2202 lines
62 KiB
C
2202 lines
62 KiB
C
/*
|
|
* Freescale GPMI NAND Flash Driver
|
|
*
|
|
* Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
|
|
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
#include <linux/clk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include "gpmi-nand.h"
|
|
#include "bch-regs.h"
|
|
|
|
/* Resource names for the GPMI NAND driver. */
|
|
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
|
|
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
|
|
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
|
|
|
|
/* add our owner bbt descriptor */
|
|
static uint8_t scan_ff_pattern[] = { 0xff };
|
|
static struct nand_bbt_descr gpmi_bbt_descr = {
|
|
.options = 0,
|
|
.offs = 0,
|
|
.len = 1,
|
|
.pattern = scan_ff_pattern
|
|
};
|
|
|
|
/*
|
|
* We may change the layout if we can get the ECC info from the datasheet,
|
|
* else we will use all the (page + OOB).
|
|
*/
|
|
static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = 0;
|
|
oobregion->length = geo->page_size - mtd->writesize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
/* The available oob size we have. */
|
|
if (geo->page_size < mtd->writesize + mtd->oobsize) {
|
|
oobregion->offset = geo->page_size - mtd->writesize;
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const char * const gpmi_clks_for_mx2x[] = {
|
|
"gpmi_io",
|
|
};
|
|
|
|
static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
|
|
.ecc = gpmi_ooblayout_ecc,
|
|
.free = gpmi_ooblayout_free,
|
|
};
|
|
|
|
static const struct gpmi_devdata gpmi_devdata_imx23 = {
|
|
.type = IS_MX23,
|
|
.bch_max_ecc_strength = 20,
|
|
.max_chain_delay = 16,
|
|
.clks = gpmi_clks_for_mx2x,
|
|
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
|
|
};
|
|
|
|
static const struct gpmi_devdata gpmi_devdata_imx28 = {
|
|
.type = IS_MX28,
|
|
.bch_max_ecc_strength = 20,
|
|
.max_chain_delay = 16,
|
|
.clks = gpmi_clks_for_mx2x,
|
|
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
|
|
};
|
|
|
|
static const char * const gpmi_clks_for_mx6[] = {
|
|
"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
|
|
};
|
|
|
|
static const struct gpmi_devdata gpmi_devdata_imx6q = {
|
|
.type = IS_MX6Q,
|
|
.bch_max_ecc_strength = 40,
|
|
.max_chain_delay = 12,
|
|
.clks = gpmi_clks_for_mx6,
|
|
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
|
|
};
|
|
|
|
static const struct gpmi_devdata gpmi_devdata_imx6sx = {
|
|
.type = IS_MX6SX,
|
|
.bch_max_ecc_strength = 62,
|
|
.max_chain_delay = 12,
|
|
.clks = gpmi_clks_for_mx6,
|
|
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
|
|
};
|
|
|
|
static const char * const gpmi_clks_for_mx7d[] = {
|
|
"gpmi_io", "gpmi_bch_apb",
|
|
};
|
|
|
|
static const struct gpmi_devdata gpmi_devdata_imx7d = {
|
|
.type = IS_MX7D,
|
|
.bch_max_ecc_strength = 62,
|
|
.max_chain_delay = 12,
|
|
.clks = gpmi_clks_for_mx7d,
|
|
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
|
|
};
|
|
|
|
static irqreturn_t bch_irq(int irq, void *cookie)
|
|
{
|
|
struct gpmi_nand_data *this = cookie;
|
|
|
|
gpmi_clear_bch(this);
|
|
complete(&this->bch_done);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Calculate the ECC strength by hand:
|
|
* E : The ECC strength.
|
|
* G : the length of Galois Field.
|
|
* N : The chunk count of per page.
|
|
* O : the oobsize of the NAND chip.
|
|
* M : the metasize of per page.
|
|
*
|
|
* The formula is :
|
|
* E * G * N
|
|
* ------------ <= (O - M)
|
|
* 8
|
|
*
|
|
* So, we get E by:
|
|
* (O - M) * 8
|
|
* E <= -------------
|
|
* G * N
|
|
*/
|
|
static inline int get_ecc_strength(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct mtd_info *mtd = nand_to_mtd(&this->nand);
|
|
int ecc_strength;
|
|
|
|
ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
|
|
/ (geo->gf_len * geo->ecc_chunk_count);
|
|
|
|
/* We need the minor even number. */
|
|
return round_down(ecc_strength, 2);
|
|
}
|
|
|
|
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
|
|
/* Do the sanity check. */
|
|
if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
|
|
/* The mx23/mx28 only support the GF13. */
|
|
if (geo->gf_len == 14)
|
|
return false;
|
|
}
|
|
return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
|
|
}
|
|
|
|
/*
|
|
* If we can get the ECC information from the nand chip, we do not
|
|
* need to calculate them ourselves.
|
|
*
|
|
* We may have available oob space in this case.
|
|
*/
|
|
static int set_geometry_by_ecc_info(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int block_mark_bit_offset;
|
|
|
|
if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
|
|
return -EINVAL;
|
|
|
|
switch (chip->ecc_step_ds) {
|
|
case SZ_512:
|
|
geo->gf_len = 13;
|
|
break;
|
|
case SZ_1K:
|
|
geo->gf_len = 14;
|
|
break;
|
|
default:
|
|
dev_err(this->dev,
|
|
"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
|
|
chip->ecc_strength_ds, chip->ecc_step_ds);
|
|
return -EINVAL;
|
|
}
|
|
geo->ecc_chunk_size = chip->ecc_step_ds;
|
|
geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
|
|
if (!gpmi_check_ecc(this))
|
|
return -EINVAL;
|
|
|
|
/* Keep the C >= O */
|
|
if (geo->ecc_chunk_size < mtd->oobsize) {
|
|
dev_err(this->dev,
|
|
"unsupported nand chip. ecc size: %d, oob size : %d\n",
|
|
chip->ecc_step_ds, mtd->oobsize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* The default value, see comment in the legacy_set_geometry(). */
|
|
geo->metadata_size = 10;
|
|
|
|
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
|
|
|
|
/*
|
|
* Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
|
|
*
|
|
* | P |
|
|
* |<----------------------------------------------------->|
|
|
* | |
|
|
* | (Block Mark) |
|
|
* | P' | | | |
|
|
* |<-------------------------------------------->| D | | O' |
|
|
* | |<---->| |<--->|
|
|
* V V V V V
|
|
* +---+----------+-+----------+-+----------+-+----------+-+-----+
|
|
* | M | data |E| data |E| data |E| data |E| |
|
|
* +---+----------+-+----------+-+----------+-+----------+-+-----+
|
|
* ^ ^
|
|
* | O |
|
|
* |<------------>|
|
|
* | |
|
|
*
|
|
* P : the page size for BCH module.
|
|
* E : The ECC strength.
|
|
* G : the length of Galois Field.
|
|
* N : The chunk count of per page.
|
|
* M : the metasize of per page.
|
|
* C : the ecc chunk size, aka the "data" above.
|
|
* P': the nand chip's page size.
|
|
* O : the nand chip's oob size.
|
|
* O': the free oob.
|
|
*
|
|
* The formula for P is :
|
|
*
|
|
* E * G * N
|
|
* P = ------------ + P' + M
|
|
* 8
|
|
*
|
|
* The position of block mark moves forward in the ECC-based view
|
|
* of page, and the delta is:
|
|
*
|
|
* E * G * (N - 1)
|
|
* D = (---------------- + M)
|
|
* 8
|
|
*
|
|
* Please see the comment in legacy_set_geometry().
|
|
* With the condition C >= O , we still can get same result.
|
|
* So the bit position of the physical block mark within the ECC-based
|
|
* view of the page is :
|
|
* (P' - D) * 8
|
|
*/
|
|
geo->page_size = mtd->writesize + geo->metadata_size +
|
|
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
|
|
|
|
geo->payload_size = mtd->writesize;
|
|
|
|
geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
|
|
geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
|
|
+ ALIGN(geo->ecc_chunk_count, 4);
|
|
|
|
if (!this->swap_block_mark)
|
|
return 0;
|
|
|
|
/* For bit swap. */
|
|
block_mark_bit_offset = mtd->writesize * 8 -
|
|
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
|
|
+ geo->metadata_size * 8);
|
|
|
|
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
|
|
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
|
|
return 0;
|
|
}
|
|
|
|
static int legacy_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct mtd_info *mtd = nand_to_mtd(&this->nand);
|
|
unsigned int metadata_size;
|
|
unsigned int status_size;
|
|
unsigned int block_mark_bit_offset;
|
|
|
|
/*
|
|
* The size of the metadata can be changed, though we set it to 10
|
|
* bytes now. But it can't be too large, because we have to save
|
|
* enough space for BCH.
