436 lines
10 KiB
C
436 lines
10 KiB
C
/*
|
|
* Copyright 2010 Red Hat Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Ben Skeggs
|
|
*/
|
|
#include "ummu.h"
|
|
#include "vmm.h"
|
|
|
|
#include <subdev/bar.h>
|
|
#include <subdev/fb.h>
|
|
|
|
#include <nvif/if500d.h>
|
|
#include <nvif/if900d.h>
|
|
|
|
struct nvkm_mmu_ptp {
|
|
struct nvkm_mmu_pt *pt;
|
|
struct list_head head;
|
|
u8 shift;
|
|
u16 mask;
|
|
u16 free;
|
|
};
|
|
|
|
static void
|
|
nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt)
|
|
{
|
|
const int slot = pt->base >> pt->ptp->shift;
|
|
struct nvkm_mmu_ptp *ptp = pt->ptp;
|
|
|
|
/* If there were no free slots in the parent allocation before,
|
|
* there will be now, so return PTP to the cache.
|
|
*/
|
|
if (!ptp->free)
|
|
list_add(&ptp->head, &mmu->ptp.list);
|
|
ptp->free |= BIT(slot);
|
|
|
|
/* If there's no more sub-allocations, destroy PTP. */
|
|
if (ptp->free == ptp->mask) {
|
|
nvkm_mmu_ptc_put(mmu, force, &ptp->pt);
|
|
list_del(&ptp->head);
|
|
kfree(ptp);
|
|
}
|
|
|
|
kfree(pt);
|
|
}
|
|
|
|
struct nvkm_mmu_pt *
|
|
nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero)
|
|
{
|
|
struct nvkm_mmu_pt *pt;
|
|
struct nvkm_mmu_ptp *ptp;
|
|
int slot;
|
|
|
|
if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL)))
|
|
return NULL;
|
|
|
|
ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head);
|
|
if (!ptp) {
|
|
/* Need to allocate a new parent to sub-allocate from. */
|
|
if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) {
|
|
kfree(pt);
|
|
return NULL;
|
|
}
|
|
|
|
ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false);
|
|
if (!ptp->pt) {
|
|
kfree(ptp);
|
|
kfree(pt);
|
|
return NULL;
|
|
}
|
|
|
|
ptp->shift = order_base_2(size);
|
|
slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift;
|
|
ptp->mask = (1 << slot) - 1;
|
|
ptp->free = ptp->mask;
|
|
list_add(&ptp->head, &mmu->ptp.list);
|
|
}
|
|
pt->ptp = ptp;
|
|
pt->sub = true;
|
|
|
|
/* Sub-allocate from parent object, removing PTP from cache
|
|
* if there's no more free slots left.
|
|
*/
|
|
slot = __ffs(ptp->free);
|
|
ptp->free &= ~BIT(slot);
|
|
if (!ptp->free)
|
|
list_del(&ptp->head);
|
|
|
|
pt->memory = pt->ptp->pt->memory;
|
|
pt->base = slot << ptp->shift;
|
|
pt->addr = pt->ptp->pt->addr + pt->base;
|
|
return pt;
|
|
}
|
|
|
|
struct nvkm_mmu_ptc {
|
|
struct list_head head;
|
|
struct list_head item;
|
|
u32 size;
|
|
u32 refs;
|
|
};
|
|
|
|
static inline struct nvkm_mmu_ptc *
|
|
nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size)
|
|
{
|
|
struct nvkm_mmu_ptc *ptc;
|
|
|
|
list_for_each_entry(ptc, &mmu->ptc.list, head) {
|
|
if (ptc->size == size)
|
|
return ptc;
|
|
}
|
|
|
|
ptc = kmalloc(sizeof(*ptc), GFP_KERNEL);
|
|
if (ptc) {
|
|
INIT_LIST_HEAD(&ptc->item);
|
|
ptc->size = size;
|
|
ptc->refs = 0;
|
|
