ubuntu-linux-kernel/drivers/gpu/drm/vc4/vc4_dsi.c

1717 lines
50 KiB
C

/*
* Copyright (C) 2016 Broadcom
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* DOC: VC4 DSI0/DSI1 module
*
* BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
* single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
* controller.
*
* Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
* while the compute module brings both DSI0 and DSI1 out.
*
* This driver has been tested for DSI1 video-mode display only
* currently, with most of the information necessary for DSI0
* hopefully present.
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/completion.h>
#include <linux/component.h>
#include <linux/dmaengine.h>
#include <linux/i2c.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
#define DSI_CMD_FIFO_DEPTH 16
#define DSI_PIX_FIFO_DEPTH 256
#define DSI_PIX_FIFO_WIDTH 4
#define DSI0_CTRL 0x00
/* Command packet control. */
#define DSI0_TXPKT1C 0x04 /* AKA PKTC */
#define DSI1_TXPKT1C 0x04
# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
/* Primary display where cmdfifo provides part of the payload and
* pixelvalve the rest.
*/
# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
/* Secondary display where cmdfifo provides part of the payload and
* pixfifo the rest.
*/
# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
/* Command only. Uses TXPKT1H and DISPLAY_NO */
# define DSI_TXPKT1C_CMD_CTRL_TX 0
/* Command with BTA for either ack or read data. */
# define DSI_TXPKT1C_CMD_CTRL_RX 1
/* Trigger according to TRIG_CMD */
# define DSI_TXPKT1C_CMD_CTRL_TRIG 2
/* BTA alone for getting error status after a command, or a TE trigger
* without a previous command.
*/
# define DSI_TXPKT1C_CMD_CTRL_BTA 3
# define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
# define DSI_TXPKT1C_CMD_TE_EN BIT(1)
# define DSI_TXPKT1C_CMD_EN BIT(0)
/* Command packet header. */
#define DSI0_TXPKT1H 0x08 /* AKA PKTH */
#define DSI1_TXPKT1H 0x08
# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
# define DSI_TXPKT1H_BC_PARAM_SHIFT 8
# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
# define DSI_TXPKT1H_BC_DT_SHIFT 0
#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
#define DSI1_RXPKT1H 0x14
# define DSI_RXPKT1H_CRC_ERR BIT(31)
# define DSI_RXPKT1H_DET_ERR BIT(30)
# define DSI_RXPKT1H_ECC_ERR BIT(29)
# define DSI_RXPKT1H_COR_ERR BIT(28)
# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
# define DSI_RXPKT1H_SHORT_1_SHIFT 16
# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
# define DSI_RXPKT1H_SHORT_0_SHIFT 8
# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
#define DSI1_RXPKT2H 0x18
# define DSI_RXPKT1H_DET_ERR BIT(30)
# define DSI_RXPKT1H_ECC_ERR BIT(29)
# define DSI_RXPKT1H_COR_ERR BIT(28)
# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
# define DSI_RXPKT1H_DT_SHIFT 0
#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
#define DSI1_TXPKT_CMD_FIFO 0x1c
#define DSI0_DISP0_CTRL 0x18
# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
# define DSI_DISP0_LP_STOP_DISABLE 0
# define DSI_DISP0_LP_STOP_PERLINE 1
# define DSI_DISP0_LP_STOP_PERFRAME 2
/* Transmit RGB pixels and null packets only during HACTIVE, instead
* of going to LP-STOP.
*/
# define DSI_DISP_HACTIVE_NULL BIT(10)
/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
# define DSI_DISP_VBLP_CTRL BIT(9)
/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
# define DSI_DISP_HFP_CTRL BIT(8)
/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
# define DSI_DISP_HBP_CTRL BIT(7)
# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
# define DSI_DISP0_CHANNEL_SHIFT 5
/* Enables end events for HSYNC/VSYNC, not just start events. */
# define DSI_DISP0_ST_END BIT(4)
# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
# define DSI_DISP0_PFORMAT_SHIFT 2
# define DSI_PFORMAT_RGB565 0
# define DSI_PFORMAT_RGB666_PACKED 1
# define DSI_PFORMAT_RGB666 2
# define DSI_PFORMAT_RGB888 3
/* Default is VIDEO mode. */
# define DSI_DISP0_COMMAND_MODE BIT(1)
# define DSI_DISP0_ENABLE BIT(0)
#define DSI0_DISP1_CTRL 0x1c
#define DSI1_DISP1_CTRL 0x2c
/* Format of the data written to TXPKT_PIX_FIFO. */
# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
# define DSI_DISP1_PFORMAT_SHIFT 1
# define DSI_DISP1_PFORMAT_16BIT 0
# define DSI_DISP1_PFORMAT_24BIT 1
# define DSI_DISP1_PFORMAT_32BIT_LE 2
# define DSI_DISP1_PFORMAT_32BIT_BE 3
/* DISP1 is always command mode. */
# define DSI_DISP1_ENABLE BIT(0)
#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
#define DSI0_INT_STAT 0x24
#define DSI0_INT_EN 0x28
# define DSI1_INT_PHY_D3_ULPS BIT(30)
# define DSI1_INT_PHY_D3_STOP BIT(29)
# define DSI1_INT_PHY_D2_ULPS BIT(28)
# define DSI1_INT_PHY_D2_STOP BIT(27)
# define DSI1_INT_PHY_D1_ULPS BIT(26)
# define DSI1_INT_PHY_D1_STOP BIT(25)
# define DSI1_INT_PHY_D0_ULPS BIT(24)
# define DSI1_INT_PHY_D0_STOP BIT(23)
# define DSI1_INT_FIFO_ERR BIT(22)
# define DSI1_INT_PHY_DIR_RTF BIT(21)
# define DSI1_INT_PHY_RXLPDT BIT(20)
# define DSI1_INT_PHY_RXTRIG BIT(19)
# define DSI1_INT_PHY_D0_LPDT BIT(18)
# define DSI1_INT_PHY_DIR_FTR BIT(17)
/* Signaled when the clock lane enters the given state. */
# define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
# define DSI1_INT_PHY_CLOCK_HS BIT(15)
# define DSI1_INT_PHY_CLOCK_STOP BIT(14)
/* Signaled on timeouts */
# define DSI1_INT_PR_TO BIT(13)
# define DSI1_INT_TA_TO BIT(12)
# define DSI1_INT_LPRX_TO BIT(11)
# define DSI1_INT_HSTX_TO BIT(10)
/* Contention on a line when trying to drive the line low */
# define DSI1_INT_ERR_CONT_LP1 BIT(9)
# define DSI1_INT_ERR_CONT_LP0 BIT(8)
/* Control error: incorrect line state sequence on data lane 0. */
# define DSI1_INT_ERR_CONTROL BIT(7)
/* LPDT synchronization error (bits received not a multiple of 8. */
# define DSI1_INT_ERR_SYNC_ESC BIT(6)
/* Signaled after receiving an error packet from the display in
* response to a read.
