643 lines
18 KiB
C
643 lines
18 KiB
C
/*
|
|
* Copyright 2013 Red Hat Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Ben Skeggs
|
|
*/
|
|
#define nv50_ram(p) container_of((p), struct nv50_ram, base)
|
|
#include "ram.h"
|
|
#include "ramseq.h"
|
|
#include "nv50.h"
|
|
|
|
#include <core/option.h>
|
|
#include <subdev/bios.h>
|
|
#include <subdev/bios/perf.h>
|
|
#include <subdev/bios/pll.h>
|
|
#include <subdev/bios/rammap.h>
|
|
#include <subdev/bios/timing.h>
|
|
#include <subdev/clk/pll.h>
|
|
#include <subdev/gpio.h>
|
|
|
|
struct nv50_ramseq {
|
|
struct hwsq base;
|
|
struct hwsq_reg r_0x002504;
|
|
struct hwsq_reg r_0x004008;
|
|
struct hwsq_reg r_0x00400c;
|
|
struct hwsq_reg r_0x00c040;
|
|
struct hwsq_reg r_0x100200;
|
|
struct hwsq_reg r_0x100210;
|
|
struct hwsq_reg r_0x10021c;
|
|
struct hwsq_reg r_0x1002d0;
|
|
struct hwsq_reg r_0x1002d4;
|
|
struct hwsq_reg r_0x1002dc;
|
|
struct hwsq_reg r_0x10053c;
|
|
struct hwsq_reg r_0x1005a0;
|
|
struct hwsq_reg r_0x1005a4;
|
|
struct hwsq_reg r_0x100710;
|
|
struct hwsq_reg r_0x100714;
|
|
struct hwsq_reg r_0x100718;
|
|
struct hwsq_reg r_0x10071c;
|
|
struct hwsq_reg r_0x100da0;
|
|
struct hwsq_reg r_0x100e20;
|
|
struct hwsq_reg r_0x100e24;
|
|
struct hwsq_reg r_0x611200;
|
|
struct hwsq_reg r_timing[9];
|
|
struct hwsq_reg r_mr[4];
|
|
struct hwsq_reg r_gpio[4];
|
|
};
|
|
|
|
struct nv50_ram {
|
|
struct nvkm_ram base;
|
|
struct nv50_ramseq hwsq;
|
|
};
|
|
|
|
#define T(t) cfg->timing_10_##t
|
|
static int
|
|
nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
|
|
{
|
|
struct nvbios_ramcfg *cfg = &ram->base.target.bios;
|
|
struct nvkm_subdev *subdev = &ram->base.fb->subdev;
|
|
struct nvkm_device *device = subdev->device;
|
|
u32 cur2, cur4, cur7, cur8;
|
|
u8 unkt3b;
|
|
|
|
cur2 = nvkm_rd32(device, 0x100228);
|
|
cur4 = nvkm_rd32(device, 0x100230);
|
|
cur7 = nvkm_rd32(device, 0x10023c);
|
|
cur8 = nvkm_rd32(device, 0x100240);
|
|
|
|
switch ((!T(CWL)) * ram->base.type) {
|
|
case NVKM_RAM_TYPE_DDR2:
|
|
T(CWL) = T(CL) - 1;
|
|
break;
|
|
case NVKM_RAM_TYPE_GDDR3:
|
|
T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
|
|
break;
|
|
}
|
|
|
|
/* XXX: N=1 is not proper statistics */
|
|
if (device->chipset == 0xa0) {
|
|
unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
|
|
timing[6] = (0x2d + T(CL) - T(CWL) +
|
|
ram->base.next->bios.rammap_00_16_40) << 16 |
|
|
T(CWL) << 8 |
|
|
(0x2f + T(CL) - T(CWL));
|
|
} else {
|
|
unkt3b = 0x16;
|
|
timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
|
|
max_t(s8, T(CWL) - 2, 1) << 8 |
|
|
(0x2e + T(CL) - T(CWL));
|
|
}
|
|
|
|
timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
|
|
timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
|
|
max_t(u8, T(18), 1) << 16 |
|
|
(T(WTR) + 1 + T(CWL)) << 8 |
|
|
(3 + T(CL) - T(CWL));
|
|
timing[2] = (T(CWL) - 1) << 24 |
|
|
(T(RRD) << 16) |
|
|
(T(RCDWR) << 8) |
|
|
T(RCDRD);
|
|
timing[3] = (unkt3b - 2 + T(CL)) << 24 |
|
|
unkt3b << 16 |
|
|
(T(CL) - 1) << 8 |
|
|
(T(CL) - 1);
|
|
timing[4] = (cur4 & 0xffff0000) |
|
|
T(13) << 8 |
|
|
T(13);
|
|
timing[5] = T(RFC) << 24 |
|
|
max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
|
|
T(RP);
|
|
/* Timing 6 is already done above */
|
|
timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
|
|
timing[8] = (cur8 & 0xffffff00);
|
|
|
|
/* XXX: P.version == 1 only has DDR2 and GDDR3? */
|
|
if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
|
|
timing[5] |= (T(CL) + 3) << 8;
|
|
timing[8] |= (T(CL) - 4);
|
|
} else
|
|
if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
|
|
timing[5] |= (T(CL) + 2) << 8;
|
|
timing[8] |= (T(CL) - 2);
|
|
}
|
|
|
|
nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
|
|
timing[0], timing[1], timing[2], timing[3]);
|
|
nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
|
|
timing[4], timing[5], timing[6], timing[7]);
|
|
