",
(priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
seq_printf(seq, "\tRMON module: %s\n",
(priv->dma_cap.rmon) ? "Y" : "N");
seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
(priv->dma_cap.time_stamp) ? "Y" : "N");
seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
(priv->dma_cap.atime_stamp) ? "Y" : "N");
seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
(priv->dma_cap.eee) ? "Y" : "N");
seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
seq_printf(seq, "\tChecksum Offload in TX: %s\n",
(priv->dma_cap.tx_coe) ? "Y" : "N");
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
(priv->dma_cap.rx_coe) ? "Y" : "N");
} else {
seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
(priv->dma_cap.rx_coe_type1) ? "Y" : "N");
seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
(priv->dma_cap.rx_coe_type2) ? "Y" : "N");
}
seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
(priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
priv->dma_cap.number_rx_channel);
seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
priv->dma_cap.number_tx_channel);
seq_printf(seq, "\tEnhanced descriptors: %s\n",
(priv->dma_cap.enh_desc) ? "Y" : "N");
return 0;
}
static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}
static const struct file_operations stmmac_dma_cap_fops = {
.owner = THIS_MODULE,
.open = stmmac_sysfs_dma_cap_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int stmmac_init_fs(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
/* Create per netdev entries */
priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
return -ENOMEM;
}
/* Entry to report DMA RX/TX rings */
priv->dbgfs_rings_status =
debugfs_create_file("descriptors_status", S_IRUGO,
priv->dbgfs_dir, dev,
&stmmac_rings_status_fops);
if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
debugfs_remove_recursive(priv->dbgfs_dir);
return -ENOMEM;
}
/* Entry to report the DMA HW features */
priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
priv->dbgfs_dir,
dev, &stmmac_dma_cap_fops);
if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
debugfs_remove_recursive(priv->dbgfs_dir);
return -ENOMEM;
}
return 0;
}
static void stmmac_exit_fs(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
debugfs_remove_recursive(priv->dbgfs_dir);
}
#endif /* CONFIG_DEBUG_FS */
static const struct net_device_ops stmmac_netdev_ops = {
.ndo_open = stmmac_open,
.ndo_start_xmit = stmmac_xmit,
.ndo_stop = stmmac_release,
.ndo_change_mtu = stmmac_change_mtu,
.ndo_fix_features = stmmac_fix_features,
.ndo_set_features = stmmac_set_features,
.ndo_set_rx_mode = stmmac_set_rx_mode,
.ndo_tx_timeout = stmmac_tx_timeout,
.ndo_do_ioctl = stmmac_ioctl,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = stmmac_poll_controller,
#endif
.ndo_set_mac_address = stmmac_set_mac_address,
};
/**
* stmmac_hw_init - Init the MAC device
* @priv: driver private structure
* Description: this function is to configure the MAC device according to
* some platform parameters or the HW capability register. It prepares the
* driver to use either ring or chain modes and to setup either enhanced or
* normal descriptors.
*/
static int stmmac_hw_init(struct stmmac_priv *priv)
{
struct mac_device_info *mac;
/* Identify the MAC HW device */
if (priv->plat->setup) {
mac = priv->plat->setup(priv);
} else if (priv->plat->has_gmac) {
priv->dev->priv_flags |= IFF_UNICAST_FLT;
mac = dwmac1000_setup(priv->ioaddr,
priv->plat->multicast_filter_bins,
priv->plat->unicast_filter_entries,
&priv->synopsys_id);
} else if (priv->plat->has_gmac4) {
priv->dev->priv_flags |= IFF_UNICAST_FLT;
mac = dwmac4_setup(priv->ioaddr,
priv->plat->multicast_filter_bins,
priv->plat->unicast_filter_entries,
&priv->synopsys_id);
} else {
mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
}
if (!mac)
return -ENOMEM;
priv->hw = mac;
/* dwmac-sun8i only work in chain mode */
if (priv->plat->has_sun8i)
chain_mode = 1;
/* To use the chained or ring mode */
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
priv->hw->mode = &dwmac4_ring_mode_ops;
} else {
if (chain_mode) {
priv->hw->mode = &chain_mode_ops;
dev_info(priv->device, "Chain mode enabled\n");
priv->mode = STMMAC_CHAIN_MODE;
} else {
priv->hw->mode = &ring_mode_ops;
dev_info(priv->device, "Ring mode enabled\n");
priv->mode = STMMAC_RING_MODE;
}
}
/* Get the HW capability (new GMAC newer than 3.50a) */
priv->hw_cap_support = stmmac_get_hw_features(priv);
if (priv->hw_cap_support) {
dev_info(priv->device, "DMA HW capability register supported\n");
/* We can override some gmac/dma configuration fields: e.g.