*/
# define DSI1_INT_RXPKT2 BIT(5)
/* Signaled after receiving a packet. The header and optional short
* response will be in RXPKT1H, and a long response will be in the
* RXPKT_FIFO.
*/
# define DSI1_INT_RXPKT1 BIT(4)
# define DSI1_INT_TXPKT2_DONE BIT(3)
# define DSI1_INT_TXPKT2_END BIT(2)
/* Signaled after all repeats of TXPKT1 are transferred. */
# define DSI1_INT_TXPKT1_DONE BIT(1)
/* Signaled after each TXPKT1 repeat is scheduled. */
# define DSI1_INT_TXPKT1_END BIT(0)
#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
DSI1_INT_ERR_CONTROL | \
DSI1_INT_ERR_CONT_LP0 | \
DSI1_INT_ERR_CONT_LP1 | \
DSI1_INT_HSTX_TO | \
DSI1_INT_LPRX_TO | \
DSI1_INT_TA_TO | \
DSI1_INT_PR_TO)
#define DSI0_STAT 0x2c
#define DSI0_HSTX_TO_CNT 0x30
#define DSI0_LPRX_TO_CNT 0x34
#define DSI0_TA_TO_CNT 0x38
#define DSI0_PR_TO_CNT 0x3c
#define DSI0_PHYC 0x40
# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
# define DSI1_PHYC_CLANE_ULPS BIT(17)
# define DSI1_PHYC_CLANE_ENABLE BIT(16)
# define DSI_PHYC_DLANE3_ULPS BIT(13)
# define DSI_PHYC_DLANE3_ENABLE BIT(12)
# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
# define DSI0_PHYC_CLANE_ULPS BIT(9)
# define DSI_PHYC_DLANE2_ULPS BIT(9)
# define DSI0_PHYC_CLANE_ENABLE BIT(8)
# define DSI_PHYC_DLANE2_ENABLE BIT(8)
# define DSI_PHYC_DLANE1_ULPS BIT(5)
# define DSI_PHYC_DLANE1_ENABLE BIT(4)
# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
# define DSI_PHYC_DLANE0_ULPS BIT(1)
# define DSI_PHYC_DLANE0_ENABLE BIT(0)
#define DSI0_HS_CLT0 0x44
#define DSI0_HS_CLT1 0x48
#define DSI0_HS_CLT2 0x4c
#define DSI0_HS_DLT3 0x50
#define DSI0_HS_DLT4 0x54
#define DSI0_HS_DLT5 0x58
#define DSI0_HS_DLT6 0x5c
#define DSI0_HS_DLT7 0x60
#define DSI0_PHY_AFEC0 0x64
# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
# define DSI1_PHY_AFEC0_RESET BIT(13)
# define DSI1_PHY_AFEC0_PD BIT(12)
# define DSI0_PHY_AFEC0_RESET BIT(11)
# define DSI1_PHY_AFEC0_PD_BG BIT(11)
# define DSI0_PHY_AFEC0_PD BIT(10)
# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
# define DSI0_PHY_AFEC0_PD_BG BIT(9)
# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
#define DSI0_PHY_AFEC1 0x68
# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
#define DSI0_TST_SEL 0x6c
#define DSI0_TST_MON 0x70
#define DSI0_ID 0x74
# define DSI_ID_VALUE 0x00647369
#define DSI1_CTRL 0x00
# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
# define DSI_CTRL_HS_CLKC_SHIFT 14
# define DSI_CTRL_HS_CLKC_BYTE 0
# define DSI_CTRL_HS_CLKC_DDR2 1
# define DSI_CTRL_HS_CLKC_DDR 2
# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
# define DSI_CTRL_SOFT_RESET_CFG BIT(10)
# define DSI_CTRL_CAL_BYTE BIT(9)
# define DSI_CTRL_INV_BYTE BIT(8)
# define DSI_CTRL_CLR_LDF BIT(7)
# define DSI0_CTRL_CLR_PBCF BIT(6)
# define DSI1_CTRL_CLR_RXF BIT(6)
# define DSI0_CTRL_CLR_CPBCF BIT(5)
# define DSI1_CTRL_CLR_PDF BIT(5)
# define DSI0_CTRL_CLR_PDF BIT(4)
# define DSI1_CTRL_CLR_CDF BIT(4)
# define DSI0_CTRL_CLR_CDF BIT(3)
# define DSI0_CTRL_CTRL2 BIT(2)
# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
# define DSI0_CTRL_CTRL1 BIT(1)
# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
# define DSI0_CTRL_CTRL0 BIT(0)
# define DSI1_CTRL_EN BIT(0)
# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
DSI0_CTRL_CLR_PBCF | \
DSI0_CTRL_CLR_CPBCF | \
DSI0_CTRL_CLR_PDF | \
DSI0_CTRL_CLR_CDF)
# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
DSI1_CTRL_CLR_RXF | \
DSI1_CTRL_CLR_PDF | \
DSI1_CTRL_CLR_CDF)
#define DSI1_TXPKT2C 0x0c
#define DSI1_TXPKT2H 0x10
#define DSI1_TXPKT_PIX_FIFO 0x20
#define DSI1_RXPKT_FIFO 0x24
#define DSI1_DISP0_CTRL 0x28
#define DSI1_INT_STAT 0x30
#define DSI1_INT_EN 0x34
/* State reporting bits. These mostly behave like INT_STAT, where
* writing a 1 clears the bit.
