ubuntu-linux-kernel/drivers/gpu/drm/msm/hdmi/hdmi_hdcp.c

1438 lines
36 KiB
C

/* Copyright (c) 2010-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "hdmi.h"
#include <linux/qcom_scm.h>
#define HDCP_REG_ENABLE 0x01
#define HDCP_REG_DISABLE 0x00
#define HDCP_PORT_ADDR 0x74
#define HDCP_INT_STATUS_MASK ( \
HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_INT | \
HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT | \
HDMI_HDCP_INT_CTRL_AUTH_XFER_REQ_INT | \
HDMI_HDCP_INT_CTRL_AUTH_XFER_DONE_INT)
#define AUTH_WORK_RETRIES_TIME 100
#define AUTH_RETRIES_TIME 30
/* QFPROM Registers for HDMI/HDCP */
#define QFPROM_RAW_FEAT_CONFIG_ROW0_LSB 0x000000F8
#define QFPROM_RAW_FEAT_CONFIG_ROW0_MSB 0x000000FC
#define HDCP_KSV_LSB 0x000060D8
#define HDCP_KSV_MSB 0x000060DC
enum DS_TYPE { /* type of downstream device */
DS_UNKNOWN,
DS_RECEIVER,
DS_REPEATER,
};
enum hdmi_hdcp_state {
HDCP_STATE_NO_AKSV,
HDCP_STATE_INACTIVE,
HDCP_STATE_AUTHENTICATING,
HDCP_STATE_AUTHENTICATED,
HDCP_STATE_AUTH_FAILED
};
struct hdmi_hdcp_reg_data {
u32 reg_id;
u32 off;
char *name;
u32 reg_val;
};
struct hdmi_hdcp_ctrl {
struct hdmi *hdmi;
u32 auth_retries;
bool tz_hdcp;
enum hdmi_hdcp_state hdcp_state;
struct work_struct hdcp_auth_work;
struct work_struct hdcp_reauth_work;
#define AUTH_ABORT_EV 1
#define AUTH_RESULT_RDY_EV 2
unsigned long auth_event;
wait_queue_head_t auth_event_queue;
u32 ksv_fifo_w_index;
/*
* store aksv from qfprom
*/
u32 aksv_lsb;
u32 aksv_msb;
bool aksv_valid;
u32 ds_type;
u32 bksv_lsb;
u32 bksv_msb;
u8 dev_count;
u8 depth;
u8 ksv_list[5 * 127];
bool max_cascade_exceeded;
bool max_dev_exceeded;
};
static int msm_hdmi_ddc_read(struct hdmi *hdmi, u16 addr, u8 offset,
u8 *data, u16 data_len)
{
int rc;
int retry = 5;
struct i2c_msg msgs[] = {
{
.addr = addr >> 1,
.flags = 0,
.len = 1,
.buf = &offset,
}, {
.addr = addr >> 1,
.flags = I2C_M_RD,
.len = data_len,
.buf = data,
}
};
DBG("Start DDC read");
retry:
rc = i2c_transfer(hdmi->i2c, msgs, 2);
retry--;
if (rc == 2)
rc = 0;
else if (retry > 0)
goto retry;
else
rc = -EIO;
DBG("End DDC read %d", rc);
return rc;
}
#define HDCP_DDC_WRITE_MAX_BYTE_NUM 32
static int msm_hdmi_ddc_write(struct hdmi *hdmi, u16 addr, u8 offset,
u8 *data, u16 data_len)
{
int rc;
int retry = 10;
u8 buf[HDCP_DDC_WRITE_MAX_BYTE_NUM];
struct i2c_msg msgs[] = {
{
.addr = addr >> 1,
.flags = 0,
.len = 1,
}
};
DBG("Start DDC write");
if (data_len > (HDCP_DDC_WRITE_MAX_BYTE_NUM - 1)) {
pr_err("%s: write size too big\n", __func__);
return -ERANGE;
}
buf[0] = offset;
memcpy(&buf[1], data, data_len);
msgs[0].buf = buf;
msgs[0].len = data_len + 1;
retry:
rc = i2c_transfer(hdmi->i2c, msgs, 1);
retry--;
if (rc == 1)
rc = 0;
else if (retry > 0)
goto retry;
else
rc = -EIO;
DBG("End DDC write %d", rc);
return rc;
}
static int msm_hdmi_hdcp_scm_wr(struct hdmi_hdcp_ctrl *hdcp_ctrl, u32 *preg,
u32 *pdata, u32 count)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
struct qcom_scm_hdcp_req scm_buf[QCOM_SCM_HDCP_MAX_REQ_CNT];
u32 resp, phy_addr, idx = 0;
int i, ret = 0;
WARN_ON(!pdata || !preg || (count == 0));
if (hdcp_ctrl->tz_hdcp) {
phy_addr = (u32)hdmi->mmio_phy_addr;
while (count) {
memset(scm_buf, 0, sizeof(scm_buf));