list_add(&ptc->head, &mmu->ptc.list);
|
|
}
|
|
|
|
return ptc;
|
|
}
|
|
|
|
void
|
|
nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt)
|
|
{
|
|
struct nvkm_mmu_pt *pt = *ppt;
|
|
if (pt) {
|
|
/* Handle sub-allocated page tables. */
|
|
if (pt->sub) {
|
|
mutex_lock(&mmu->ptp.mutex);
|
|
nvkm_mmu_ptp_put(mmu, force, pt);
|
|
mutex_unlock(&mmu->ptp.mutex);
|
|
return;
|
|
}
|
|
|
|
/* Either cache or free the object. */
|
|
mutex_lock(&mmu->ptc.mutex);
|
|
if (pt->ptc->refs < 8 /* Heuristic. */ && !force) {
|
|
list_add_tail(&pt->head, &pt->ptc->item);
|
|
pt->ptc->refs++;
|
|
} else {
|
|
nvkm_memory_unref(&pt->memory);
|
|
kfree(pt);
|
|
}
|
|
mutex_unlock(&mmu->ptc.mutex);
|
|
}
|
|
}
|
|
|
|
struct nvkm_mmu_pt *
|
|
nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero)
|
|
{
|
|
struct nvkm_mmu_ptc *ptc;
|
|
struct nvkm_mmu_pt *pt;
|
|
int ret;
|
|
|
|
/* Sub-allocated page table (ie. GP100 LPT). */
|
|
if (align < 0x1000) {
|
|
mutex_lock(&mmu->ptp.mutex);
|
|
pt = nvkm_mmu_ptp_get(mmu, align, zero);
|
|
mutex_unlock(&mmu->ptp.mutex);
|
|
return pt;
|
|
}
|
|
|
|
/* Lookup cache for this page table size. */
|
|
mutex_lock(&mmu->ptc.mutex);
|
|
ptc = nvkm_mmu_ptc_find(mmu, size);
|
|
if (!ptc) {
|
|
mutex_unlock(&mmu->ptc.mutex);
|
|
return NULL;
|
|
}
|
|
|
|
/* If there's a free PT in the cache, reuse it. */
|
|
pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head);
|
|
if (pt) {
|
|
if (zero)
|
|
nvkm_fo64(pt->memory, 0, 0, size >> 3);
|
|
list_del(&pt->head);
|
|
ptc->refs--;
|
|
mutex_unlock(&mmu->ptc.mutex);
|
|
return pt;
|
|
}
|
|
mutex_unlock(&mmu->ptc.mutex);
|
|
|
|
/* No such luck, we need to allocate. */
|
|
if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL)))
|
|
return NULL;
|
|
pt->ptc = ptc;
|
|
pt->sub = false;
|
|
|
|
ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST,
|
|
size, align, zero, &pt->memory);
|
|
if (ret) {
|
|
kfree(pt);
|
|
return NULL;
|
|
}
|
|
|
|
pt->base = 0;
|
|
pt->addr = nvkm_memory_addr(pt->memory);
|
|
return pt;
|
|
}
|
|
|
|
void
|
|
nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu)
|
|
{
|
|
struct nvkm_mmu_ptc *ptc;
|
|
list_for_each_entry(ptc, &mmu->ptc.list, head) {
|
|
struct nvkm_mmu_pt *pt, *tt;
|
|
list_for_each_entry_safe(pt, tt, &ptc->item, head) {
|
|
nvkm_memory_unref(&pt->memory);
|
|
list_del(&pt->head);
|
|
kfree(pt);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu)
|
|
{
|
|
struct nvkm_mmu_ptc *ptc, *ptct;
|
|
|
|
list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) {
|
|
WARN_ON(!list_empty(&ptc->item));
|
|
list_del(&ptc->head);
|
|
kfree(ptc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvkm_mmu_ptc_init(struct nvkm_mmu *mmu)
|
|
{
|
|
mutex_init(&mmu->ptc.mutex);
|
|
INIT_LIST_HEAD(&mmu->ptc.list);
|
|
mutex_init(&mmu->ptp.mutex);
|
|