*/
#define DSI1_STAT 0x38
# define DSI1_STAT_PHY_D3_ULPS BIT(31)
# define DSI1_STAT_PHY_D3_STOP BIT(30)
# define DSI1_STAT_PHY_D2_ULPS BIT(29)
# define DSI1_STAT_PHY_D2_STOP BIT(28)
# define DSI1_STAT_PHY_D1_ULPS BIT(27)
# define DSI1_STAT_PHY_D1_STOP BIT(26)
# define DSI1_STAT_PHY_D0_ULPS BIT(25)
# define DSI1_STAT_PHY_D0_STOP BIT(24)
# define DSI1_STAT_FIFO_ERR BIT(23)
# define DSI1_STAT_PHY_RXLPDT BIT(22)
# define DSI1_STAT_PHY_RXTRIG BIT(21)
# define DSI1_STAT_PHY_D0_LPDT BIT(20)
/* Set when in forward direction */
# define DSI1_STAT_PHY_DIR BIT(19)
# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
# define DSI1_STAT_PHY_CLOCK_HS BIT(17)
# define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
# define DSI1_STAT_PR_TO BIT(15)
# define DSI1_STAT_TA_TO BIT(14)
# define DSI1_STAT_LPRX_TO BIT(13)
# define DSI1_STAT_HSTX_TO BIT(12)
# define DSI1_STAT_ERR_CONT_LP1 BIT(11)
# define DSI1_STAT_ERR_CONT_LP0 BIT(10)
# define DSI1_STAT_ERR_CONTROL BIT(9)
# define DSI1_STAT_ERR_SYNC_ESC BIT(8)
# define DSI1_STAT_RXPKT2 BIT(7)
# define DSI1_STAT_RXPKT1 BIT(6)
# define DSI1_STAT_TXPKT2_BUSY BIT(5)
# define DSI1_STAT_TXPKT2_DONE BIT(4)
# define DSI1_STAT_TXPKT2_END BIT(3)
# define DSI1_STAT_TXPKT1_BUSY BIT(2)
# define DSI1_STAT_TXPKT1_DONE BIT(1)
# define DSI1_STAT_TXPKT1_END BIT(0)
#define DSI1_HSTX_TO_CNT 0x3c
#define DSI1_LPRX_TO_CNT 0x40
#define DSI1_TA_TO_CNT 0x44
#define DSI1_PR_TO_CNT 0x48
#define DSI1_PHYC 0x4c
#define DSI1_HS_CLT0 0x50
# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
# define DSI_HS_CLT0_CZERO_SHIFT 18
# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
# define DSI_HS_CLT0_CPRE_SHIFT 9
# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
# define DSI_HS_CLT0_CPREP_SHIFT 0
#define DSI1_HS_CLT1 0x54
# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
# define DSI_HS_CLT1_CTRAIL_SHIFT 9
# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
# define DSI_HS_CLT1_CPOST_SHIFT 0
#define DSI1_HS_CLT2 0x58
# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
# define DSI_HS_CLT2_WUP_SHIFT 0
#define DSI1_HS_DLT3 0x5c
# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
# define DSI_HS_DLT3_EXIT_SHIFT 18
# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
# define DSI_HS_DLT3_ZERO_SHIFT 9
# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
# define DSI_HS_DLT3_PRE_SHIFT 0
#define DSI1_HS_DLT4 0x60
# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
# define DSI_HS_DLT4_ANLAT_SHIFT 18
# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
# define DSI_HS_DLT4_TRAIL_SHIFT 9
# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
# define DSI_HS_DLT4_LPX_SHIFT 0
#define DSI1_HS_DLT5 0x64
# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
# define DSI_HS_DLT5_INIT_SHIFT 0
#define DSI1_HS_DLT6 0x68
# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
# define DSI_HS_DLT6_TA_GET_SHIFT 24
# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
# define DSI_HS_DLT6_TA_SURE_SHIFT 16
# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
# define DSI_HS_DLT6_TA_GO_SHIFT 8
# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
# define DSI_HS_DLT6_LP_LPX_SHIFT 0
#define DSI1_HS_DLT7 0x6c
# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
# define DSI_HS_DLT7_LP_WUP_SHIFT 0
#define DSI1_PHY_AFEC0 0x70
#define DSI1_PHY_AFEC1 0x74
# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
#define DSI1_TST_SEL 0x78
#define DSI1_TST_MON 0x7c
#define DSI1_PHY_TST1 0x80
#define DSI1_PHY_TST2 0x84
#define DSI1_PHY_FIFO_STAT 0x88
/* Actually, all registers in the range that aren't otherwise claimed
* will return the ID.
*/
#define DSI1_ID 0x8c
/* General DSI hardware state. */
struct vc4_dsi {
struct platform_device *pdev;
struct mipi_dsi_host dsi_host;
struct drm_encoder *encoder;
struct drm_bridge *bridge;
void __iomem *regs;
struct dma_chan *reg_dma_chan;
dma_addr_t reg_dma_paddr;
u32 *reg_dma_mem;
dma_addr_t reg_paddr;
/* Whether we're on bcm2835's DSI0 or DSI1. */
int port;
/* DSI channel for the panel we're connected to. */
u32 channel;
u32 lanes;
u32 format;
u32 divider;
u32 mode_flags;
/* Input clock from CPRMAN to the digital PHY, for the DSI
* escape clock.
*/
struct clk *escape_clock;
/* Input clock to the analog PHY, used to generate the DSI bit
* clock.
*/
struct clk *pll_phy_clock;
/* HS Clocks generated within the DSI analog PHY. */
struct clk_fixed_factor phy_clocks[3];
struct clk_hw_onecell_data *clk_onecell;
/* Pixel clock output to the pixelvalve, generated from the HS
* clock.