for (i = 0; i < count && i < QCOM_SCM_HDCP_MAX_REQ_CNT;
i++) {
scm_buf[i].addr = phy_addr + preg[idx];
scm_buf[i].val = pdata[idx];
idx++;
}
ret = qcom_scm_hdcp_req(scm_buf, i, &resp);
if (ret || resp) {
pr_err("%s: error: scm_call ret=%d resp=%u\n",
__func__, ret, resp);
ret = -EINVAL;
break;
}
count -= i;
}
} else {
for (i = 0; i < count; i++)
hdmi_write(hdmi, preg[i], pdata[i]);
}
return ret;
}
void msm_hdmi_hdcp_irq(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 reg_val, hdcp_int_status;
unsigned long flags;
spin_lock_irqsave(&hdmi->reg_lock, flags);
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_INT_CTRL);
hdcp_int_status = reg_val & HDCP_INT_STATUS_MASK;
if (!hdcp_int_status) {
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
return;
}
/* Clear Interrupts */
reg_val |= hdcp_int_status << 1;
/* Clear AUTH_FAIL_INFO as well */
if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT)
reg_val |= HDMI_HDCP_INT_CTRL_AUTH_FAIL_INFO_ACK;
hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, reg_val);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
DBG("hdcp irq %x", hdcp_int_status);
if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_INT) {
pr_info("%s:AUTH_SUCCESS_INT received\n", __func__);
if (HDCP_STATE_AUTHENTICATING == hdcp_ctrl->hdcp_state) {
set_bit(AUTH_RESULT_RDY_EV, &hdcp_ctrl->auth_event);
wake_up_all(&hdcp_ctrl->auth_event_queue);
}
}
if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT) {
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
pr_info("%s: AUTH_FAIL_INT rcvd, LINK0_STATUS=0x%08x\n",
__func__, reg_val);
if (HDCP_STATE_AUTHENTICATED == hdcp_ctrl->hdcp_state)
queue_work(hdmi->workq, &hdcp_ctrl->hdcp_reauth_work);
else if (HDCP_STATE_AUTHENTICATING ==
hdcp_ctrl->hdcp_state) {
set_bit(AUTH_RESULT_RDY_EV, &hdcp_ctrl->auth_event);
wake_up_all(&hdcp_ctrl->auth_event_queue);
}
}
}
static int msm_hdmi_hdcp_msleep(struct hdmi_hdcp_ctrl *hdcp_ctrl, u32 ms, u32 ev)
{
int rc;
rc = wait_event_timeout(hdcp_ctrl->auth_event_queue,
!!test_bit(ev, &hdcp_ctrl->auth_event),
msecs_to_jiffies(ms));
if (rc) {
pr_info("%s: msleep is canceled by event %d\n",
__func__, ev);
clear_bit(ev, &hdcp_ctrl->auth_event);
return -ECANCELED;
}
return 0;
}
static int msm_hdmi_hdcp_read_validate_aksv(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
/* Fetch aksv from QFPROM, this info should be public. */
hdcp_ctrl->aksv_lsb = hdmi_qfprom_read(hdmi, HDCP_KSV_LSB);
hdcp_ctrl->aksv_msb = hdmi_qfprom_read(hdmi, HDCP_KSV_MSB);
/* check there are 20 ones in AKSV */
if ((hweight32(hdcp_ctrl->aksv_lsb) + hweight32(hdcp_ctrl->aksv_msb))
!= 20) {
pr_err("%s: AKSV QFPROM doesn't have 20 1's, 20 0's\n",
__func__);
pr_err("%s: QFPROM AKSV chk failed (AKSV=%02x%08x)\n",
__func__, hdcp_ctrl->aksv_msb,
hdcp_ctrl->aksv_lsb);
return -EINVAL;
}
DBG("AKSV=%02x%08x", hdcp_ctrl->aksv_msb, hdcp_ctrl->aksv_lsb);
return 0;
}
static int msm_reset_hdcp_ddc_failures(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 reg_val, failure, nack0;
int rc = 0;
/* Check for any DDC transfer failures */
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS);
failure = reg_val & HDMI_HDCP_DDC_STATUS_FAILED;
nack0 = reg_val & HDMI_HDCP_DDC_STATUS_NACK0;