INIT_LIST_HEAD(&mmu->ptp.list);
|
|
}
|
|
|
|
static void
|
|
nvkm_mmu_type(struct nvkm_mmu *mmu, int heap, u8 type)
|
|
{
|
|
if (heap >= 0 && !WARN_ON(mmu->type_nr == ARRAY_SIZE(mmu->type))) {
|
|
mmu->type[mmu->type_nr].type = type | mmu->heap[heap].type;
|
|
mmu->type[mmu->type_nr].heap = heap;
|
|
mmu->type_nr++;
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvkm_mmu_heap(struct nvkm_mmu *mmu, u8 type, u64 size)
|
|
{
|
|
if (size) {
|
|
if (!WARN_ON(mmu->heap_nr == ARRAY_SIZE(mmu->heap))) {
|
|
mmu->heap[mmu->heap_nr].type = type;
|
|
mmu->heap[mmu->heap_nr].size = size;
|
|
return mmu->heap_nr++;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void
|
|
nvkm_mmu_host(struct nvkm_mmu *mmu)
|
|
{
|
|
struct nvkm_device *device = mmu->subdev.device;
|
|
u8 type = NVKM_MEM_KIND * !!mmu->func->kind_sys;
|
|
int heap;
|
|
|
|
/* Non-mappable system memory. */
|
|
heap = nvkm_mmu_heap(mmu, NVKM_MEM_HOST, ~0ULL);
|
|
nvkm_mmu_type(mmu, heap, type);
|
|
|
|
/* Non-coherent, cached, system memory.
|
|
*
|
|
* Block-linear mappings of system memory must be done through
|
|
* BAR1, and cannot be supported on systems where we're unable
|
|
* to map BAR1 with write-combining.
|
|
*/
|
|
type |= NVKM_MEM_MAPPABLE;
|
|
if (!device->bar || device->bar->iomap_uncached)
|
|
nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND);
|
|
else
|
|
nvkm_mmu_type(mmu, heap, type);
|
|
|
|
/* Coherent, cached, system memory.
|
|
*
|
|
* Unsupported on systems that aren't able to support snooped
|
|
* mappings, and also for block-linear mappings which must be
|
|
* done through BAR1.
|
|
*/
|
|
type |= NVKM_MEM_COHERENT;
|
|
if (device->func->cpu_coherent)
|
|
nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND);
|
|
|
|
/* Uncached system memory. */
|
|
nvkm_mmu_type(mmu, heap, type |= NVKM_MEM_UNCACHED);
|
|
}
|
|
|
|
static void
|
|
nvkm_mmu_vram(struct nvkm_mmu *mmu)
|
|
{
|
|
struct nvkm_device *device = mmu->subdev.device;
|
|
struct nvkm_mm *mm = &device->fb->ram->vram;
|
|
const u32 sizeN = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NORMAL);
|
|
const u32 sizeU = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NOMAP);
|
|
const u32 sizeM = nvkm_mm_heap_size(mm, NVKM_RAM_MM_MIXED);
|
|
u8 type = NVKM_MEM_KIND * !!mmu->func->kind;
|
|
u8 heap = NVKM_MEM_VRAM;
|
|
int heapM, heapN, heapU;
|
|
|
|
/* Mixed-memory doesn't support compression or display. */
|
|
heapM = nvkm_mmu_heap(mmu, heap, sizeM << NVKM_RAM_MM_SHIFT);
|
|
|
|
heap |= NVKM_MEM_COMP;
|
|
heap |= NVKM_MEM_DISP;
|
|
heapN = nvkm_mmu_heap(mmu, heap, sizeN << NVKM_RAM_MM_SHIFT);
|
|
heapU = nvkm_mmu_heap(mmu, heap, sizeU << NVKM_RAM_MM_SHIFT);
|
|
|
|
/* Add non-mappable VRAM types first so that they're preferred
|
|
* over anything else. Mixed-memory will be slower than other
|
|
* heaps, it's prioritised last.