nvkm_debug(subdev, " 240: %08x\n", timing[8]);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing)
|
|
{
|
|
unsigned int i;
|
|
struct nvbios_ramcfg *cfg = &ram->base.target.bios;
|
|
struct nvkm_subdev *subdev = &ram->base.fb->subdev;
|
|
struct nvkm_device *device = subdev->device;
|
|
|
|
for (i = 0; i <= 8; i++)
|
|
timing[i] = nvkm_rd32(device, 0x100220 + (i * 4));
|
|
|
|
/* Derive the bare minimum for the MR calculation to succeed */
|
|
cfg->timing_ver = 0x10;
|
|
T(CL) = (timing[3] & 0xff) + 1;
|
|
|
|
switch (ram->base.type) {
|
|
case NVKM_RAM_TYPE_DDR2:
|
|
T(CWL) = T(CL) - 1;
|
|
break;
|
|
case NVKM_RAM_TYPE_GDDR3:
|
|
T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1;
|
|
break;
|
|
default:
|
|
return -ENOSYS;
|
|
break;
|
|
}
|
|
|
|
T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL);
|
|
|
|
return 0;
|
|
}
|
|
#undef T
|
|
|
|
static void
|
|
nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
|
|
{
|
|
ram_mask(hwsq, mr[0], 0x100, 0x100);
|
|
ram_mask(hwsq, mr[0], 0x100, 0x000);
|
|
ram_nsec(hwsq, 24000);
|
|
}
|
|
|
|
static void
|
|
nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val)
|
|
{
|
|
struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio;
|
|
struct dcb_gpio_func func;
|
|
u32 reg, sh, gpio_val;
|
|
int ret;
|
|
|
|
if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
|
|
ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
|
|
if (ret)
|
|
return;
|
|
|
|
reg = func.line >> 3;
|
|
sh = (func.line & 0x7) << 2;
|
|
gpio_val = ram_rd32(hwsq, gpio[reg]);
|
|
|
|
if (gpio_val & (8 << sh))
|
|
val = !val;
|
|
if (!(func.log[1] & 1))
|
|
val = !val;
|
|
|
|
ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
|
|
ram_nsec(hwsq, 20000);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nv50_ram_calc(struct nvkm_ram *base, u32 freq)
|
|
{
|
|
struct nv50_ram *ram = nv50_ram(base);
|
|
struct nv50_ramseq *hwsq = &ram->hwsq;
|
|
struct nvkm_subdev *subdev = &ram->base.fb->subdev;
|
|
struct nvkm_bios *bios = subdev->device->bios;
|
|
struct nvbios_perfE perfE;
|
|
struct nvbios_pll mpll;
|
|
struct nvkm_ram_data *next;
|
|
u8 ver, hdr, cnt, len, strap, size;
|
|
u32 data;
|
|
u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
|
|
int N1, M1, N2, M2, P;
|
|
int ret, i;
|
|
u32 timing[9];
|
|
|
|
next = &ram->base.target;
|
|
next->freq = freq;
|
|
ram->base.next = next;
|
|
|
|
/* lookup closest matching performance table entry for frequency */
|
|
i = 0;
|
|
do {
|
|
data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
|
|
&size, &perfE);
|
|
if (!data || (ver < 0x25 || ver >= 0x40) ||
|
|
(size < 2)) {
|
|
nvkm_error(subdev, "invalid/missing perftab entry\n");
|
|
return -EINVAL;
|
|
}
|
|
} while (perfE.memory < freq);
|
|
|
|
nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
|
|
|
|
/* locate specific data set for the attached memory */
|
|
strap = nvbios_ramcfg_index(subdev);
|
|
if (strap >= cnt) {
|
|
nvkm_error(subdev, "invalid ramcfg strap\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
|
|
&next->bios);
|
|
if (!data) {
|
|
nvkm_error(subdev, "invalid/missing rammap entry ");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* lookup memory timings, if bios says they're present */
|
|
if (next->bios.ramcfg_timing != 0xff) {
|
|
data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
|
|
&ver, &hdr, &cnt, &len, &next->bios);
|
|
if (!data || ver != 0x10 || hdr < 0x12) {
|
|
nvkm_error(subdev, "invalid/missing timing entry "
|
|
"%02x %04x %02x %02x\n",
|
|
strap, data, ver, hdr);
|
|
return -EINVAL;
|
|
}
|
|
nv50_ram_timing_calc(ram, timing);
|
|
} else {
|
|
nv50_ram_timing_read(ram, timing);
|
|
}
|
|
|
|
ret = ram_init(hwsq, subdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Determine ram-specific MR values */
|
|
ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
|
|
ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