|
|
*/
|
|
geo->metadata_size = 10;
|
|
|
|
/* The default for the length of Galois Field. */
|
|
geo->gf_len = 13;
|
|
|
|
/* The default for chunk size. */
|
|
geo->ecc_chunk_size = 512;
|
|
while (geo->ecc_chunk_size < mtd->oobsize) {
|
|
geo->ecc_chunk_size *= 2; /* keep C >= O */
|
|
geo->gf_len = 14;
|
|
}
|
|
|
|
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
|
|
|
|
/* We use the same ECC strength for all chunks. */
|
|
geo->ecc_strength = get_ecc_strength(this);
|
|
if (!gpmi_check_ecc(this)) {
|
|
dev_err(this->dev,
|
|
"ecc strength: %d cannot be supported by the controller (%d)\n"
|
|
"try to use minimum ecc strength that NAND chip required\n",
|
|
geo->ecc_strength,
|
|
this->devdata->bch_max_ecc_strength);
|
|
return -EINVAL;
|
|
}
|
|
|
|
geo->page_size = mtd->writesize + geo->metadata_size +
|
|
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
|
|
geo->payload_size = mtd->writesize;
|
|
|
|
/*
|
|
* The auxiliary buffer contains the metadata and the ECC status. The
|
|
* metadata is padded to the nearest 32-bit boundary. The ECC status
|
|
* contains one byte for every ECC chunk, and is also padded to the
|
|
* nearest 32-bit boundary.
|
|
*/
|
|
metadata_size = ALIGN(geo->metadata_size, 4);
|
|
status_size = ALIGN(geo->ecc_chunk_count, 4);
|
|
|
|
geo->auxiliary_size = metadata_size + status_size;
|
|
geo->auxiliary_status_offset = metadata_size;
|
|
|
|
if (!this->swap_block_mark)
|
|
return 0;
|
|
|
|
/*
|
|
* We need to compute the byte and bit offsets of
|
|
* the physical block mark within the ECC-based view of the page.
|
|
*
|
|
* NAND chip with 2K page shows below:
|
|
* (Block Mark)
|
|
* | |
|
|
* | D |
|
|
* |<---->|
|
|
* V V
|
|
* +---+----------+-+----------+-+----------+-+----------+-+
|
|
* | M | data |E| data |E| data |E| data |E|
|
|
* +---+----------+-+----------+-+----------+-+----------+-+
|
|
*
|
|
* The position of block mark moves forward in the ECC-based view
|
|
* of page, and the delta is:
|
|
*
|
|
* E * G * (N - 1)
|
|
* D = (---------------- + M)
|
|
* 8
|
|
*
|
|
* With the formula to compute the ECC strength, and the condition
|
|
* : C >= O (C is the ecc chunk size)
|
|
*
|
|
* It's easy to deduce to the following result:
|
|
*
|
|
* E * G (O - M) C - M C - M
|
|
* ----------- <= ------- <= -------- < ---------
|
|
* 8 N N (N - 1)
|
|
*
|
|
* So, we get:
|
|
*
|
|
* E * G * (N - 1)
|
|
* D = (---------------- + M) < C
|
|
* 8
|
|
*
|
|
* The above inequality means the position of block mark
|
|
* within the ECC-based view of the page is still in the data chunk,
|
|
* and it's NOT in the ECC bits of the chunk.
|
|
*
|
|
* Use the following to compute the bit position of the
|
|
* physical block mark within the ECC-based view of the page:
|
|
* (page_size - D) * 8
|
|
*
|
|
* --Huang Shijie
|
|
*/
|
|
block_mark_bit_offset = mtd->writesize * 8 -
|
|
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
|
|
+ geo->metadata_size * 8);
|
|
|
|
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
|
|
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
|
|
return 0;
|
|
}
|
|
|
|
int common_nfc_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
|
|
|| legacy_set_geometry(this))
|
|
return set_geometry_by_ecc_info(this);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
|
|
{
|
|
/* We use the DMA channel 0 to access all the nand chips. */
|
|
return this->dma_chans[0];
|
|
}
|
|
|
|
/* Can we use the upper's buffer directly for DMA? */
|
|
void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
|
|
{
|
|
struct scatterlist *sgl = &this->data_sgl;
|
|
int ret;
|
|
|
|
/* first try to map the upper buffer directly */
|
|
if (virt_addr_valid(this->upper_buf) &&
|
|
!object_is_on_stack(this->upper_buf)) {
|
|
sg_init_one(sgl, this->upper_buf, this->upper_len);
|
|
ret = dma_map_sg(this->dev, sgl, 1, dr);
|
|
if (ret == 0)
|
|
goto map_fail;
|
|
|
|
this->direct_dma_map_ok = true;
|
|
return;
|
|
}
|
|
|
|
map_fail:
|
|
/* We have to use our own DMA buffer. */
|
|
sg_init_one(sgl, this->data_buffer_dma, this->upper_len);
|
|
|
|
if (dr == DMA_TO_DEVICE)
|
|
memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len);
|
|
|
|
dma_map_sg(this->dev, sgl, 1, dr);
|
|
|
|
this->direct_dma_map_ok = false;
|
|
}
|
|
|
|
/* This will be called after the DMA operation is finished. */
|
|
static void dma_irq_callback(void *param)
|
|
{
|
|
struct gpmi_nand_data *this = param;
|
|
struct completion *dma_c = &this->dma_done;
|
|
|
|
switch (this->dma_type) {
|
|
case DMA_FOR_COMMAND:
|
|
dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
|
|
break;
|
|
|
|
case DMA_FOR_READ_DATA:
|
|
dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
|
|
if (this->direct_dma_map_ok == false)
|
|
memcpy(this->upper_buf, this->data_buffer_dma,
|
|
this->upper_len);
|
|
break;
|
|
|
|
case DMA_FOR_WRITE_DATA:
|
|
dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
|
|
break;
|
|
|
|
case DMA_FOR_READ_ECC_PAGE:
|
|
case DMA_FOR_WRITE_ECC_PAGE:
|
|
/* We have to wait the BCH interrupt to finish. */
|
|
break;
|
|
|
|
default:
|
|
dev_err(this->dev, "in wrong DMA operation.\n");
|
|
}
|
|
|
|
complete(dma_c);
|
|
}
|
|
|
|
int start_dma_without_bch_irq(struct gpmi_nand_data *this,
|
|
struct dma_async_tx_descriptor *desc)
|
|
{
|
|
struct completion *dma_c = &this->dma_done;
|
|
unsigned long timeout;
|
|
|
|
init_completion(dma_c);
|
|
|
|
desc->callback = dma_irq_callback;
|
|
desc->callback_param = this;
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(get_dma_chan(this));
|
|
|
|
/* Wait for the interrupt from the DMA block. */
|
|
timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
|
|
if (!timeout) {
|
|
dev_err(this->dev, "DMA timeout, last DMA :%d\n",
|
|
this->last_dma_type);
|
|
gpmi_dump_info(this);
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is used in BCH reading or BCH writing pages.
|
|
* It will wait for the BCH interrupt as long as ONE second.
|
|
* Actually, we must wait for two interrupts :
|
|
* [1] firstly the DMA interrupt and
|
|
* [2] secondly the BCH interrupt.