*/
struct clk *pixel_clock;
struct completion xfer_completion;
int xfer_result;
};
#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
static inline void
dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
{
struct dma_chan *chan = dsi->reg_dma_chan;
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
int ret;
/* DSI0 should be able to write normally. */
if (!chan) {
writel(val, dsi->regs + offset);
return;
}
*dsi->reg_dma_mem = val;
tx = chan->device->device_prep_dma_memcpy(chan,
dsi->reg_paddr + offset,
dsi->reg_dma_paddr,
4, 0);
if (!tx) {
DRM_ERROR("Failed to set up DMA register write\n");
return;
}
cookie = tx->tx_submit(tx);
ret = dma_submit_error(cookie);
if (ret) {
DRM_ERROR("Failed to submit DMA: %d\n", ret);
return;
}
ret = dma_sync_wait(chan, cookie);
if (ret)
DRM_ERROR("Failed to wait for DMA: %d\n", ret);
}
#define DSI_READ(offset) readl(dsi->regs + (offset))
#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
#define DSI_PORT_READ(offset) \
DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
#define DSI_PORT_WRITE(offset, val) \
DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
/* VC4 DSI encoder KMS struct */
struct vc4_dsi_encoder {
struct vc4_encoder base;
struct vc4_dsi *dsi;
};
static inline struct vc4_dsi_encoder *
to_vc4_dsi_encoder(struct drm_encoder *encoder)
{
return container_of(encoder, struct vc4_dsi_encoder, base.base);
}
#define DSI_REG(reg) { reg, #reg }
static const struct {
u32 reg;
const char *name;
} dsi0_regs[] = {
DSI_REG(DSI0_CTRL),
DSI_REG(DSI0_STAT),
DSI_REG(DSI0_HSTX_TO_CNT),
DSI_REG(DSI0_LPRX_TO_CNT),
DSI_REG(DSI0_TA_TO_CNT),
DSI_REG(DSI0_PR_TO_CNT),
DSI_REG(DSI0_DISP0_CTRL),
DSI_REG(DSI0_DISP1_CTRL),
DSI_REG(DSI0_INT_STAT),
DSI_REG(DSI0_INT_EN),
DSI_REG(DSI0_PHYC),
DSI_REG(DSI0_HS_CLT0),
DSI_REG(DSI0_HS_CLT1),
DSI_REG(DSI0_HS_CLT2),
DSI_REG(DSI0_HS_DLT3),
DSI_REG(DSI0_HS_DLT4),
DSI_REG(DSI0_HS_DLT5),
DSI_REG(DSI0_HS_DLT6),
DSI_REG(DSI0_HS_DLT7),
DSI_REG(DSI0_PHY_AFEC0),
DSI_REG(DSI0_PHY_AFEC1),
DSI_REG(DSI0_ID),
};
static const struct {
u32 reg;
const char *name;
} dsi1_regs[] = {
DSI_REG(DSI1_CTRL),
DSI_REG(DSI1_STAT),
DSI_REG(DSI1_HSTX_TO_CNT),
DSI_REG(DSI1_LPRX_TO_CNT),
DSI_REG(DSI1_TA_TO_CNT),
DSI_REG(DSI1_PR_TO_CNT),
DSI_REG(DSI1_DISP0_CTRL),
DSI_REG(DSI1_DISP1_CTRL),
DSI_REG(DSI1_INT_STAT),
DSI_REG(DSI1_INT_EN),
DSI_REG(DSI1_PHYC),
DSI_REG(DSI1_HS_CLT0),
DSI_REG(DSI1_HS_CLT1),
DSI_REG(DSI1_HS_CLT2),
DSI_REG(DSI1_HS_DLT3),
DSI_REG(DSI1_HS_DLT4),
DSI_REG(DSI1_HS_DLT5),
DSI_REG(DSI1_HS_DLT6),
DSI_REG(DSI1_HS_DLT7),
DSI_REG(DSI1_PHY_AFEC0),
DSI_REG(DSI1_PHY_AFEC1),
DSI_REG(DSI1_ID),
};
static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
{
int i;
if (dsi->port == 0) {
for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
DRM_INFO("0x%04x (%s): 0x%08x\n",
dsi0_regs[i].reg, dsi0_regs[i].name,
DSI_READ(dsi0_regs[i].reg));
}
} else {
for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
DRM_INFO("0x%04x (%s): 0x%08x\n",
dsi1_regs[i].reg, dsi1_regs[i].name,
DSI_READ(dsi1_regs[i].reg));
}
}
}
#ifdef CONFIG_DEBUG_FS
int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *drm = node->minor->dev;
struct vc4_dev *vc4 = to_vc4_dev(drm);
int dsi_index = (uintptr_t)node->info_ent->data;
struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
int i;
if (!dsi)
return 0;
if (dsi->port == 0) {
for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
seq_printf(m, "0x%04x (%s): 0x%08x\n",
dsi0_regs[i].reg, dsi0_regs[i].name,
DSI_READ(dsi0_regs[i].reg));
}
} else {
for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
seq_printf(m, "0x%04x (%s): 0x%08x\n",
dsi1_regs[i].reg, dsi1_regs[i].name,
DSI_READ(dsi1_regs[i].reg));
}
}
return 0;
}
#endif
static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
.destroy = vc4_dsi_encoder_destroy,
};
static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
{
u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
if (latch)
afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
else
afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
DSI_PORT_WRITE(PHY_AFEC0, afec0);
}
/* Enters or exits Ultra Low Power State. */
static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
{
bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
DSI_PHYC_DLANE0_ULPS |
(dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
(dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
(dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
DSI1_STAT_PHY_D0_ULPS |
(dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
(dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
(dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
DSI1_STAT_PHY_D0_STOP |
(dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
(dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
(dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
int ret;
DSI_PORT_WRITE(STAT, stat_ulps);
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
if (ret) {
dev_warn(&dsi->pdev->dev,
"Timeout waiting for DSI ULPS entry: STAT 0x%08x",
DSI_PORT_READ(STAT));
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
vc4_dsi_latch_ulps(dsi, false);
return;
}
/* The DSI module can't be disabled while the module is
* generating ULPS state. So, to be able to disable the
* module, we have the AFE latch the ULPS state and continue
* on to having the module enter STOP.