* enh_desc, tx_coe (e.g. that are passed through the
* platform) with the values from the HW capability
* register (if supported).
*/
priv->plat->enh_desc = priv->dma_cap.enh_desc;
priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
priv->hw->pmt = priv->plat->pmt;
/* TXCOE doesn't work in thresh DMA mode */
if (priv->plat->force_thresh_dma_mode)
priv->plat->tx_coe = 0;
else
priv->plat->tx_coe = priv->dma_cap.tx_coe;
/* In case of GMAC4 rx_coe is from HW cap register. */
priv->plat->rx_coe = priv->dma_cap.rx_coe;
if (priv->dma_cap.rx_coe_type2)
priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
else if (priv->dma_cap.rx_coe_type1)
priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
} else {
dev_info(priv->device, "No HW DMA feature register supported\n");
}
/* To use alternate (extended), normal or GMAC4 descriptor structures */
if (priv->synopsys_id >= DWMAC_CORE_4_00)
priv->hw->desc = &dwmac4_desc_ops;
else
stmmac_selec_desc_mode(priv);
if (priv->plat->rx_coe) {
priv->hw->rx_csum = priv->plat->rx_coe;
dev_info(priv->device, "RX Checksum Offload Engine supported\n");
if (priv->synopsys_id < DWMAC_CORE_4_00)
dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
}
if (priv->plat->tx_coe)
dev_info(priv->device, "TX Checksum insertion supported\n");
if (priv->plat->pmt) {
dev_info(priv->device, "Wake-Up On Lan supported\n");
device_set_wakeup_capable(priv->device, 1);
}
if (priv->dma_cap.tsoen)
dev_info(priv->device, "TSO supported\n");
return 0;
}
/**
* stmmac_dvr_probe
* @device: device pointer
* @plat_dat: platform data pointer
* @res: stmmac resource pointer
* Description: this is the main probe function used to
* call the alloc_etherdev, allocate the priv structure.
* Return:
* returns 0 on success, otherwise errno.
*/
int stmmac_dvr_probe(struct device *device,
struct plat_stmmacenet_data *plat_dat,
struct stmmac_resources *res)
{
struct net_device *ndev = NULL;
struct stmmac_priv *priv;
int ret = 0;
u32 queue;
ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
MTL_MAX_TX_QUEUES,
MTL_MAX_RX_QUEUES);
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, device);
priv = netdev_priv(ndev);
priv->device = device;
priv->dev = ndev;
stmmac_set_ethtool_ops(ndev);
priv->pause = pause;
priv->plat = plat_dat;
priv->ioaddr = res->addr;
priv->dev->base_addr = (unsigned long)res->addr;
priv->dev->irq = res->irq;
priv->wol_irq = res->wol_irq;
priv->lpi_irq = res->lpi_irq;
if (res->mac)
memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
dev_set_drvdata(device, priv->dev);
/* Verify driver arguments */
stmmac_verify_args();
/* Override with kernel parameters if supplied XXX CRS XXX
* this needs to have multiple instances
*/
if ((phyaddr >= 0) && (phyaddr <= 31))
priv->plat->phy_addr = phyaddr;
if (priv->plat->stmmac_rst) {
ret = reset_control_assert(priv->plat->stmmac_rst);
reset_control_deassert(priv->plat->stmmac_rst);
/* Some reset controllers have only reset callback instead of
* assert + deassert callbacks pair.
*/
if (ret == -ENOTSUPP)
reset_control_reset(priv->plat->stmmac_rst);
}
/* Init MAC and get the capabilities */
ret = stmmac_hw_init(priv);
if (ret)
goto error_hw_init;
/* Configure real RX and TX queues */
netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
ndev->netdev_ops = &stmmac_netdev_ops;
ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
priv->tso = true;
dev_info(priv->device, "TSO feature enabled\n");
}
ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
#ifdef STMMAC_VLAN_TAG_USED
/* Both mac100 and gmac support receive VLAN tag detection */
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
#endif
priv->msg_enable = netif_msg_init(debug, default_msg_level);
/* MTU range: 46 - hw-specific max */
ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
ndev->max_mtu = JUMBO_LEN;
else
ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
* as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
*/
if ((priv->plat->maxmtu < ndev->max_mtu) &&
(priv->plat->maxmtu >= ndev->min_mtu))
ndev->max_mtu = priv->plat->maxmtu;
else if (priv->plat->maxmtu < ndev->min_mtu)
dev_warn(priv->device,
"%s: warning: maxmtu having invalid value (%d)\n",
__func__, priv->plat->maxmtu);
if (flow_ctrl)
priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
/* Rx Watchdog is available in the COREs newer than the 3.40.