|
|
*/
|
|
int start_dma_with_bch_irq(struct gpmi_nand_data *this,
|
|
struct dma_async_tx_descriptor *desc)
|
|
{
|
|
struct completion *bch_c = &this->bch_done;
|
|
unsigned long timeout;
|
|
|
|
/* Prepare to receive an interrupt from the BCH block. */
|
|
init_completion(bch_c);
|
|
|
|
/* start the DMA */
|
|
start_dma_without_bch_irq(this, desc);
|
|
|
|
/* Wait for the interrupt from the BCH block. */
|
|
timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
|
|
if (!timeout) {
|
|
dev_err(this->dev, "BCH timeout, last DMA :%d\n",
|
|
this->last_dma_type);
|
|
gpmi_dump_info(this);
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int acquire_register_block(struct gpmi_nand_data *this,
|
|
const char *res_name)
|
|
{
|
|
struct platform_device *pdev = this->pdev;
|
|
struct resources *res = &this->resources;
|
|
struct resource *r;
|
|
void __iomem *p;
|
|
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
|
|
p = devm_ioremap_resource(&pdev->dev, r);
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
|
|
if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
|
|
res->gpmi_regs = p;
|
|
else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
|
|
res->bch_regs = p;
|
|
else
|
|
dev_err(this->dev, "unknown resource name : %s\n", res_name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
|
|
{
|
|
struct platform_device *pdev = this->pdev;
|
|
const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
|
|
struct resource *r;
|
|
int err;
|
|
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
|
|
if (!r) {
|
|
dev_err(this->dev, "Can't get resource for %s\n", res_name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
|
|
if (err)
|
|
dev_err(this->dev, "error requesting BCH IRQ\n");
|
|
|
|
return err;
|
|
}
|
|
|
|
static void release_dma_channels(struct gpmi_nand_data *this)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < DMA_CHANS; i++)
|
|
if (this->dma_chans[i]) {
|
|
dma_release_channel(this->dma_chans[i]);
|
|
this->dma_chans[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static int acquire_dma_channels(struct gpmi_nand_data *this)
|
|
{
|
|
struct platform_device *pdev = this->pdev;
|
|
struct dma_chan *dma_chan;
|
|
|
|
/* request dma channel */
|
|
dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
|
|
if (!dma_chan) {
|
|
dev_err(this->dev, "Failed to request DMA channel.\n");
|
|
goto acquire_err;
|
|
}
|
|
|
|
this->dma_chans[0] = dma_chan;
|
|
return 0;
|
|
|
|
acquire_err:
|
|
release_dma_channels(this);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int gpmi_get_clks(struct gpmi_nand_data *this)
|
|
{
|
|
struct resources *r = &this->resources;
|
|
struct clk *clk;
|
|
int err, i;
|
|
|
|
for (i = 0; i < this->devdata->clks_count; i++) {
|
|
clk = devm_clk_get(this->dev, this->devdata->clks[i]);
|
|
if (IS_ERR(clk)) {
|
|
err = PTR_ERR(clk);
|
|
goto err_clock;
|
|
}
|
|
|
|
r->clock[i] = clk;
|
|
}
|
|
|
|
if (GPMI_IS_MX6(this))
|
|
/*
|
|
* Set the default value for the gpmi clock.
|
|
*
|
|
* If you want to use the ONFI nand which is in the
|
|
* Synchronous Mode, you should change the clock as you need.
|
|
*/
|
|
clk_set_rate(r->clock[0], 22000000);
|
|
|
|
return 0;
|
|
|
|
err_clock:
|
|
dev_dbg(this->dev, "failed in finding the clocks.\n");
|
|
return err;
|
|
}
|
|
|
|
static int acquire_resources(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = acquire_bch_irq(this, bch_irq);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = acquire_dma_channels(this);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = gpmi_get_clks(this);
|
|
if (ret)
|
|
goto exit_clock;
|
|
return 0;
|
|
|
|
exit_clock:
|
|
release_dma_channels(this);
|
|
exit_regs:
|
|
return ret;
|
|
}
|
|
|
|
static void release_resources(struct gpmi_nand_data *this)
|
|
{
|
|
release_dma_channels(this);
|
|
}
|
|
|
|
static int init_hardware(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* This structure contains the "safe" GPMI timing that should succeed
|
|
* with any NAND Flash device
|
|
* (although, with less-than-optimal performance).
|
|
*/
|
|
struct nand_timing safe_timing = {
|
|
.data_setup_in_ns = 80,
|
|
.data_hold_in_ns = 60,
|
|
.address_setup_in_ns = 25,
|
|
.gpmi_sample_delay_in_ns = 6,
|
|
.tREA_in_ns = -1,
|
|
.tRLOH_in_ns = -1,
|
|
.tRHOH_in_ns = -1,
|
|
};
|
|
|
|
/* Initialize the hardwares. */
|
|
ret = gpmi_init(this);
|
|
if (ret)
|
|
return ret;
|
|
|
|
this->timing = safe_timing;
|
|
return 0;
|
|
}
|
|
|
|
static int read_page_prepare(struct gpmi_nand_data *this,
|
|
void *destination, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
void **use_virt, dma_addr_t *use_phys)
|
|
{
|
|
struct device *dev = this->dev;
|
|
|
|
if (virt_addr_valid(destination)) {
|
|
dma_addr_t dest_phys;
|
|
|
|
dest_phys = dma_map_single(dev, destination,
|
|
length, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(dev, dest_phys)) {
|
|
if (alt_size < length) {
|
|
dev_err(dev, "Alternate buffer is too small\n");
|
|
return -ENOMEM;
|
|
}
|
|
goto map_failed;
|
|
}
|
|
*use_virt = destination;
|
|
*use_phys = dest_phys;
|
|
this->direct_dma_map_ok = true;
|
|
return 0;
|
|
}
|
|
|
|
map_failed:
|
|
*use_virt = alt_virt;
|
|
*use_phys = alt_phys;
|
|
this->direct_dma_map_ok = false;
|
|
return 0;
|
|
}
|
|
|
|
static inline void read_page_end(struct gpmi_nand_data *this,
|
|
void *destination, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
void *used_virt, dma_addr_t used_phys)
|
|
{
|
|
if (this->direct_dma_map_ok)
|
|
dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static inline void read_page_swap_end(struct gpmi_nand_data *this,
|
|
void *destination, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
void *used_virt, dma_addr_t used_phys)
|
|
{
|
|
if (!this->direct_dma_map_ok)
|
|
memcpy(destination, alt_virt, length);
|
|
}
|
|
|
|
static int send_page_prepare(struct gpmi_nand_data *this,
|
|
const void *source, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
const void **use_virt, dma_addr_t *use_phys)
|
|
{
|
|
struct device *dev = this->dev;
|
|
|
|
if (virt_addr_valid(source)) {
|
|
dma_addr_t source_phys;
|
|
|
|
source_phys = dma_map_single(dev, (void *)source, length,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, source_phys)) {
|
|
if (alt_size < length) {
|
|
dev_err(dev, "Alternate buffer is too small\n");
|
|
return -ENOMEM;
|
|
}
|
|
goto map_failed;
|
|
}
|
|
*use_virt = source;
|
|
*use_phys = source_phys;
|
|
return 0;
|
|
}
|
|
map_failed:
|
|
/*
|
|
* Copy the content of the source buffer into the alternate
|
|
* buffer and set up the return values accordingly.
|
|
*/
|
|
memcpy(alt_virt, source, length);
|
|
|
|
*use_virt = alt_virt;
|
|
*use_phys = alt_phys;
|
|
return 0;
|
|
}
|
|
|
|
static void send_page_end(struct gpmi_nand_data *this,
|
|
const void *source, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
const void *used_virt, dma_addr_t used_phys)
|
|
{
|
|
struct device *dev = this->dev;
|
|
if (used_virt == source)
|
|
dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
|
|
}
|
|
|
|
static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
|
|
{
|
|
struct device *dev = this->dev;
|
|
|
|
if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
|
|
dma_free_coherent(dev, this->page_buffer_size,
|
|
this->page_buffer_virt,
|
|
this->page_buffer_phys);
|
|
kfree(this->cmd_buffer);
|
|
kfree(this->data_buffer_dma);
|
|
kfree(this->raw_buffer);
|
|
|
|
this->cmd_buffer = NULL;
|
|
this->data_buffer_dma = NULL;
|
|
this->raw_buffer = NULL;
|
|
this->page_buffer_virt = NULL;
|
|
this->page_buffer_size = 0;
|
|
}
|
|
|
|
/* Allocate the DMA buffers */
|
|
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct device *dev = this->dev;
|
|
struct mtd_info *mtd = nand_to_mtd(&this->nand);
|
|
|
|
/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
|
|
this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
|
|
if (this->cmd_buffer == NULL)
|
|
goto error_alloc;
|
|
|
|
/*
|
|
* [2] Allocate a read/write data buffer.
|
|
* The gpmi_alloc_dma_buffer can be called twice.
|
|
* We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
|
|
* is called before the nand_scan_ident; and we allocate a buffer
|
|
* of the real NAND page size when the gpmi_alloc_dma_buffer is
|
|
* called after the nand_scan_ident.
|
|
*/
|
|
this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
|
|
GFP_DMA | GFP_KERNEL);
|
|
if (this->data_buffer_dma == NULL)
|
|
goto error_alloc;
|
|
|
|
/*
|
|
* [3] Allocate the page buffer.