*/
vc4_dsi_latch_ulps(dsi, ulps);
DSI_PORT_WRITE(STAT, stat_stop);
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
if (ret) {
dev_warn(&dsi->pdev->dev,
"Timeout waiting for DSI STOP entry: STAT 0x%08x",
DSI_PORT_READ(STAT));
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
return;
}
}
static u32
dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
{
/* The HS timings have to be rounded up to a multiple of 8
* because we're using the byte clock.
*/
return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
}
/* ESC always runs at 100Mhz. */
#define ESC_TIME_NS 10
static u32
dsi_esc_timing(u32 ns)
{
return DIV_ROUND_UP(ns, ESC_TIME_NS);
}
static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
{
struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
struct vc4_dsi *dsi = vc4_encoder->dsi;
struct device *dev = &dsi->pdev->dev;
vc4_dsi_ulps(dsi, true);
clk_disable_unprepare(dsi->pll_phy_clock);
clk_disable_unprepare(dsi->escape_clock);
clk_disable_unprepare(dsi->pixel_clock);
pm_runtime_put(dev);
}
/* Extends the mode's blank intervals to handle BCM2835's integer-only
* DSI PLL divider.
*
* On 2835, PLLD is set to 2Ghz, and may not be changed by the display
* driver since most peripherals are hanging off of the PLLD_PER
* divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
* the pixel clock), only has an integer divider off of DSI.
*
* To get our panel mode to refresh at the expected 60Hz, we need to
* extend the horizontal blank time. This means we drive a
* higher-than-expected clock rate to the panel, but that's what the
* firmware does too.
*/
static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
struct vc4_dsi *dsi = vc4_encoder->dsi;
struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
unsigned long parent_rate = clk_get_rate(phy_parent);
unsigned long pixel_clock_hz = mode->clock * 1000;
unsigned long pll_clock = pixel_clock_hz * dsi->divider;
int divider;
/* Find what divider gets us a faster clock than the requested
* pixel clock.
*/
for (divider = 1; divider < 8; divider++) {
if (parent_rate / divider < pll_clock) {
divider--;
break;
}
}
/* Now that we've picked a PLL divider, calculate back to its
* pixel clock.
*/
pll_clock = parent_rate / divider;
pixel_clock_hz = pll_clock / dsi->divider;
adjusted_mode->clock = pixel_clock_hz / 1000;
/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
mode->clock;
adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
return true;
}
static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
{
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
struct vc4_dsi *dsi = vc4_encoder->dsi;
struct device *dev = &dsi->pdev->dev;
bool debug_dump_regs = false;
unsigned long hs_clock;
u32 ui_ns;
/* Minimum LP state duration in escape clock cycles. */
u32 lpx = dsi_esc_timing(60);
unsigned long pixel_clock_hz = mode->clock * 1000;
unsigned long dsip_clock;
unsigned long phy_clock;
int ret;
ret = pm_runtime_get_sync(dev);
if (ret) {
DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
return;
}
if (debug_dump_regs) {
DRM_INFO("DSI regs before:\n");
vc4_dsi_dump_regs(dsi);
}
/* Round up the clk_set_rate() request slightly, since
* PLLD_DSI1 is an integer divider and its rate selection will
* never round up.
*/
phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
if (ret) {
dev_err(&dsi->pdev->dev,
"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
}
/* Reset the DSI and all its fifos. */
DSI_PORT_WRITE(CTRL,
DSI_CTRL_SOFT_RESET_CFG |
DSI_PORT_BIT(CTRL_RESET_FIFOS));
DSI_PORT_WRITE(CTRL,
DSI_CTRL_HSDT_EOT_DISABLE |
DSI_CTRL_RX_LPDT_EOT_DISABLE);
/* Clear all stat bits so we see what has happened during enable. */
DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
/* Set AFE CTR00/CTR1 to release powerdown of analog. */
if (dsi->port == 0) {
u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
if (dsi->lanes < 2)
afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
afec0 |= DSI0_PHY_AFEC0_RESET;
DSI_PORT_WRITE(PHY_AFEC0, afec0);
DSI_PORT_WRITE(PHY_AFEC1,
VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
} else {
u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
if (dsi->lanes < 4)
afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
if (dsi->lanes < 3)
afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
if (dsi->lanes < 2)
afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
afec0 |= DSI1_PHY_AFEC0_RESET;
DSI_PORT_WRITE(PHY_AFEC0, afec0);
DSI_PORT_WRITE(PHY_AFEC1, 0);
/* AFEC reset hold time */
mdelay(1);
}
ret = clk_prepare_enable(dsi->escape_clock);
if (ret) {
DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
return;
}
ret = clk_prepare_enable(dsi->pll_phy_clock);
if (ret) {
DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
return;
}
hs_clock = clk_get_rate(dsi->pll_phy_clock);
/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
* not the pixel clock rate. DSIxP take from the APHY's byte,
* DDR2, or DDR4 clock (we use byte) and feed into the PV at
* that rate. Separately, a value derived from PIX_CLK_DIV
* and HS_CLKC is fed into the PV to divide down to the actual
* pixel clock for pushing pixels into DSI.
*/
dsip_clock = phy_clock / 8;
ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
if (ret) {
dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
dsip_clock, ret);
}
ret = clk_prepare_enable(dsi->pixel_clock);
if (ret) {
DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
return;
}
/* How many ns one DSI unit interval is. Note that the clock
* is DDR, so there's an extra divide by 2.