|
|
ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
|
|
|
|
switch (ram->base.type) {
|
|
case NVKM_RAM_TYPE_GDDR3:
|
|
ret = nvkm_gddr3_calc(&ram->base);
|
|
break;
|
|
default:
|
|
ret = -ENOSYS;
|
|
break;
|
|
}
|
|
|
|
if (ret) {
|
|
nvkm_error(subdev, "Could not calculate MR\n");
|
|
return ret;
|
|
}
|
|
|
|
if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02)
|
|
ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000);
|
|
|
|
/* Always disable this bit during reclock */
|
|
ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
|
|
|
|
ram_wait_vblank(hwsq);
|
|
ram_wr32(hwsq, 0x611200, 0x00003300);
|
|
ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
|
|
ram_nsec(hwsq, 8000);
|
|
ram_setf(hwsq, 0x10, 0x00); /* disable fb */
|
|
ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
|
|
ram_nsec(hwsq, 2000);
|
|
|
|
if (next->bios.timing_10_ODT)
|
|
nv50_ram_gpio(hwsq, 0x2e, 1);
|
|
|
|
ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
|
|
ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
|
|
ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
|
|
ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
|
|
ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
|
|
|
|
ret = nvbios_pll_parse(bios, 0x004008, &mpll);
|
|
mpll.vco2.max_freq = 0;
|
|
if (ret >= 0) {
|
|
ret = nv04_pll_calc(subdev, &mpll, freq,
|
|
&N1, &M1, &N2, &M2, &P);
|
|
if (ret <= 0)
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* XXX: 750MHz seems rather arbitrary */
|
|
if (freq <= 750000) {
|
|
r100da0 = 0x00000010;
|
|
r004008 = 0x90000000;
|
|
} else {
|
|
r100da0 = 0x00000000;
|
|
r004008 = 0x80000000;
|
|
}
|
|
|
|
r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
|
|
|
|
ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
|
|
/* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
|
|
* it have a different rammap bit from DLLoff? */
|
|
ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
|
|
next->bios.rammap_00_16_40 << 14);
|
|
ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
|
|
ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
|
|
|
|
/* XXX: GDDR3 only? */
|
|
if (subdev->device->chipset >= 0x92)
|
|
ram_wr32(hwsq, 0x100da0, r100da0);
|
|
|
|
nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ);
|
|
ram_nsec(hwsq, 64000); /*XXX*/
|
|
ram_nsec(hwsq, 32000); /*XXX*/
|
|
|
|
ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
|
|
|
|
ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
|
|
ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
|
|
ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
|
|
|
|
ram_nsec(hwsq, 12000);
|
|
|
|
switch (ram->base.type) {
|
|
case NVKM_RAM_TYPE_DDR2:
|
|
ram_nuke(hwsq, mr[0]); /* force update */
|
|
ram_mask(hwsq, mr[0], 0x000, 0x000);
|
|
break;
|
|
case NVKM_RAM_TYPE_GDDR3:
|
|
ram_nuke(hwsq, mr[1]); /* force update */
|
|
ram_wr32(hwsq, mr[1], ram->base.mr[1]);
|
|
ram_nuke(hwsq, mr[0]); /* force update */
|
|
ram_wr32(hwsq, mr[0], ram->base.mr[0]);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
|
|
ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
|
|
ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
|
|
ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
|
|
ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
|
|
ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
|
|
ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
|
|
ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
|
|
ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
|
|
|
|
if (!next->bios.ramcfg_00_03_02)
|
|
ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
|
|
ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
|
|
|
|
/* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
|
|
unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000100;
|
|
unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
|
|
unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100;
|
|
unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
|
|
if (subdev->device->chipset <= 0x96) {
|
|
unk710 &= ~0x0000006e;
|
|
unk714 &= ~0x00000100;
|
|
|
|
if (!next->bios.ramcfg_00_03_08)
|
|
unk710 |= 0x00000060;
|
|
if (!next->bios.ramcfg_FBVDDQ)
|
|
unk714 |= 0x00000100;
|
|
if ( next->bios.ramcfg_00_04_04)
|
|
unk710 |= 0x0000000e;
|
|
} else {
|
|
unk710 &= ~0x00000001;
|
|
|
|
if (!next->bios.ramcfg_00_03_08)
|
|
unk710 |= 0x00000001;
|
|
}
|
|
|
|
if ( next->bios.ramcfg_00_03_01)
|
|
unk71c |= 0x00000100;
|
|
if ( next->bios.ramcfg_00_03_02)
|
|
unk710 |= 0x00000100;
|
|
if (!next->bios.ramcfg_00_03_08)
|
|
unk714 |= 0x00000020;
|
|
if ( next->bios.ramcfg_00_04_04)
|
|
unk714 |= 0x70000000;
|
|
if ( next->bios.ramcfg_00_04_20)
|
|
unk718 |= 0x00000100;
|
|
|
|
ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
|
|
ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
|
|
ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
|
|
ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
|
|
|
|
/* XXX: G94 does not even test these regs in trace. Harmless we do it,
|
|
* but why is it omitted? */
|
|
if (next->bios.rammap_00_16_20) {
|
|
ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
|
|
next->bios.ramcfg_00_06 << 8 |
|
|
next->bios.ramcfg_00_05);
|
|
ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
|
|
next->bios.ramcfg_00_08);
|
|
ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
|
|
} else {
|
|
ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
|
|
}
|
|
ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
|
|
|
|
if (!next->bios.timing_10_ODT)
|
|
nv50_ram_gpio(hwsq, 0x2e, 0);
|
|
|
|
/* Reset DLL */
|
|
if (!next->bios.ramcfg_DLLoff)
|
|
nvkm_sddr2_dll_reset(hwsq);
|
|
|
|
ram_setf(hwsq, 0x10, 0x01); /* enable fb */
|
|
ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
|
|
ram_wr32(hwsq, 0x611200, 0x00003330);
|
|
ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
|
|
|
|
if (next->bios.rammap_00_17_02)
|
|
ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
|
|
if (!next->bios.rammap_00_16_40)
|
|
ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
|
|
if (next->bios.ramcfg_00_03_02)
|
|
ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
|
|
if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02)
|
|
ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nv50_ram_prog(struct nvkm_ram *base)
|
|
{
|
|
struct nv50_ram *ram = nv50_ram(base);
|
|
struct nvkm_device *device = ram->base.fb->subdev.device;
|
|
ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nv50_ram_tidy(struct nvkm_ram *base)
|
|
{
|
|
struct nv50_ram *ram = nv50_ram(base);
|
|
ram_exec(&ram->hwsq, false);
|
|
}
|
|
|
|
static const struct nvkm_ram_func
|
|
nv50_ram_func = {
|
|
.calc = nv50_ram_calc,
|
|
.prog = nv50_ram_prog,
|
|
.tidy = nv50_ram_tidy,
|
|
};
|
|
|
|
static u32
|
|
nv50_fb_vram_rblock(struct nvkm_ram *ram)
|
|
{
|
|
struct nvkm_subdev *subdev = &ram->fb->subdev;
|
|
struct nvkm_device *device = subdev->device;
|
|
int colbits, rowbitsa, rowbitsb, banks;
|
|
u64 rowsize, predicted;
|
|
u32 r0, r4, rt, rblock_size;
|
|
|
|
r0 = nvkm_rd32(device, 0x100200);
|
|
r4 = nvkm_rd32(device, 0x100204);
|
|
rt = nvkm_rd32(device, 0x100250);
|
|
nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
|
|
r0, r4, rt, nvkm_rd32(device, 0x001540));
|
|
|
|
colbits = (r4 & 0x0000f000) >> 12;
|
|
rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
|
|
rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
|
|
banks = 1 << (((r4 & 0x03000000) >> 24) + 2);
|
|
|
|
rowsize = ram->parts * banks * (1 << colbits) * 8;
|
|
predicted = rowsize << rowbitsa;
|
|
if (r0 & 0x00000004)
|
|
predicted += rowsize << rowbitsb;
|
|
|
|
if (predicted != ram->size) {
|
|
nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
|
|
(u32)(ram->size >> 20));
|
|
}
|