|
|
*
|
|
* Both the payload buffer and the auxiliary buffer must appear on
|
|
* 32-bit boundaries. We presume the size of the payload buffer is a
|
|
* power of two and is much larger than four, which guarantees the
|
|
* auxiliary buffer will appear on a 32-bit boundary.
|
|
*/
|
|
this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
|
|
this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
|
|
&this->page_buffer_phys, GFP_DMA);
|
|
if (!this->page_buffer_virt)
|
|
goto error_alloc;
|
|
|
|
this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
|
|
if (!this->raw_buffer)
|
|
goto error_alloc;
|
|
|
|
/* Slice up the page buffer. */
|
|
this->payload_virt = this->page_buffer_virt;
|
|
this->payload_phys = this->page_buffer_phys;
|
|
this->auxiliary_virt = this->payload_virt + geo->payload_size;
|
|
this->auxiliary_phys = this->payload_phys + geo->payload_size;
|
|
return 0;
|
|
|
|
error_alloc:
|
|
gpmi_free_dma_buffer(this);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
int ret;
|
|
|
|
/*
|
|
* Every operation begins with a command byte and a series of zero or
|
|
* more address bytes. These are distinguished by either the Address
|
|
* Latch Enable (ALE) or Command Latch Enable (CLE) signals being
|
|
* asserted. When MTD is ready to execute the command, it will deassert
|
|
* both latch enables.
|
|
*
|
|
* Rather than run a separate DMA operation for every single byte, we
|
|
* queue them up and run a single DMA operation for the entire series
|
|
* of command and data bytes. NAND_CMD_NONE means the END of the queue.
|
|
*/
|
|
if ((ctrl & (NAND_ALE | NAND_CLE))) {
|
|
if (data != NAND_CMD_NONE)
|
|
this->cmd_buffer[this->command_length++] = data;
|
|
return;
|
|
}
|
|
|
|
if (!this->command_length)
|
|
return;
|
|
|
|
ret = gpmi_send_command(this);
|
|
if (ret)
|
|
dev_err(this->dev, "Chip: %u, Error %d\n",
|
|
this->current_chip, ret);
|
|
|
|
this->command_length = 0;
|
|
}
|
|
|
|
static int gpmi_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
|
|
return gpmi_is_ready(this, this->current_chip);
|
|
}
|
|
|
|
static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
|
|
if ((this->current_chip < 0) && (chipnr >= 0))
|
|
gpmi_begin(this);
|
|
else if ((this->current_chip >= 0) && (chipnr < 0))
|
|
gpmi_end(this);
|
|
|
|
this->current_chip = chipnr;
|
|
}
|
|
|
|
static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
|
|
dev_dbg(this->dev, "len is %d\n", len);
|
|
this->upper_buf = buf;
|
|
this->upper_len = len;
|
|
|
|
gpmi_read_data(this);
|
|
}
|
|
|
|
static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
|
|
dev_dbg(this->dev, "len is %d\n", len);
|
|
this->upper_buf = (uint8_t *)buf;
|
|
this->upper_len = len;
|
|
|
|
gpmi_send_data(this);
|
|
}
|
|
|
|
static uint8_t gpmi_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
uint8_t *buf = this->data_buffer_dma;
|
|
|
|
gpmi_read_buf(mtd, buf, 1);
|
|
return buf[0];
|
|
}
|
|
|
|
/*
|
|
* Handles block mark swapping.
|
|
* It can be called in swapping the block mark, or swapping it back,
|
|
* because the the operations are the same.
|
|
*/
|
|
static void block_mark_swapping(struct gpmi_nand_data *this,
|
|
void *payload, void *auxiliary)
|
|
{
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
unsigned char *p;
|
|
unsigned char *a;
|
|
unsigned int bit;
|
|
unsigned char mask;
|
|
unsigned char from_data;
|
|
unsigned char from_oob;
|
|
|
|
if (!this->swap_block_mark)
|
|
return;
|
|
|
|
/*
|
|
* If control arrives here, we're swapping. Make some convenience
|
|
* variables.
|
|
*/
|
|
bit = nfc_geo->block_mark_bit_offset;
|
|
p = payload + nfc_geo->block_mark_byte_offset;
|
|
a = auxiliary;
|
|
|
|
/*
|
|
* Get the byte from the data area that overlays the block mark. Since
|
|
* the ECC engine applies its own view to the bits in the page, the
|
|
* physical block mark won't (in general) appear on a byte boundary in
|
|
* the data.
|
|
*/
|
|
from_data = (p[0] >> bit) | (p[1] << (8 - bit));
|
|
|
|
/* Get the byte from the OOB. */
|
|
from_oob = a[0];
|
|
|
|
/* Swap them. */
|
|
a[0] = from_data;
|
|
|
|
mask = (0x1 << bit) - 1;
|
|
p[0] = (p[0] & mask) | (from_oob << bit);
|
|
|
|
mask = ~0 << bit;
|
|
p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
|
|
}
|
|
|
|
static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
void *payload_virt;
|
|
dma_addr_t payload_phys;
|
|
void *auxiliary_virt;
|
|
dma_addr_t auxiliary_phys;
|
|
unsigned int i;
|
|
unsigned char *status;
|
|
unsigned int max_bitflips = 0;
|
|
int ret;
|
|
|
|
dev_dbg(this->dev, "page number is : %d\n", page);
|
|
ret = read_page_prepare(this, buf, nfc_geo->payload_size,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
&payload_virt, &payload_phys);
|
|
if (ret) {
|
|
dev_err(this->dev, "Inadequate DMA buffer\n");
|
|
ret = -ENOMEM;
|
|
return ret;
|
|
}
|
|
auxiliary_virt = this->auxiliary_virt;
|
|
auxiliary_phys = this->auxiliary_phys;
|
|
|
|
/* go! */
|
|
ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
|
|
read_page_end(this, buf, nfc_geo->payload_size,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
payload_virt, payload_phys);
|
|
if (ret) {
|
|
dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Loop over status bytes, accumulating ECC status. */
|
|
status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
|
|
|
|
read_page_swap_end(this, buf, nfc_geo->payload_size,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
payload_virt, payload_phys);
|
|
|
|
for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
|
|
if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
|
|
continue;
|
|
|
|
if (*status == STATUS_UNCORRECTABLE) {
|
|
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
|
|
u8 *eccbuf = this->raw_buffer;
|
|
int offset, bitoffset;
|
|
int eccbytes;
|
|
int flips;
|
|
|
|
/* Read ECC bytes into our internal raw_buffer */
|
|
offset = nfc_geo->metadata_size * 8;
|
|
offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
|
|
offset -= eccbits;
|
|
bitoffset = offset % 8;
|
|
eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
|
|
offset /= 8;
|
|
eccbytes -= offset;
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
|
|
chip->read_buf(mtd, eccbuf, eccbytes);
|
|
|
|
/*
|
|
* ECC data are not byte aligned and we may have
|
|
* in-band data in the first and last byte of
|
|
* eccbuf. Set non-eccbits to one so that
|
|
* nand_check_erased_ecc_chunk() does not count them
|
|
* as bitflips.
|
|
*/
|
|
if (bitoffset)
|
|
eccbuf[0] |= GENMASK(bitoffset - 1, 0);
|
|
|
|
bitoffset = (bitoffset + eccbits) % 8;
|
|
if (bitoffset)
|
|
eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
|
|
|
|
/*
|
|
* The ECC hardware has an uncorrectable ECC status
|
|
* code in case we have bitflips in an erased page. As
|
|
* nothing was written into this subpage the ECC is
|
|
* obviously wrong and we can not trust it. We assume
|
|
* at this point that we are reading an erased page and
|
|
* try to correct the bitflips in buffer up to
|
|
* ecc_strength bitflips. If this is a page with random
|
|
* data, we exceed this number of bitflips and have a
|
|
* ECC failure. Otherwise we use the corrected buffer.