*/
ui_ns = DIV_ROUND_UP(500000000, hs_clock);
DSI_PORT_WRITE(HS_CLT0,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
DSI_HS_CLT0_CZERO) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
DSI_HS_CLT0_CPRE) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
DSI_HS_CLT0_CPREP));
DSI_PORT_WRITE(HS_CLT1,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
DSI_HS_CLT1_CTRAIL) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
DSI_HS_CLT1_CPOST));
DSI_PORT_WRITE(HS_CLT2,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
DSI_HS_CLT2_WUP));
DSI_PORT_WRITE(HS_DLT3,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
DSI_HS_DLT3_EXIT) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
DSI_HS_DLT3_ZERO) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
DSI_HS_DLT3_PRE));
DSI_PORT_WRITE(HS_DLT4,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
DSI_HS_DLT4_LPX) |
VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
dsi_hs_timing(ui_ns, 60, 4)),
DSI_HS_DLT4_TRAIL) |
VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
/* T_INIT is how long STOP is driven after power-up to
* indicate to the slave (also coming out of power-up) that
* master init is complete, and should be greater than the
* maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
* D-PHY spec gives a minimum 100us for T_INIT,MASTER and
* T_INIT,SLAVE, while allowing protocols on top of it to give
* greater minimums. The vc4 firmware uses an extremely
* conservative 5ms, and we maintain that here.
*/
DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
5 * 1000 * 1000, 0),
DSI_HS_DLT5_INIT));
DSI_PORT_WRITE(HS_DLT6,
VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
DSI_PORT_WRITE(HS_DLT7,
VC4_SET_FIELD(dsi_esc_timing(1000000),
DSI_HS_DLT7_LP_WUP));
DSI_PORT_WRITE(PHYC,
DSI_PHYC_DLANE0_ENABLE |
(dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
(dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
(dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
(dsi->port == 0 ?
VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
DSI_PORT_WRITE(CTRL,
DSI_PORT_READ(CTRL) |
DSI_CTRL_CAL_BYTE);
/* HS timeout in HS clock cycles: disabled. */
DSI_PORT_WRITE(HSTX_TO_CNT, 0);
/* LP receive timeout in HS clocks. */
DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
/* Bus turnaround timeout */
DSI_PORT_WRITE(TA_TO_CNT, 100000);
/* Display reset sequence timeout */
DSI_PORT_WRITE(PR_TO_CNT, 100000);
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
DSI_PORT_WRITE(DISP0_CTRL,
VC4_SET_FIELD(dsi->divider,
DSI_DISP0_PIX_CLK_DIV) |
VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
DSI_DISP0_LP_STOP_CTRL) |
DSI_DISP0_ST_END |
DSI_DISP0_ENABLE);
} else {
DSI_PORT_WRITE(DISP0_CTRL,
DSI_DISP0_COMMAND_MODE |
DSI_DISP0_ENABLE);
}
/* Set up DISP1 for transferring long command payloads through
* the pixfifo.
*/
DSI_PORT_WRITE(DISP1_CTRL,
VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
DSI_DISP1_PFORMAT) |
DSI_DISP1_ENABLE);
/* Ungate the block. */
if (dsi->port == 0)
DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
else
DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
/* Bring AFE out of reset. */
if (dsi->port == 0) {
} else {
DSI_PORT_WRITE(PHY_AFEC0,
DSI_PORT_READ(PHY_AFEC0) &
~DSI1_PHY_AFEC0_RESET);
}
vc4_dsi_ulps(dsi, false);
if (debug_dump_regs) {
DRM_INFO("DSI regs after:\n");
vc4_dsi_dump_regs(dsi);
}
}
static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct vc4_dsi *dsi = host_to_dsi(host);
struct mipi_dsi_packet packet;
u32 pkth = 0, pktc = 0;
int i, ret;
bool is_long = mipi_dsi_packet_format_is_long(msg->type);
u32 cmd_fifo_len = 0, pix_fifo_len = 0;
mipi_dsi_create_packet(&packet, msg);
pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
pkth |= VC4_SET_FIELD(packet.header[1] |
(packet.header[2] << 8),
DSI_TXPKT1H_BC_PARAM);
if (is_long) {
/* Divide data across the various FIFOs we have available.
* The command FIFO takes byte-oriented data, but is of
* limited size. The pixel FIFO (never actually used for
* pixel data in reality) is word oriented, and substantially
* larger. So, we use the pixel FIFO for most of the data,
* sending the residual bytes in the command FIFO at the start.
*
* With this arrangement, the command FIFO will never get full.
*/
if (packet.payload_length <= 16) {
cmd_fifo_len = packet.payload_length;
pix_fifo_len = 0;
} else {
cmd_fifo_len = (packet.payload_length %
DSI_PIX_FIFO_WIDTH);
pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
DSI_PIX_FIFO_WIDTH);
}
WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
}
if (msg->rx_len) {
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
DSI_TXPKT1C_CMD_CTRL);
} else {
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
DSI_TXPKT1C_CMD_CTRL);
}
for (i = 0; i < cmd_fifo_len; i++)
DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
for (i = 0; i < pix_fifo_len; i++) {
const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
DSI_PORT_WRITE(TXPKT_PIX_FIFO,
pix[0] |
pix[1] << 8 |
pix[2] << 16 |
pix[3] << 24);
}
if (msg->flags & MIPI_DSI_MSG_USE_LPM)
pktc |= DSI_TXPKT1C_CMD_MODE_LP;
if (is_long)
pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
/* Send one copy of the packet. Larger repeats are used for pixel
* data in command mode.