DBG("HDCP_DDC_STATUS=0x%x, FAIL=%d, NACK0=%d",
reg_val, failure, nack0);
if (failure) {
/*
* Indicates that the last HDCP HW DDC transfer failed.
* This occurs when a transfer is attempted with HDCP DDC
* disabled (HDCP_DDC_DISABLE=1) or the number of retries
* matches HDCP_DDC_RETRY_CNT.
* Failure occurred, let's clear it.
*/
DBG("DDC failure detected");
/* First, Disable DDC */
hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_0,
HDMI_HDCP_DDC_CTRL_0_DISABLE);
/* ACK the Failure to Clear it */
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_CTRL_1);
reg_val |= HDMI_HDCP_DDC_CTRL_1_FAILED_ACK;
hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_1, reg_val);
/* Check if the FAILURE got Cleared */
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS);
if (reg_val & HDMI_HDCP_DDC_STATUS_FAILED)
pr_info("%s: Unable to clear HDCP DDC Failure\n",
__func__);
/* Re-Enable HDCP DDC */
hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_0, 0);
}
if (nack0) {
DBG("Before: HDMI_DDC_SW_STATUS=0x%08x",
hdmi_read(hdmi, REG_HDMI_DDC_SW_STATUS));
/* Reset HDMI DDC software status */
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL);
reg_val |= HDMI_DDC_CTRL_SW_STATUS_RESET;
hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val);
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL);
reg_val &= ~HDMI_DDC_CTRL_SW_STATUS_RESET;
hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val);
/* Reset HDMI DDC Controller */
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL);
reg_val |= HDMI_DDC_CTRL_SOFT_RESET;
hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val);
/* If previous msleep is aborted, skip this msleep */
if (!rc)
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL);
reg_val &= ~HDMI_DDC_CTRL_SOFT_RESET;
hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val);
DBG("After: HDMI_DDC_SW_STATUS=0x%08x",
hdmi_read(hdmi, REG_HDMI_DDC_SW_STATUS));
}
return rc;
}
static int msm_hdmi_hdcp_hw_ddc_clean(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc;
u32 hdcp_ddc_status, ddc_hw_status;
u32 xfer_done, xfer_req, hw_done;
bool hw_not_ready;
u32 timeout_count;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
if (hdmi_read(hdmi, REG_HDMI_DDC_HW_STATUS) == 0)
return 0;
/* Wait to be clean on DDC HW engine */
timeout_count = 100;
do {
hdcp_ddc_status = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS);
ddc_hw_status = hdmi_read(hdmi, REG_HDMI_DDC_HW_STATUS);
xfer_done = hdcp_ddc_status & HDMI_HDCP_DDC_STATUS_XFER_DONE;
xfer_req = hdcp_ddc_status & HDMI_HDCP_DDC_STATUS_XFER_REQ;
hw_done = ddc_hw_status & HDMI_DDC_HW_STATUS_DONE;
hw_not_ready = !xfer_done || xfer_req || !hw_done;
if (hw_not_ready)
break;
timeout_count--;
if (!timeout_count) {
pr_warn("%s: hw_ddc_clean failed\n", __func__);
return -ETIMEDOUT;
}
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
if (rc)
return rc;
} while (1);
return 0;
}
static void msm_hdmi_hdcp_reauth_work(struct work_struct *work)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(work,
struct hdmi_hdcp_ctrl, hdcp_reauth_work);
struct hdmi *hdmi = hdcp_ctrl->hdmi;
unsigned long flags;
u32 reg_val;
DBG("HDCP REAUTH WORK");
/*
* Disable HPD circuitry.