|
|
*/
|
|
if (i == 0) {
|
|
/* The first block includes metadata */
|
|
flips = nand_check_erased_ecc_chunk(
|
|
buf + i * nfc_geo->ecc_chunk_size,
|
|
nfc_geo->ecc_chunk_size,
|
|
eccbuf, eccbytes,
|
|
auxiliary_virt,
|
|
nfc_geo->metadata_size,
|
|
nfc_geo->ecc_strength);
|
|
} else {
|
|
flips = nand_check_erased_ecc_chunk(
|
|
buf + i * nfc_geo->ecc_chunk_size,
|
|
nfc_geo->ecc_chunk_size,
|
|
eccbuf, eccbytes,
|
|
NULL, 0,
|
|
nfc_geo->ecc_strength);
|
|
}
|
|
|
|
if (flips > 0) {
|
|
max_bitflips = max_t(unsigned int, max_bitflips,
|
|
flips);
|
|
mtd->ecc_stats.corrected += flips;
|
|
continue;
|
|
}
|
|
|
|
mtd->ecc_stats.failed++;
|
|
continue;
|
|
}
|
|
|
|
mtd->ecc_stats.corrected += *status;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, *status);
|
|
}
|
|
|
|
/* handle the block mark swapping */
|
|
block_mark_swapping(this, buf, auxiliary_virt);
|
|
|
|
if (oob_required) {
|
|
/*
|
|
* It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
|
|
* for details about our policy for delivering the OOB.
|
|
*
|
|
* We fill the caller's buffer with set bits, and then copy the
|
|
* block mark to th caller's buffer. Note that, if block mark
|
|
* swapping was necessary, it has already been done, so we can
|
|
* rely on the first byte of the auxiliary buffer to contain
|
|
* the block mark.
|
|
*/
|
|
memset(chip->oob_poi, ~0, mtd->oobsize);
|
|
chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/* Fake a virtual small page for the subpage read */
|
|
static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint32_t offs, uint32_t len, uint8_t *buf, int page)
|
|
{
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
void __iomem *bch_regs = this->resources.bch_regs;
|
|
struct bch_geometry old_geo = this->bch_geometry;
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
int size = chip->ecc.size; /* ECC chunk size */
|
|
int meta, n, page_size;
|
|
u32 r1_old, r2_old, r1_new, r2_new;
|
|
unsigned int max_bitflips;
|
|
int first, last, marker_pos;
|
|
int ecc_parity_size;
|
|
int col = 0;
|
|
int old_swap_block_mark = this->swap_block_mark;
|
|
|
|
/* The size of ECC parity */
|
|
ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
|
|
|
|
/* Align it with the chunk size */
|
|
first = offs / size;
|
|
last = (offs + len - 1) / size;
|
|
|
|
if (this->swap_block_mark) {
|
|
/*
|
|
* Find the chunk which contains the Block Marker.
|
|
* If this chunk is in the range of [first, last],
|
|
* we have to read out the whole page.
|
|
* Why? since we had swapped the data at the position of Block
|
|
* Marker to the metadata which is bound with the chunk 0.
|
|
*/
|
|
marker_pos = geo->block_mark_byte_offset / size;
|
|
if (last >= marker_pos && first <= marker_pos) {
|
|
dev_dbg(this->dev,
|
|
"page:%d, first:%d, last:%d, marker at:%d\n",
|
|
page, first, last, marker_pos);
|
|
return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
|
|
}
|
|
}
|
|
|
|
meta = geo->metadata_size;
|
|
if (first) {
|
|
col = meta + (size + ecc_parity_size) * first;
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
|
|
|
|
meta = 0;
|
|
buf = buf + first * size;
|
|
}
|
|
|
|
/* Save the old environment */
|
|
r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
|
|
r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
|
|
|
|
/* change the BCH registers and bch_geometry{} */
|
|
n = last - first + 1;
|
|
page_size = meta + (size + ecc_parity_size) * n;
|
|
|
|
r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
|
|
BM_BCH_FLASH0LAYOUT0_META_SIZE);
|
|
r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
|
|
| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
|
|
writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
|
|
|
|
r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
|
|
r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
|
|
writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
|
|
|
|
geo->ecc_chunk_count = n;
|
|
geo->payload_size = n * size;
|
|
geo->page_size = page_size;
|
|
geo->auxiliary_status_offset = ALIGN(meta, 4);
|
|
|
|
dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
|
|
page, offs, len, col, first, n, page_size);
|
|
|
|
/* Read the subpage now */
|
|
this->swap_block_mark = false;
|
|
max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page);
|
|
|
|
/* Restore */
|
|
writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
|
|
writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
|
|
this->bch_geometry = old_geo;
|
|
this->swap_block_mark = old_swap_block_mark;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
const void *payload_virt;
|
|
dma_addr_t payload_phys;
|
|
const void *auxiliary_virt;
|
|
dma_addr_t auxiliary_phys;
|
|
int ret;
|
|
|
|
dev_dbg(this->dev, "ecc write page.\n");
|
|
if (this->swap_block_mark) {
|
|
/*
|
|
* If control arrives here, we're doing block mark swapping.
|
|
* Since we can't modify the caller's buffers, we must copy them
|
|
* into our own.
|
|
*/
|
|
memcpy(this->payload_virt, buf, mtd->writesize);
|
|
payload_virt = this->payload_virt;
|
|
payload_phys = this->payload_phys;
|
|
|
|
memcpy(this->auxiliary_virt, chip->oob_poi,
|
|
nfc_geo->auxiliary_size);
|
|
auxiliary_virt = this->auxiliary_virt;
|
|
auxiliary_phys = this->auxiliary_phys;
|
|
|
|
/* Handle block mark swapping. */
|
|
block_mark_swapping(this,
|
|
(void *)payload_virt, (void *)auxiliary_virt);
|
|
} else {
|
|
/*
|
|
* If control arrives here, we're not doing block mark swapping,
|
|
* so we can to try and use the caller's buffers.
|
|
*/
|
|
ret = send_page_prepare(this,
|
|
buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
&payload_virt, &payload_phys);
|
|
if (ret) {
|
|
dev_err(this->dev, "Inadequate payload DMA buffer\n");
|
|
return 0;
|
|
}
|
|
|
|
ret = send_page_prepare(this,
|
|
chip->oob_poi, mtd->oobsize,
|
|
this->auxiliary_virt, this->auxiliary_phys,
|
|
nfc_geo->auxiliary_size,
|
|
&auxiliary_virt, &auxiliary_phys);
|
|
if (ret) {
|
|
dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
|
|
goto exit_auxiliary;
|
|
}
|
|
}
|
|
|
|
/* Ask the NFC. */
|
|
ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
|
|
if (ret)
|
|
dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
|
|
|
|
if (!this->swap_block_mark) {
|
|
send_page_end(this, chip->oob_poi, mtd->oobsize,
|
|
this->auxiliary_virt, this->auxiliary_phys,
|
|
nfc_geo->auxiliary_size,
|
|
auxiliary_virt, auxiliary_phys);
|
|
exit_auxiliary:
|
|
send_page_end(this, buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
payload_virt, payload_phys);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* There are several places in this driver where we have to handle the OOB and
|
|
* block marks. This is the function where things are the most complicated, so
|
|
* this is where we try to explain it all. All the other places refer back to
|
|
* here.
|
|
*
|
|
* These are the rules, in order of decreasing importance:
|
|
*
|
|
* 1) Nothing the caller does can be allowed to imperil the block mark.
|
|
*
|
|
* 2) In read operations, the first byte of the OOB we return must reflect the
|
|
* true state of the block mark, no matter where that block mark appears in
|
|
* the physical page.
|
|
*
|
|
* 3) ECC-based read operations return an OOB full of set bits (since we never
|
|
* allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
|
|
* return).
|
|
*
|
|
* 4) "Raw" read operations return a direct view of the physical bytes in the
|
|
* page, using the conventional definition of which bytes are data and which
|
|
* are OOB. This gives the caller a way to see the actual, physical bytes
|
|
* in the page, without the distortions applied by our ECC engine.
|
|
*
|
|
*
|
|
* What we do for this specific read operation depends on two questions:
|
|
*
|
|
* 1) Are we doing a "raw" read, or an ECC-based read?
|
|
*
|
|
* 2) Are we using block mark swapping or transcription?
|
|
*
|
|
* There are four cases, illustrated by the following Karnaugh map:
|
|
*
|
|
* | Raw | ECC-based |
|
|
* -------------+-------------------------+-------------------------+
|
|
* | Read the conventional | |
|
|
* | OOB at the end of the | |
|
|
* Swapping | page and return it. It | |
|
|
* | contains exactly what | |
|
|
* | we want. | Read the block mark and |
|
|
* -------------+-------------------------+ return it in a buffer |
|
|
* | Read the conventional | full of set bits. |
|
|
* | OOB at the end of the | |
|
|
* | page and also the block | |
|
|
* Transcribing | mark in the metadata. | |
|
|
* | Copy the block mark | |
|
|
* | into the first byte of | |
|
|
* | the OOB. | |
|
|
* -------------+-------------------------+-------------------------+
|
|
*
|
|
* Note that we break rule #4 in the Transcribing/Raw case because we're not
|
|
* giving an accurate view of the actual, physical bytes in the page (we're
|
|
* overwriting the block mark). That's OK because it's more important to follow
|
|
* rule #2.