|
|
|
rblock_size = rowsize;
|
|
if (rt & 1)
|
|
rblock_size *= 3;
|
|
|
|
nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
|
|
return rblock_size;
|
|
}
|
|
|
|
int
|
|
nv50_ram_ctor(const struct nvkm_ram_func *func,
|
|
struct nvkm_fb *fb, struct nvkm_ram *ram)
|
|
{
|
|
struct nvkm_device *device = fb->subdev.device;
|
|
struct nvkm_bios *bios = device->bios;
|
|
const u32 rsvd_head = ( 256 * 1024); /* vga memory */
|
|
const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
|
|
u64 size = nvkm_rd32(device, 0x10020c);
|
|
enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
|
|
int ret;
|
|
|
|
switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
|
|
case 0: type = NVKM_RAM_TYPE_DDR1; break;
|
|
case 1:
|
|
if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
|
|
type = NVKM_RAM_TYPE_DDR3;
|
|
else
|
|
type = NVKM_RAM_TYPE_DDR2;
|
|
break;
|
|
case 2: type = NVKM_RAM_TYPE_GDDR3; break;
|
|
case 3: type = NVKM_RAM_TYPE_GDDR4; break;
|
|
case 4: type = NVKM_RAM_TYPE_GDDR5; break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
|
|
|
|
ret = nvkm_ram_ctor(func, fb, type, size, ram);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
|
|
ram->parts = hweight8(ram->part_mask);
|
|
ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
|
|
nvkm_mm_fini(&ram->vram);
|
|
|
|
return nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
|
|
rsvd_head >> NVKM_RAM_MM_SHIFT,
|
|
(size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
|
|
nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
|
|
}
|
|
|
|
int
|
|
nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
|
|
{
|
|
struct nv50_ram *ram;
|
|
int ret, i;
|
|
|
|
if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
|
|
return -ENOMEM;
|
|
*pram = &ram->base;
|
|
|
|
ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
|
|
ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
|
|
ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
|
|
ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
|
|
ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
|
|
ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
|
|
ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
|
|
ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
|
|
ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
|
|
ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
|
|
ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
|
|
ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
|
|
ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
|
|
ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
|
|
ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
|
|
ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
|
|
ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
|
|
ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
|
|
ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
|
|
ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
|
|
ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
|
|
|
|
for (i = 0; i < 9; i++)
|
|
ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
|
|
|
|
if (ram->base.ranks > 1) {
|
|
ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
|
|
ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
|
|
ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
|
|
ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
|
|
} else {
|
|
ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
|
|
ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
|
|
ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
|
|
ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
|
|
}
|
|
|
|
ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104);
|
|
ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108);
|
|
ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120);
|
|
ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124);
|
|
|
|
return 0;
|
|
}
|