* This is needed to reset the HDCP cipher engine so that when we
* attempt a re-authentication, HW would clear the AN0_READY and
* AN1_READY bits in HDMI_HDCP_LINK0_STATUS register
*/
spin_lock_irqsave(&hdmi->reg_lock, flags);
reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL);
reg_val &= ~HDMI_HPD_CTRL_ENABLE;
hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val);
/* Disable HDCP interrupts */
hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, 0);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
hdmi_write(hdmi, REG_HDMI_HDCP_RESET,
HDMI_HDCP_RESET_LINK0_DEAUTHENTICATE);
/* Wait to be clean on DDC HW engine */
if (msm_hdmi_hdcp_hw_ddc_clean(hdcp_ctrl)) {
pr_info("%s: reauth work aborted\n", __func__);
return;
}
/* Disable encryption and disable the HDCP block */
hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, 0);
/* Enable HPD circuitry */
spin_lock_irqsave(&hdmi->reg_lock, flags);
reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL);
reg_val |= HDMI_HPD_CTRL_ENABLE;
hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
/*
* Only retry defined times then abort current authenticating process
*/
if (++hdcp_ctrl->auth_retries == AUTH_RETRIES_TIME) {
hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE;
hdcp_ctrl->auth_retries = 0;
pr_info("%s: abort reauthentication!\n", __func__);
return;
}
DBG("Queue AUTH WORK");
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATING;
queue_work(hdmi->workq, &hdcp_ctrl->hdcp_auth_work);
}
static int msm_hdmi_hdcp_auth_prepare(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 link0_status;
u32 reg_val;
unsigned long flags;
int rc;
if (!hdcp_ctrl->aksv_valid) {
rc = msm_hdmi_hdcp_read_validate_aksv(hdcp_ctrl);
if (rc) {
pr_err("%s: ASKV validation failed\n", __func__);
hdcp_ctrl->hdcp_state = HDCP_STATE_NO_AKSV;
return -ENOTSUPP;
}
hdcp_ctrl->aksv_valid = true;
}
spin_lock_irqsave(&hdmi->reg_lock, flags);
/* disable HDMI Encrypt */
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
reg_val &= ~HDMI_CTRL_ENCRYPTED;
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
/* Enabling Software DDC */
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_ARBITRATION);
reg_val &= ~HDMI_DDC_ARBITRATION_HW_ARBITRATION;
hdmi_write(hdmi, REG_HDMI_DDC_ARBITRATION, reg_val);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
/*
* Write AKSV read from QFPROM to the HDCP registers.
* This step is needed for HDCP authentication and must be
* written before enabling HDCP.
*/
hdmi_write(hdmi, REG_HDMI_HDCP_SW_LOWER_AKSV, hdcp_ctrl->aksv_lsb);
hdmi_write(hdmi, REG_HDMI_HDCP_SW_UPPER_AKSV, hdcp_ctrl->aksv_msb);
/*
* HDCP setup prior to enabling HDCP_CTRL.