|
|
*
|
|
* It turns out that knowing whether we want an "ECC-based" or "raw" read is not
|
|
* easy. When reading a page, for example, the NAND Flash MTD code calls our
|
|
* ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
|
|
* ECC-based or raw view of the page is implicit in which function it calls
|
|
* (there is a similar pair of ECC-based/raw functions for writing).
|
|
*/
|
|
static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
|
|
dev_dbg(this->dev, "page number is %d\n", page);
|
|
/* clear the OOB buffer */
|
|
memset(chip->oob_poi, ~0, mtd->oobsize);
|
|
|
|
/* Read out the conventional OOB. */
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
|
|
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
/*
|
|
* Now, we want to make sure the block mark is correct. In the
|
|
* non-transcribing case (!GPMI_IS_MX23()), we already have it.
|
|
* Otherwise, we need to explicitly read it.
|
|
*/
|
|
if (GPMI_IS_MX23(this)) {
|
|
/* Read the block mark into the first byte of the OOB buffer. */
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
|
chip->oob_poi[0] = chip->read_byte(mtd);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_oob_region of = { };
|
|
int status = 0;
|
|
|
|
/* Do we have available oob area? */
|
|
mtd_ooblayout_free(mtd, 0, &of);
|
|
if (!of.length)
|
|
return -EPERM;
|
|
|
|
if (!nand_is_slc(chip))
|
|
return -EPERM;
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of.offset, page);
|
|
chip->write_buf(mtd, chip->oob_poi + of.offset, of.length);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
status = chip->waitfunc(mtd, chip);
|
|
return status & NAND_STATUS_FAIL ? -EIO : 0;
|
|
}
|
|
|
|
/*
|
|
* This function reads a NAND page without involving the ECC engine (no HW
|
|
* ECC correction).
|
|
* The tricky part in the GPMI/BCH controller is that it stores ECC bits
|
|
* inline (interleaved with payload DATA), and do not align data chunk on
|
|
* byte boundaries.
|
|
* We thus need to take care moving the payload data and ECC bits stored in the
|
|
* page into the provided buffers, which is why we're using gpmi_copy_bits.
|
|
*
|
|
* See set_geometry_by_ecc_info inline comments to have a full description
|
|
* of the layout used by the GPMI controller.
|
|
*/
|
|
static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
|
|
struct nand_chip *chip, uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
int eccsize = nfc_geo->ecc_chunk_size;
|
|
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
|
|
u8 *tmp_buf = this->raw_buffer;
|
|
size_t src_bit_off;
|
|
size_t oob_bit_off;
|
|
size_t oob_byte_off;
|
|
uint8_t *oob = chip->oob_poi;
|
|
int step;
|
|
|
|
chip->read_buf(mtd, tmp_buf,
|
|
mtd->writesize + mtd->oobsize);
|
|
|
|
/*
|
|
* If required, swap the bad block marker and the data stored in the
|
|
* metadata section, so that we don't wrongly consider a block as bad.
|
|
*
|
|
* See the layout description for a detailed explanation on why this
|
|
* is needed.
|
|
*/
|
|
if (this->swap_block_mark) {
|
|
u8 swap = tmp_buf[0];
|
|
|
|
tmp_buf[0] = tmp_buf[mtd->writesize];
|
|
tmp_buf[mtd->writesize] = swap;
|
|
}
|
|
|
|
/*
|
|
* Copy the metadata section into the oob buffer (this section is
|
|
* guaranteed to be aligned on a byte boundary).
|
|
*/
|
|
if (oob_required)
|
|
memcpy(oob, tmp_buf, nfc_geo->metadata_size);
|
|
|
|
oob_bit_off = nfc_geo->metadata_size * 8;
|
|
src_bit_off = oob_bit_off;
|
|
|
|
/* Extract interleaved payload data and ECC bits */
|
|
for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
|
|
if (buf)
|
|
gpmi_copy_bits(buf, step * eccsize * 8,
|
|
tmp_buf, src_bit_off,
|
|
eccsize * 8);
|
|
src_bit_off += eccsize * 8;
|
|
|
|
/* Align last ECC block to align a byte boundary */
|
|
if (step == nfc_geo->ecc_chunk_count - 1 &&
|
|
(oob_bit_off + eccbits) % 8)
|
|
eccbits += 8 - ((oob_bit_off + eccbits) % 8);
|
|
|
|
if (oob_required)
|
|
gpmi_copy_bits(oob, oob_bit_off,
|
|
tmp_buf, src_bit_off,
|
|
eccbits);
|
|
|
|
src_bit_off += eccbits;
|
|
oob_bit_off += eccbits;
|
|
}
|
|
|
|
if (oob_required) {
|
|
oob_byte_off = oob_bit_off / 8;
|
|
|
|
if (oob_byte_off < mtd->oobsize)
|
|
memcpy(oob + oob_byte_off,
|
|
tmp_buf + mtd->writesize + oob_byte_off,
|
|
mtd->oobsize - oob_byte_off);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function writes a NAND page without involving the ECC engine (no HW
|
|
* ECC generation).
|
|
* The tricky part in the GPMI/BCH controller is that it stores ECC bits
|
|
* inline (interleaved with payload DATA), and do not align data chunk on
|
|
* byte boundaries.
|
|
* We thus need to take care moving the OOB area at the right place in the
|
|
* final page, which is why we're using gpmi_copy_bits.
|
|
*
|
|
* See set_geometry_by_ecc_info inline comments to have a full description
|
|
* of the layout used by the GPMI controller.
|
|
*/
|
|
static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
int eccsize = nfc_geo->ecc_chunk_size;
|
|
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
|
|
u8 *tmp_buf = this->raw_buffer;
|
|
uint8_t *oob = chip->oob_poi;
|
|
size_t dst_bit_off;
|
|
size_t oob_bit_off;
|
|
size_t oob_byte_off;
|
|
int step;
|
|
|
|
/*
|
|
* Initialize all bits to 1 in case we don't have a buffer for the
|
|
* payload or oob data in order to leave unspecified bits of data
|
|
* to their initial state.
|
|
*/
|
|
if (!buf || !oob_required)
|
|
memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
|
|
|
|
/*
|
|
* First copy the metadata section (stored in oob buffer) at the
|
|
* beginning of the page, as imposed by the GPMI layout.
|
|
*/
|
|
memcpy(tmp_buf, oob, nfc_geo->metadata_size);
|
|
oob_bit_off = nfc_geo->metadata_size * 8;
|
|
dst_bit_off = oob_bit_off;
|
|
|
|
/* Interleave payload data and ECC bits */
|
|
for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
|
|
if (buf)
|
|
gpmi_copy_bits(tmp_buf, dst_bit_off,
|
|
buf, step * eccsize * 8, eccsize * 8);
|
|
dst_bit_off += eccsize * 8;
|
|
|
|
/* Align last ECC block to align a byte boundary */
|
|
if (step == nfc_geo->ecc_chunk_count - 1 &&
|
|
(oob_bit_off + eccbits) % 8)
|
|
eccbits += 8 - ((oob_bit_off + eccbits) % 8);
|
|
|
|
if (oob_required)
|
|
gpmi_copy_bits(tmp_buf, dst_bit_off,
|
|
oob, oob_bit_off, eccbits);
|
|
|
|
dst_bit_off += eccbits;
|
|
oob_bit_off += eccbits;
|
|
}
|
|
|
|
oob_byte_off = oob_bit_off / 8;
|
|
|
|
if (oob_required && oob_byte_off < mtd->oobsize)
|
|
memcpy(tmp_buf + mtd->writesize + oob_byte_off,
|
|
oob + oob_byte_off, mtd->oobsize - oob_byte_off);
|
|
|
|
/*
|
|
* If required, swap the bad block marker and the first byte of the
|
|
* metadata section, so that we don't modify the bad block marker.
|
|
*
|
|
* See the layout description for a detailed explanation on why this
|
|
* is needed.