* In some case, for example on bugged HW this feature
* has to be disable and this can be done by passing the
* riwt_off field from the platform.
*/
if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
priv->use_riwt = 1;
dev_info(priv->device,
"Enable RX Mitigation via HW Watchdog Timer\n");
}
for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
netif_napi_add(ndev, &rx_q->napi, stmmac_poll,
(8 * priv->plat->rx_queues_to_use));
}
spin_lock_init(&priv->lock);
/* If a specific clk_csr value is passed from the platform
* this means that the CSR Clock Range selection cannot be
* changed at run-time and it is fixed. Viceversa the driver'll try to
* set the MDC clock dynamically according to the csr actual
* clock input.
*/
if (!priv->plat->clk_csr)
stmmac_clk_csr_set(priv);
else
priv->clk_csr = priv->plat->clk_csr;
stmmac_check_pcs_mode(priv);
if (priv->hw->pcs != STMMAC_PCS_RGMII &&
priv->hw->pcs != STMMAC_PCS_TBI &&
priv->hw->pcs != STMMAC_PCS_RTBI) {
/* MDIO bus Registration */
ret = stmmac_mdio_register(ndev);
if (ret < 0) {
dev_err(priv->device,
"%s: MDIO bus (id: %d) registration failed",
__func__, priv->plat->bus_id);
goto error_mdio_register;
}
}
ret = register_netdev(ndev);
if (ret) {
dev_err(priv->device, "%s: ERROR %i registering the device\n",
__func__, ret);
goto error_netdev_register;
}
return ret;
error_netdev_register:
if (priv->hw->pcs != STMMAC_PCS_RGMII &&
priv->hw->pcs != STMMAC_PCS_TBI &&
priv->hw->pcs != STMMAC_PCS_RTBI)
stmmac_mdio_unregister(ndev);
error_mdio_register:
for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
netif_napi_del(&rx_q->napi);
}
error_hw_init:
free_netdev(ndev);
return ret;
}
EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
/**
* stmmac_dvr_remove
* @dev: device pointer
* Description: this function resets the TX/RX processes, disables the MAC RX/TX
* changes the link status, releases the DMA descriptor rings.
*/
int stmmac_dvr_remove(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct stmmac_priv *priv = netdev_priv(ndev);
netdev_info(priv->dev, "%s: removing driver", __func__);
stmmac_stop_all_dma(priv);
priv->hw->mac->set_mac(priv->ioaddr, false);
netif_carrier_off(ndev);
unregister_netdev(ndev);
if (priv->plat->stmmac_rst)
reset_control_assert(priv->plat->stmmac_rst);
clk_disable_unprepare(priv->plat->pclk);
clk_disable_unprepare(priv->plat->stmmac_clk);
if (priv->hw->pcs != STMMAC_PCS_RGMII &&
priv->hw->pcs != STMMAC_PCS_TBI &&
priv->hw->pcs != STMMAC_PCS_RTBI)
stmmac_mdio_unregister(ndev);
free_netdev(ndev);
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
/**
* stmmac_suspend - suspend callback
* @dev: device pointer
* Description: this is the function to suspend the device and it is called
* by the platform driver to stop the network queue, release the resources,
* program the PMT register (for WoL), clean and release driver resources.
*/
int stmmac_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct stmmac_priv *priv = netdev_priv(ndev);
unsigned long flags;
if (!ndev || !netif_running(ndev))
return 0;
if (ndev->phydev)
phy_stop(ndev->phydev);
spin_lock_irqsave(&priv->lock, flags);
netif_device_detach(ndev);
stmmac_stop_all_queues(priv);
stmmac_disable_all_queues(priv);
/* Stop TX/RX DMA */
stmmac_stop_all_dma(priv);
/* Enable Power down mode by programming the PMT regs */
if (device_may_wakeup(priv->device)) {
priv->hw->mac->pmt(priv->hw, priv->wolopts);
priv->irq_wake = 1;
} else {
priv->hw->mac->set_mac(priv->ioaddr, false);
pinctrl_pm_select_sleep_state(priv->device);
/* Disable clock in case of PWM is off */
clk_disable(priv->plat->pclk);
clk_disable(priv->plat->stmmac_clk);
}
spin_unlock_irqrestore(&priv->lock, flags);
priv->oldlink = false;
priv->speed = SPEED_UNKNOWN;
priv->oldduplex = DUPLEX_UNKNOWN;
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_suspend);
/**
* stmmac_reset_queues_param - reset queue parameters
* @dev: device pointer
*/
static void stmmac_reset_queues_param(struct stmmac_priv *priv)
{
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
rx_q->cur_rx = 0;
rx_q->dirty_rx = 0;
}
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
tx_q->cur_tx = 0;
tx_q->dirty_tx = 0;
}
}
/**
* stmmac_resume - resume callback
* @dev: device pointer
* Description: when resume this function is invoked to setup the DMA and CORE
* in a usable state.