* Setup seed values for random number An.
*/
hdmi_write(hdmi, REG_HDMI_HDCP_ENTROPY_CTRL0, 0xB1FFB0FF);
hdmi_write(hdmi, REG_HDMI_HDCP_ENTROPY_CTRL1, 0xF00DFACE);
/* Disable the RngCipher state */
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DEBUG_CTRL);
reg_val &= ~HDMI_HDCP_DEBUG_CTRL_RNG_CIPHER;
hdmi_write(hdmi, REG_HDMI_HDCP_DEBUG_CTRL, reg_val);
DBG("HDCP_DEBUG_CTRL=0x%08x",
hdmi_read(hdmi, REG_HDMI_HDCP_DEBUG_CTRL));
/*
* Ensure that all register writes are completed before
* enabling HDCP cipher
*/
wmb();
/*
* Enable HDCP
* This needs to be done as early as possible in order for the
* hardware to make An available to read
*/
hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, HDMI_HDCP_CTRL_ENABLE);
/*
* If we had stale values for the An ready bit, it should most
* likely be cleared now after enabling HDCP cipher
*/
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
DBG("After enabling HDCP Link0_Status=0x%08x", link0_status);
if (!(link0_status &
(HDMI_HDCP_LINK0_STATUS_AN_0_READY |
HDMI_HDCP_LINK0_STATUS_AN_1_READY)))
DBG("An not ready after enabling HDCP");
/* Clear any DDC failures from previous tries before enable HDCP*/
rc = msm_reset_hdcp_ddc_failures(hdcp_ctrl);
return rc;
}
static void msm_hdmi_hdcp_auth_fail(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 reg_val;
unsigned long flags;
DBG("hdcp auth failed, queue reauth work");
/* clear HDMI Encrypt */
spin_lock_irqsave(&hdmi->reg_lock, flags);
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
reg_val &= ~HDMI_CTRL_ENCRYPTED;
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTH_FAILED;
queue_work(hdmi->workq, &hdcp_ctrl->hdcp_reauth_work);
}
static void msm_hdmi_hdcp_auth_done(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 reg_val;
unsigned long flags;
/*
* Disable software DDC before going into part3 to make sure
* there is no Arbitration between software and hardware for DDC
*/
spin_lock_irqsave(&hdmi->reg_lock, flags);
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_ARBITRATION);
reg_val |= HDMI_DDC_ARBITRATION_HW_ARBITRATION;
hdmi_write(hdmi, REG_HDMI_DDC_ARBITRATION, reg_val);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
/* enable HDMI Encrypt */
spin_lock_irqsave(&hdmi->reg_lock, flags);
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
reg_val |= HDMI_CTRL_ENCRYPTED;
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATED;
hdcp_ctrl->auth_retries = 0;
}
/*
* hdcp authenticating part 1
* Wait Key/An ready
* Read BCAPS from sink
* Write BCAPS and AKSV into HDCP engine
* Write An and AKSV to sink
* Read BKSV from sink and write into HDCP engine
*/
static int msm_hdmi_hdcp_wait_key_an_ready(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 link0_status, keys_state;
u32 timeout_count;
bool an_ready;
/* Wait for HDCP keys to be checked and validated */
timeout_count = 100;
do {
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
keys_state = (link0_status >> 28) & 0x7;
if (keys_state == HDCP_KEYS_STATE_VALID)
break;
DBG("Keys not ready(%d). s=%d, l0=%0x08x",
timeout_count, keys_state, link0_status);
timeout_count--;
if (!timeout_count) {
pr_err("%s: Wait key state timedout", __func__);
return -ETIMEDOUT;
}
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
if (rc)