*/
pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
pktc |= DSI_TXPKT1C_CMD_EN;
if (pix_fifo_len) {
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
DSI_TXPKT1C_DISPLAY_NO);
} else {
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
DSI_TXPKT1C_DISPLAY_NO);
}
/* Enable the appropriate interrupt for the transfer completion. */
dsi->xfer_result = 0;
reinit_completion(&dsi->xfer_completion);
DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
if (msg->rx_len) {
DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
DSI1_INT_PHY_DIR_RTF));
} else {
DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
DSI1_INT_TXPKT1_DONE));
}
/* Send the packet. */
DSI_PORT_WRITE(TXPKT1H, pkth);
DSI_PORT_WRITE(TXPKT1C, pktc);
if (!wait_for_completion_timeout(&dsi->xfer_completion,
msecs_to_jiffies(1000))) {
dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
DSI_PORT_READ(INT_STAT));
ret = -ETIMEDOUT;
} else {
ret = dsi->xfer_result;
}
DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
if (ret)
goto reset_fifo_and_return;
if (ret == 0 && msg->rx_len) {
u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
u8 *msg_rx = msg->rx_buf;
if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
u32 rxlen = VC4_GET_FIELD(rxpkt1h,
DSI_RXPKT1H_BC_PARAM);
if (rxlen != msg->rx_len) {
DRM_ERROR("DSI returned %db, expecting %db\n",
rxlen, (int)msg->rx_len);
ret = -ENXIO;
goto reset_fifo_and_return;
}
for (i = 0; i < msg->rx_len; i++)
msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
} else {
/* FINISHME: Handle AWER */
msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
DSI_RXPKT1H_SHORT_0);
if (msg->rx_len > 1) {
msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
DSI_RXPKT1H_SHORT_1);
}
}
}
return ret;
reset_fifo_and_return:
DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
udelay(1);
DSI_PORT_WRITE(CTRL,
DSI_PORT_READ(CTRL) |
DSI_PORT_BIT(CTRL_RESET_FIFOS));
DSI_PORT_WRITE(TXPKT1C, 0);
DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
return ret;
}
static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct vc4_dsi *dsi = host_to_dsi(host);
dsi->lanes = device->lanes;
dsi->channel = device->channel;
dsi->mode_flags = device->mode_flags;
switch (device->format) {
case MIPI_DSI_FMT_RGB888:
dsi->format = DSI_PFORMAT_RGB888;
dsi->divider = 24 / dsi->lanes;
break;
case MIPI_DSI_FMT_RGB666:
dsi->format = DSI_PFORMAT_RGB666;
dsi->divider = 24 / dsi->lanes;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
dsi->format = DSI_PFORMAT_RGB666_PACKED;
dsi->divider = 18 / dsi->lanes;
break;
case MIPI_DSI_FMT_RGB565:
dsi->format = DSI_PFORMAT_RGB565;
dsi->divider = 16 / dsi->lanes;
break;
default:
dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
dsi->format);
return 0;
}
if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
dev_err(&dsi->pdev->dev,
"Only VIDEO mode panels supported currently.\n");
return 0;
}
return 0;
}
static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
return 0;
}
static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
.attach = vc4_dsi_host_attach,
.detach = vc4_dsi_host_detach,
.transfer = vc4_dsi_host_transfer,
};
static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
.disable = vc4_dsi_encoder_disable,
.enable = vc4_dsi_encoder_enable,
.mode_fixup = vc4_dsi_encoder_mode_fixup,
};
static const struct of_device_id vc4_dsi_dt_match[] = {
{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
{}
};
static void dsi_handle_error(struct vc4_dsi *dsi,
irqreturn_t *ret, u32 stat, u32 bit,
const char *type)
{
if (!(stat & bit))
return;
DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
*ret = IRQ_HANDLED;
}
/*
* Initial handler for port 1 where we need the reg_dma workaround.
* The register DMA writes sleep, so we can't do it in the top half.
* Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
* parent interrupt contrller until our interrupt thread is done.
*/
static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
{
struct vc4_dsi *dsi = data;
u32 stat = DSI_PORT_READ(INT_STAT);
if (!stat)
return IRQ_NONE;
return IRQ_WAKE_THREAD;
}
/*
* Normal IRQ handler for port 0, or the threaded IRQ handler for port
* 1 where we need the reg_dma workaround.
*/
static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
{
struct vc4_dsi *dsi = data;
u32 stat = DSI_PORT_READ(INT_STAT);
irqreturn_t ret = IRQ_NONE;
DSI_PORT_WRITE(INT_STAT, stat);
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_ERR_CONT_LP0, "LP0 contention");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_ERR_CONT_LP1, "LP1 contention");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_HSTX_TO, "HSTX timeout");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_LPRX_TO, "LPRX timeout");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_TA_TO, "turnaround timeout");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_PR_TO, "peripheral reset timeout");
if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
complete(&dsi->xfer_completion);
ret = IRQ_HANDLED;
} else if (stat & DSI1_INT_HSTX_TO) {
complete(&dsi->xfer_completion);
dsi->xfer_result = -ETIMEDOUT;
ret = IRQ_HANDLED;
}
return ret;
}
/**
* vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
* PHY that are consumed by CPRMAN (clk-bcm2835.c).
* @dsi: DSI encoder
*/
static int
vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
{
struct device *dev = &dsi->pdev->dev;
const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
static const struct {
const char *dsi0_name, *dsi1_name;
int div;
} phy_clocks[] = {
{ "dsi0_byte", "dsi1_byte", 8 },
{ "dsi0_ddr2", "dsi1_ddr2", 4 },
{ "dsi0_ddr", "dsi1_ddr", 2 },
};
int i;
dsi->clk_onecell = devm_kzalloc(dev,
sizeof(*dsi->clk_onecell) +
ARRAY_SIZE(phy_clocks) *
sizeof(struct clk_hw *),
GFP_KERNEL);
if (!dsi->clk_onecell)
return -ENOMEM;
dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
struct clk_init_data init;
int ret;
/* We just use core fixed factor clock ops for the PHY
* clocks. The clocks are actually gated by the
* PHY_AFEC0_DDRCLK_EN bits, which we should be
* setting if we use the DDR/DDR2 clocks. However,
* vc4_dsi_encoder_enable() is setting up both AFEC0,
* setting both our parent DSI PLL's rate and this
* clock's rate, so it knows if DDR/DDR2 are going to
* be used and could enable the gates itself.