*/
int stmmac_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct stmmac_priv *priv = netdev_priv(ndev);
unsigned long flags;
if (!netif_running(ndev))
return 0;
/* Power Down bit, into the PM register, is cleared
* automatically as soon as a magic packet or a Wake-up frame
* is received. Anyway, it's better to manually clear
* this bit because it can generate problems while resuming
* from another devices (e.g. serial console).
*/
if (device_may_wakeup(priv->device)) {
spin_lock_irqsave(&priv->lock, flags);
priv->hw->mac->pmt(priv->hw, 0);
spin_unlock_irqrestore(&priv->lock, flags);
priv->irq_wake = 0;
} else {
pinctrl_pm_select_default_state(priv->device);
/* enable the clk previously disabled */
clk_enable(priv->plat->stmmac_clk);
clk_enable(priv->plat->pclk);
/* reset the phy so that it's ready */
if (priv->mii)
stmmac_mdio_reset(priv->mii);
}
netif_device_attach(ndev);
spin_lock_irqsave(&priv->lock, flags);
stmmac_reset_queues_param(priv);
/* reset private mss value to force mss context settings at
* next tso xmit (only used for gmac4).
*/
priv->mss = 0;
stmmac_clear_descriptors(priv);
stmmac_hw_setup(ndev, false);
stmmac_init_tx_coalesce(priv);
stmmac_set_rx_mode(ndev);
stmmac_enable_all_queues(priv);
stmmac_start_all_queues(priv);
spin_unlock_irqrestore(&priv->lock, flags);
if (ndev->phydev)
phy_start(ndev->phydev);
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_resume);
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
char *opt;
if (!str || !*str)
return -EINVAL;
while ((opt = strsep(&str, ",")) != NULL) {
if (!strncmp(opt, "debug:", 6)) {
if (kstrtoint(opt + 6, 0, &debug))
goto err;
} else if (!strncmp(opt, "phyaddr:", 8)) {
if (kstrtoint(opt + 8, 0, &phyaddr))
goto err;
} else if (!strncmp(opt, "buf_sz:", 7)) {
if (kstrtoint(opt + 7, 0, &buf_sz))
goto err;
} else if (!strncmp(opt, "tc:", 3)) {
if (kstrtoint(opt + 3, 0, &tc))
goto err;
} else if (!strncmp(opt, "watchdog:", 9)) {
if (kstrtoint(opt + 9, 0, &watchdog))
goto err;
} else if (!strncmp(opt, "flow_ctrl:", 10)) {
if (kstrtoint(opt + 10, 0, &flow_ctrl))
goto err;
} else if (!strncmp(opt, "pause:", 6)) {
if (kstrtoint(opt + 6, 0, &pause))
goto err;
} else if (!strncmp(opt, "eee_timer:", 10)) {
if (kstrtoint(opt + 10, 0, &eee_timer))
goto err;
} else if (!strncmp(opt, "chain_mode:", 11)) {
if (kstrtoint(opt + 11, 0, &chain_mode))
goto err;
}
}
return 0;
err:
pr_err("%s: ERROR broken module parameter conversion", __func__);
return -EINVAL;
}
__setup("stmmaceth=", stmmac_cmdline_opt);
#endif /* MODULE */
static int __init stmmac_init(void)
{
#ifdef CONFIG_DEBUG_FS
/* Create debugfs main directory if it doesn't exist yet */
if (!stmmac_fs_dir) {
stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
pr_err("ERROR %s, debugfs create directory failed\n",
STMMAC_RESOURCE_NAME);
return -ENOMEM;
}
}
#endif
return 0;
}
static void __exit stmmac_exit(void)
{
#ifdef CONFIG_DEBUG_FS
debugfs_remove_recursive(stmmac_fs_dir);
#endif
}
module_init(stmmac_init)
module_exit(stmmac_exit)
MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");