|
|
*/
|
|
if (this->swap_block_mark) {
|
|
u8 swap = tmp_buf[0];
|
|
|
|
tmp_buf[0] = tmp_buf[mtd->writesize];
|
|
tmp_buf[mtd->writesize] = swap;
|
|
}
|
|
|
|
chip->write_buf(mtd, tmp_buf, mtd->writesize + mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
|
|
|
return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
|
|
}
|
|
|
|
static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);
|
|
|
|
return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
|
|
}
|
|
|
|
static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct gpmi_nand_data *this = nand_get_controller_data(chip);
|
|
int ret = 0;
|
|
uint8_t *block_mark;
|
|
int column, page, status, chipnr;
|
|
|
|
chipnr = (int)(ofs >> chip->chip_shift);
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
|
|
|
|
/* Write the block mark. */
|
|
block_mark = this->data_buffer_dma;
|
|
block_mark[0] = 0; /* bad block marker */
|
|
|
|
/* Shift to get page */
|
|
page = (int)(ofs >> chip->page_shift);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
|
|
chip->write_buf(mtd, block_mark, 1);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
ret = -EIO;
|
|
|
|
chip->select_chip(mtd, -1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nand_boot_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
struct boot_rom_geometry *geometry = &this->rom_geometry;
|
|
|
|
/*
|
|
* Set the boot block stride size.
|
|
*
|
|
* In principle, we should be reading this from the OTP bits, since
|
|
* that's where the ROM is going to get it. In fact, we don't have any
|
|
* way to read the OTP bits, so we go with the default and hope for the
|
|
* best.
|
|
*/
|
|
geometry->stride_size_in_pages = 64;
|
|
|
|
/*
|
|
* Set the search area stride exponent.
|
|
*
|
|
* In principle, we should be reading this from the OTP bits, since
|
|
* that's where the ROM is going to get it. In fact, we don't have any
|
|
* way to read the OTP bits, so we go with the default and hope for the
|
|
* best.
|
|
*/
|
|
geometry->search_area_stride_exponent = 2;
|
|
return 0;
|
|
}
|
|
|
|
static const char *fingerprint = "STMP";
|
|
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
|
|
{
|
|
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
|
|
struct device *dev = this->dev;
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int search_area_size_in_strides;
|
|
unsigned int stride;
|
|
unsigned int page;
|
|
uint8_t *buffer = chip->buffers->databuf;
|
|
int saved_chip_number;
|
|
int found_an_ncb_fingerprint = false;
|
|
|
|
/* Compute the number of strides in a search area. */
|
|
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
|
|
|
|
saved_chip_number = this->current_chip;
|
|
chip->select_chip(mtd, 0);
|
|
|
|
/*
|
|
* Loop through the first search area, looking for the NCB fingerprint.
|
|
*/
|
|
dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
|
|
|
|
for (stride = 0; stride < search_area_size_in_strides; stride++) {
|
|
/* Compute the page addresses. */
|
|
page = stride * rom_geo->stride_size_in_pages;
|
|
|
|
dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
|
|
|
|
/*
|
|
* Read the NCB fingerprint. The fingerprint is four bytes long
|
|
* and starts in the 12th byte of the page.
|
|
*/
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
|
|
chip->read_buf(mtd, buffer, strlen(fingerprint));
|
|
|
|
/* Look for the fingerprint. */
|
|
if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
|
|
found_an_ncb_fingerprint = true;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
chip->select_chip(mtd, saved_chip_number);
|
|
|
|
if (found_an_ncb_fingerprint)
|
|
dev_dbg(dev, "\tFound a fingerprint\n");
|
|
else
|
|
dev_dbg(dev, "\tNo fingerprint found\n");
|
|
return found_an_ncb_fingerprint;
|
|
}
|
|
|
|
/* Writes a transcription stamp. */
|
|
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
|
|
{
|
|
struct device *dev = this->dev;
|
|
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int block_size_in_pages;
|
|
unsigned int search_area_size_in_strides;
|
|
unsigned int search_area_size_in_pages;
|
|
unsigned int search_area_size_in_blocks;
|
|
unsigned int block;
|
|
unsigned int stride;
|
|
unsigned int page;
|
|
uint8_t *buffer = chip->buffers->databuf;
|
|
int saved_chip_number;
|
|
int status;
|
|
|
|
/* Compute the search area geometry. */
|
|
block_size_in_pages = mtd->erasesize / mtd->writesize;
|
|
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
|
|
search_area_size_in_pages = search_area_size_in_strides *
|
|
rom_geo->stride_size_in_pages;
|
|
search_area_size_in_blocks =
|
|
(search_area_size_in_pages + (block_size_in_pages - 1)) /
|
|
block_size_in_pages;
|
|
|
|
dev_dbg(dev, "Search Area Geometry :\n");
|
|
dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
|
|
dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
|
|
dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
|
|
|
|
/* Select chip 0. */
|
|
saved_chip_number = this->current_chip;
|
|
chip->select_chip(mtd, 0);
|
|
|
|
/* Loop over blocks in the first search area, erasing them. */
|
|
dev_dbg(dev, "Erasing the search area...\n");
|
|
|
|
for (block = 0; block < search_area_size_in_blocks; block++) {
|
|
/* Compute the page address. */
|
|
page = block * block_size_in_pages;
|
|
|
|
/* Erase this block. */
|
|
dev_dbg(dev, "\tErasing block 0x%x\n", block);
|
|
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
|
|
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
|
|
|
|
/* Wait for the erase to finish. */
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
dev_err(dev, "[%s] Erase failed.\n", __func__);
|
|
}
|
|
|
|
/* Write the NCB fingerprint into the page buffer. */
|
|
memset(buffer, ~0, mtd->writesize);
|
|
memcpy(buffer + 12, fingerprint, strlen(fingerprint));
|
|
|
|
/* Loop through the first search area, writing NCB fingerprints. */
|
|
dev_dbg(dev, "Writing NCB fingerprints...\n");
|
|
for (stride = 0; stride < search_area_size_in_strides; stride++) {
|
|
/* Compute the page addresses. */
|
|
page = stride * rom_geo->stride_size_in_pages;
|
|
|
|
/* Write the first page of the current stride. */
|
|
dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
|
|
chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
/* Wait for the write to finish. */
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
dev_err(dev, "[%s] Write failed.\n", __func__);
|
|
}
|
|
|
|
/* Deselect chip 0. */
|
|
chip->select_chip(mtd, saved_chip_number);
|
|
return 0;
|
|
}
|
|
|
|
static int mx23_boot_init(struct gpmi_nand_data *this)
|
|
{
|
|
struct device *dev = this->dev;
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int block_count;
|
|
unsigned int block;
|
|
int chipnr;
|
|
int page;
|
|
loff_t byte;
|
|
uint8_t block_mark;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If control arrives here, we can't use block mark swapping, which
|
|
* means we're forced to use transcription. First, scan for the
|
|
* transcription stamp. If we find it, then we don't have to do
|
|
* anything -- the block marks are already transcribed.
|
|
*/
|
|
if (mx23_check_transcription_stamp(this))
|
|
return 0;
|
|
|
|
/*
|
|
* If control arrives here, we couldn't find a transcription stamp, so
|
|
* so we presume the block marks are in the conventional location.
|
|
*/
|
|
dev_dbg(dev, "Transcribing bad block marks...\n");
|
|
|
|
/* Compute the number of blocks in the entire medium. */
|
|
block_count = chip->chipsize >> chip->phys_erase_shift;
|
|
|
|
/*
|
|
* Loop over all the blocks in the medium, transcribing block marks as
|
|
* we go.
|
|
*/
|
|
for (block = 0; block < block_count; block++) {
|
|
/*
|
|
* Compute the chip, page and byte addresses for this block's
|
|
* conventional mark.
|
|
*/
|
|
chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
|
|
page = block << (chip->phys_erase_shift - chip->page_shift);
|
|
byte = block << chip->phys_erase_shift;
|
|
|
|
/* Send the command to read the conventional block mark. */
|
|
chip->select_chip(mtd, chipnr);
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
|
|
block_mark = chip->read_byte(mtd);
|
|
chip->select_chip(mtd, -1);
|
|
|
|
/*
|
|
* Check if the block is marked bad. If so, we need to mark it
|
|
* again, but this time the result will be a mark in the
|
|
* location where we transcribe block marks.