|
|
*/
|
|
nvkm_mmu_type(mmu, heapU, type);
|
|
nvkm_mmu_type(mmu, heapN, type);
|
|
nvkm_mmu_type(mmu, heapM, type);
|
|
|
|
/* Add host memory types next, under the assumption that users
|
|
* wanting mappable memory want to use them as staging buffers
|
|
* or the like.
|
|
*/
|
|
nvkm_mmu_host(mmu);
|
|
|
|
/* Mappable VRAM types go last, as they're basically the worst
|
|
* possible type to ask for unless there's no other choice.
|
|
*/
|
|
if (device->bar) {
|
|
/* Write-combined BAR1 access. */
|
|
type |= NVKM_MEM_MAPPABLE;
|
|
if (!device->bar->iomap_uncached) {
|
|
nvkm_mmu_type(mmu, heapN, type);
|
|
nvkm_mmu_type(mmu, heapM, type);
|
|
}
|
|
|
|
/* Uncached BAR1 access. */
|
|
type |= NVKM_MEM_COHERENT;
|
|
type |= NVKM_MEM_UNCACHED;
|
|
nvkm_mmu_type(mmu, heapN, type);
|
|
nvkm_mmu_type(mmu, heapM, type);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvkm_mmu_oneinit(struct nvkm_subdev *subdev)
|
|
{
|
|
struct nvkm_mmu *mmu = nvkm_mmu(subdev);
|
|
|
|
/* Determine available memory types. */
|
|
if (mmu->subdev.device->fb && mmu->subdev.device->fb->ram)
|
|
nvkm_mmu_vram(mmu);
|
|
else
|
|
nvkm_mmu_host(mmu);
|
|
|
|
if (mmu->func->vmm.global) {
|
|
int ret = nvkm_vmm_new(subdev->device, 0, 0, NULL, 0, NULL,
|
|
"gart", &mmu->vmm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvkm_mmu_init(struct nvkm_subdev *subdev)
|
|
{
|
|
struct nvkm_mmu *mmu = nvkm_mmu(subdev);
|
|
if (mmu->func->init)
|
|
mmu->func->init(mmu);
|
|
return 0;
|
|
}
|
|
|
|
static void *
|
|
nvkm_mmu_dtor(struct nvkm_subdev *subdev)
|
|
{
|
|
struct nvkm_mmu *mmu = nvkm_mmu(subdev);
|
|
|
|
nvkm_vmm_unref(&mmu->vmm);
|
|
|
|
nvkm_mmu_ptc_fini(mmu);
|
|
return mmu;
|
|
}
|
|
|
|
static const struct nvkm_subdev_func
|
|
nvkm_mmu = {
|
|
.dtor = nvkm_mmu_dtor,
|
|
.oneinit = nvkm_mmu_oneinit,
|
|
.init = nvkm_mmu_init,
|
|
};
|
|
|
|
void
|
|
nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device,
|
|
int index, struct nvkm_mmu *mmu)
|
|
{
|
|
nvkm_subdev_ctor(&nvkm_mmu, device, index, &mmu->subdev);
|
|
mmu->func = func;
|
|
mmu->dma_bits = func->dma_bits;
|
|
nvkm_mmu_ptc_init(mmu);
|
|
mmu->user.ctor = nvkm_ummu_new;
|
|
mmu->user.base = func->mmu.user;
|
|
}
|
|
|
|
int
|
|
nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device,
|
|
int index, struct nvkm_mmu **pmmu)
|
|
{
|
|
if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL)))
|
|
return -ENOMEM;
|
|
nvkm_mmu_ctor(func, device, index, *pmmu);
|
|
return 0;
|
|
}
|