*/
fix->mult = 1;
fix->div = phy_clocks[i].div;
fix->hw.init = &init;
memset(&init, 0, sizeof(init));
init.parent_names = &parent_name;
init.num_parents = 1;
if (dsi->port == 1)
init.name = phy_clocks[i].dsi1_name;
else
init.name = phy_clocks[i].dsi0_name;
init.ops = &clk_fixed_factor_ops;
ret = devm_clk_hw_register(dev, &fix->hw);
if (ret)
return ret;
dsi->clk_onecell->hws[i] = &fix->hw;
}
return of_clk_add_hw_provider(dev->of_node,
of_clk_hw_onecell_get,
dsi->clk_onecell);
}
static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_dsi *dsi = dev_get_drvdata(dev);
struct vc4_dsi_encoder *vc4_dsi_encoder;
struct drm_panel *panel;
const struct of_device_id *match;
dma_cap_mask_t dma_mask;
int ret;
match = of_match_device(vc4_dsi_dt_match, dev);
if (!match)
return -ENODEV;
dsi->port = (uintptr_t)match->data;
vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
GFP_KERNEL);
if (!vc4_dsi_encoder)
return -ENOMEM;
vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
vc4_dsi_encoder->dsi = dsi;
dsi->encoder = &vc4_dsi_encoder->base.base;
dsi->regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(dsi->regs))
return PTR_ERR(dsi->regs);
if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
DSI_PORT_READ(ID), DSI_ID_VALUE);
return -ENODEV;
}
/* DSI1 has a broken AXI slave that doesn't respond to writes
* from the ARM. It does handle writes from the DMA engine,
* so set up a channel for talking to it.
*/
if (dsi->port == 1) {
dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
&dsi->reg_dma_paddr,
GFP_KERNEL);
if (!dsi->reg_dma_mem) {
DRM_ERROR("Failed to get DMA memory\n");
return -ENOMEM;
}
dma_cap_zero(dma_mask);
dma_cap_set(DMA_MEMCPY, dma_mask);
dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
if (IS_ERR(dsi->reg_dma_chan)) {
ret = PTR_ERR(dsi->reg_dma_chan);
if (ret != -EPROBE_DEFER)
DRM_ERROR("Failed to get DMA channel: %d\n",
ret);
return ret;
}
/* Get the physical address of the device's registers. The
* struct resource for the regs gives us the bus address
* instead.
*/
dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
0, NULL, NULL));
}
init_completion(&dsi->xfer_completion);
/* At startup enable error-reporting interrupts and nothing else. */
DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
/* Clear any existing interrupt state. */
DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
if (dsi->reg_dma_mem)
ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
vc4_dsi_irq_defer_to_thread_handler,
vc4_dsi_irq_handler,
IRQF_ONESHOT,
"vc4 dsi", dsi);
else
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get interrupt: %d\n", ret);
return ret;
}
dsi->escape_clock = devm_clk_get(dev, "escape");
if (IS_ERR(dsi->escape_clock)) {
ret = PTR_ERR(dsi->escape_clock);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get escape clock: %d\n", ret);
return ret;
}
dsi->pll_phy_clock = devm_clk_get(dev, "phy");
if (IS_ERR(dsi->pll_phy_clock)) {
ret = PTR_ERR(dsi->pll_phy_clock);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get phy clock: %d\n", ret);
return ret;
}
dsi->pixel_clock = devm_clk_get(dev, "pixel");
if (IS_ERR(dsi->pixel_clock)) {
ret = PTR_ERR(dsi->pixel_clock);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get pixel clock: %d\n", ret);
return ret;
}
ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
&panel, &dsi->bridge);
if (ret)
return ret;
if (panel) {
dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
DRM_MODE_CONNECTOR_DSI);
if (IS_ERR(dsi->bridge))
return PTR_ERR(dsi->bridge);
}
/* The esc clock rate is supposed to always be 100Mhz. */
ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
if (ret) {
dev_err(dev, "Failed to set esc clock: %d\n", ret);
return ret;
}
ret = vc4_dsi_init_phy_clocks(dsi);
if (ret)
return ret;
if (dsi->port == 1)
vc4->dsi1 = dsi;
drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
DRM_MODE_ENCODER_DSI, NULL);
drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
if (ret) {
dev_err(dev, "bridge attach failed: %d\n", ret);
return ret;
}
pm_runtime_enable(dev);
return 0;
}
static void vc4_dsi_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_dsi *dsi = dev_get_drvdata(dev);
pm_runtime_disable(dev);
vc4_dsi_encoder_destroy(dsi->encoder);
if (dsi->port == 1)
vc4->dsi1 = NULL;
}
static const struct component_ops vc4_dsi_ops = {
.bind = vc4_dsi_bind,
.unbind = vc4_dsi_unbind,
};
static int vc4_dsi_dev_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct vc4_dsi *dsi;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dev_set_drvdata(dev, dsi);
dsi->pdev = pdev;
/* Note, the initialization sequence for DSI and panels is
* tricky. The component bind above won't get past its
* -EPROBE_DEFER until the panel/bridge probes. The
* panel/bridge will return -EPROBE_DEFER until it has a
* mipi_dsi_host to register its device to. So, we register
* the host during pdev probe time, so vc4 as a whole can then
* -EPROBE_DEFER its component bind process until the panel
* successfully attaches.
*/
dsi->dsi_host.ops = &vc4_dsi_host_ops;
dsi->dsi_host.dev = dev;
mipi_dsi_host_register(&dsi->dsi_host);
ret = component_add(&pdev->dev, &vc4_dsi_ops);
if (ret) {
mipi_dsi_host_unregister(&dsi->dsi_host);
return ret;
}
return 0;
}
static int vc4_dsi_dev_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct vc4_dsi *dsi = dev_get_drvdata(dev);
component_del(&pdev->dev, &vc4_dsi_ops);
mipi_dsi_host_unregister(&dsi->dsi_host);
return 0;
}
struct platform_driver vc4_dsi_driver = {
.probe = vc4_dsi_dev_probe,
.remove = vc4_dsi_dev_remove,
.driver = {
.name = "vc4_dsi",
.of_match_table = vc4_dsi_dt_match,
},
};