|
|
*/
|
|
if (block_mark != 0xff) {
|
|
dev_dbg(dev, "Transcribing mark in block %u\n", block);
|
|
ret = chip->block_markbad(mtd, byte);
|
|
if (ret)
|
|
dev_err(dev,
|
|
"Failed to mark block bad with ret %d\n",
|
|
ret);
|
|
}
|
|
}
|
|
|
|
/* Write the stamp that indicates we've transcribed the block marks. */
|
|
mx23_write_transcription_stamp(this);
|
|
return 0;
|
|
}
|
|
|
|
static int nand_boot_init(struct gpmi_nand_data *this)
|
|
{
|
|
nand_boot_set_geometry(this);
|
|
|
|
/* This is ROM arch-specific initilization before the BBT scanning. */
|
|
if (GPMI_IS_MX23(this))
|
|
return mx23_boot_init(this);
|
|
return 0;
|
|
}
|
|
|
|
static int gpmi_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
/* Free the temporary DMA memory for reading ID. */
|
|
gpmi_free_dma_buffer(this);
|
|
|
|
/* Set up the NFC geometry which is used by BCH. */
|
|
ret = bch_set_geometry(this);
|
|
if (ret) {
|
|
dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Alloc the new DMA buffers according to the pagesize and oobsize */
|
|
return gpmi_alloc_dma_buffer(this);
|
|
}
|
|
|
|
static int gpmi_init_last(struct gpmi_nand_data *this)
|
|
{
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
struct bch_geometry *bch_geo = &this->bch_geometry;
|
|
int ret;
|
|
|
|
/* Set up the medium geometry */
|
|
ret = gpmi_set_geometry(this);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Init the nand_ecc_ctrl{} */
|
|
ecc->read_page = gpmi_ecc_read_page;
|
|
ecc->write_page = gpmi_ecc_write_page;
|
|
ecc->read_oob = gpmi_ecc_read_oob;
|
|
ecc->write_oob = gpmi_ecc_write_oob;
|
|
ecc->read_page_raw = gpmi_ecc_read_page_raw;
|
|
ecc->write_page_raw = gpmi_ecc_write_page_raw;
|
|
ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
|
|
ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
|
|
ecc->mode = NAND_ECC_HW;
|
|
ecc->size = bch_geo->ecc_chunk_size;
|
|
ecc->strength = bch_geo->ecc_strength;
|
|
mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
|
|
|
|
/*
|
|
* We only enable the subpage read when:
|
|
* (1) the chip is imx6, and
|
|
* (2) the size of the ECC parity is byte aligned.
|
|
*/
|
|
if (GPMI_IS_MX6(this) &&
|
|
((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
|
|
ecc->read_subpage = gpmi_ecc_read_subpage;
|
|
chip->options |= NAND_SUBPAGE_READ;
|
|
}
|
|
|
|
/*
|
|
* Can we enable the extra features? such as EDO or Sync mode.
|
|
*
|
|
* We do not check the return value now. That's means if we fail in
|
|
* enable the extra features, we still can run in the normal way.
|
|
*/
|
|
gpmi_extra_init(this);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gpmi_nand_init(struct gpmi_nand_data *this)
|
|
{
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
/* init current chip */
|
|
this->current_chip = -1;
|
|
|
|
/* init the MTD data structures */
|
|
mtd->name = "gpmi-nand";
|
|
mtd->dev.parent = this->dev;
|
|
|
|
/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
|
|
nand_set_controller_data(chip, this);
|
|
nand_set_flash_node(chip, this->pdev->dev.of_node);
|
|
chip->select_chip = gpmi_select_chip;
|
|
chip->cmd_ctrl = gpmi_cmd_ctrl;
|
|
chip->dev_ready = gpmi_dev_ready;
|
|
chip->read_byte = gpmi_read_byte;
|
|
chip->read_buf = gpmi_read_buf;
|
|
chip->write_buf = gpmi_write_buf;
|
|
chip->badblock_pattern = &gpmi_bbt_descr;
|
|
chip->block_markbad = gpmi_block_markbad;
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
|
|
this->swap_block_mark = !GPMI_IS_MX23(this);
|
|
|
|
/*
|
|
* Allocate a temporary DMA buffer for reading ID in the
|
|
* nand_scan_ident().
|
|
*/
|
|
this->bch_geometry.payload_size = 1024;
|
|
this->bch_geometry.auxiliary_size = 128;
|
|
ret = gpmi_alloc_dma_buffer(this);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
if (chip->bbt_options & NAND_BBT_USE_FLASH) {
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
|
|
if (of_property_read_bool(this->dev->of_node,
|
|
"fsl,no-blockmark-swap"))
|
|
this->swap_block_mark = false;
|
|
}
|
|
dev_dbg(this->dev, "Blockmark swapping %sabled\n",
|
|
this->swap_block_mark ? "en" : "dis");
|
|
|
|
ret = gpmi_init_last(this);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
chip->options |= NAND_SKIP_BBTSCAN;
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
ret = nand_boot_init(this);
|
|
if (ret)
|
|
goto err_nand_cleanup;
|
|
ret = chip->scan_bbt(mtd);
|
|
if (ret)
|
|
goto err_nand_cleanup;
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret)
|
|
goto err_nand_cleanup;
|
|
return 0;
|
|
|
|
err_nand_cleanup:
|
|
nand_cleanup(chip);
|
|
err_out:
|
|
gpmi_free_dma_buffer(this);
|
|
return ret;
|
|
}
|
|
|
|
static const struct of_device_id gpmi_nand_id_table[] = {
|
|
{
|
|
.compatible = "fsl,imx23-gpmi-nand",
|
|
.data = &gpmi_devdata_imx23,
|
|
}, {
|
|
.compatible = "fsl,imx28-gpmi-nand",
|
|
.data = &gpmi_devdata_imx28,
|
|
}, {
|
|
.compatible = "fsl,imx6q-gpmi-nand",
|
|
.data = &gpmi_devdata_imx6q,
|
|
}, {
|
|
.compatible = "fsl,imx6sx-gpmi-nand",
|
|
.data = &gpmi_devdata_imx6sx,
|
|
}, {
|
|
.compatible = "fsl,imx7d-gpmi-nand",
|
|
.data = &gpmi_devdata_imx7d,
|
|
}, {}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
|
|
|
|
static int gpmi_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct gpmi_nand_data *this;
|
|
const struct of_device_id *of_id;
|
|
int ret;
|
|
|
|
this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
|
|
if (!this)
|
|
return -ENOMEM;
|
|
|
|
of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
|
|
if (of_id) {
|
|
this->devdata = of_id->data;
|
|
} else {
|
|
dev_err(&pdev->dev, "Failed to find the right device id.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, this);
|
|
this->pdev = pdev;
|
|
this->dev = &pdev->dev;
|
|
|
|
ret = acquire_resources(this);
|
|
if (ret)
|
|
goto exit_acquire_resources;
|
|
|
|
ret = init_hardware(this);
|
|
if (ret)
|
|
goto exit_nfc_init;
|
|
|
|
ret = gpmi_nand_init(this);
|
|
if (ret)
|
|
goto exit_nfc_init;
|
|
|
|
dev_info(this->dev, "driver registered.\n");
|
|
|
|
return 0;
|
|
|
|
exit_nfc_init:
|
|
release_resources(this);
|
|
exit_acquire_resources:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gpmi_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct gpmi_nand_data *this = platform_get_drvdata(pdev);
|
|
|
|
nand_release(nand_to_mtd(&this->nand));
|
|
gpmi_free_dma_buffer(this);
|
|
release_resources(this);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int gpmi_pm_suspend(struct device *dev)
|
|
{
|
|
struct gpmi_nand_data *this = dev_get_drvdata(dev);
|
|
|
|
release_dma_channels(this);
|
|
return 0;
|
|
}
|
|
|
|
static int gpmi_pm_resume(struct device *dev)
|
|
{
|
|
struct gpmi_nand_data *this = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = acquire_dma_channels(this);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* re-init the GPMI registers */
|
|
this->flags &= ~GPMI_TIMING_INIT_OK;
|
|
ret = gpmi_init(this);
|
|
if (ret) {
|
|
dev_err(this->dev, "Error setting GPMI : %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* re-init the BCH registers */
|
|
ret = bch_set_geometry(this);
|
|
if (ret) {
|
|
dev_err(this->dev, "Error setting BCH : %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* re-init others */
|
|
gpmi_extra_init(this);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static const struct dev_pm_ops gpmi_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
|
|
};
|
|
|
|
static struct platform_driver gpmi_nand_driver = {
|
|
.driver = {
|
|
.name = "gpmi-nand",
|
|
.pm = &gpmi_pm_ops,
|
|
.of_match_table = gpmi_nand_id_table,
|
|
},
|
|
.probe = gpmi_nand_probe,
|
|
.remove = gpmi_nand_remove,
|
|
};
|
|
module_platform_driver(gpmi_nand_driver);
|
|
|
|
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
|
|
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
|
|
MODULE_LICENSE("GPL");
|