return rc;
} while (1);
timeout_count = 100;
do {
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
an_ready = (link0_status & HDMI_HDCP_LINK0_STATUS_AN_0_READY)
&& (link0_status & HDMI_HDCP_LINK0_STATUS_AN_1_READY);
if (an_ready)
break;
DBG("An not ready(%d). l0_status=0x%08x",
timeout_count, link0_status);
timeout_count--;
if (!timeout_count) {
pr_err("%s: Wait An timedout", __func__);
return -ETIMEDOUT;
}
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
if (rc)
return rc;
} while (1);
return 0;
}
static int msm_hdmi_hdcp_send_aksv_an(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc = 0;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 link0_aksv_0, link0_aksv_1;
u32 link0_an[2];
u8 aksv[5];
/* Read An0 and An1 */
link0_an[0] = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA5);
link0_an[1] = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA6);
/* Read AKSV */
link0_aksv_0 = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA3);
link0_aksv_1 = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA4);
DBG("Link ASKV=%08x%08x", link0_aksv_0, link0_aksv_1);
/* Copy An and AKSV to byte arrays for transmission */
aksv[0] = link0_aksv_0 & 0xFF;
aksv[1] = (link0_aksv_0 >> 8) & 0xFF;
aksv[2] = (link0_aksv_0 >> 16) & 0xFF;
aksv[3] = (link0_aksv_0 >> 24) & 0xFF;
aksv[4] = link0_aksv_1 & 0xFF;
/* Write An to offset 0x18 */
rc = msm_hdmi_ddc_write(hdmi, HDCP_PORT_ADDR, 0x18, (u8 *)link0_an,
(u16)sizeof(link0_an));
if (rc) {
pr_err("%s:An write failed\n", __func__);
return rc;
}
DBG("Link0-An=%08x%08x", link0_an[0], link0_an[1]);
/* Write AKSV to offset 0x10 */
rc = msm_hdmi_ddc_write(hdmi, HDCP_PORT_ADDR, 0x10, aksv, 5);
if (rc) {
pr_err("%s:AKSV write failed\n", __func__);
return rc;
}
DBG("Link0-AKSV=%02x%08x", link0_aksv_1 & 0xFF, link0_aksv_0);
return 0;
}
static int msm_hdmi_hdcp_recv_bksv(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc = 0;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u8 bksv[5];
u32 reg[2], data[2];
/* Read BKSV at offset 0x00 */
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x00, bksv, 5);
if (rc) {
pr_err("%s:BKSV read failed\n", __func__);
return rc;
}
hdcp_ctrl->bksv_lsb = bksv[0] | (bksv[1] << 8) |
(bksv[2] << 16) | (bksv[3] << 24);
hdcp_ctrl->bksv_msb = bksv[4];
DBG(":BKSV=%02x%08x", hdcp_ctrl->bksv_msb, hdcp_ctrl->bksv_lsb);
/* check there are 20 ones in BKSV */
if ((hweight32(hdcp_ctrl->bksv_lsb) + hweight32(hdcp_ctrl->bksv_msb))
!= 20) {
pr_err(": BKSV doesn't have 20 1's and 20 0's\n");
pr_err(": BKSV chk fail. BKSV=%02x%02x%02x%02x%02x\n",
bksv[4], bksv[3], bksv[2], bksv[1], bksv[0]);
return -EINVAL;
}
/* Write BKSV read from sink to HDCP registers */
reg[0] = REG_HDMI_HDCP_RCVPORT_DATA0;
data[0] = hdcp_ctrl->bksv_lsb;
reg[1] = REG_HDMI_HDCP_RCVPORT_DATA1;
data[1] = hdcp_ctrl->bksv_msb;
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, 2);
return rc;
}
static int msm_hdmi_hdcp_recv_bcaps(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc = 0;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 reg, data;
u8 bcaps;
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x40, &bcaps, 1);
if (rc) {
pr_err("%s:BCAPS read failed\n", __func__);
return rc;
}
DBG("BCAPS=%02x", bcaps);
/* receiver (0), repeater (1) */
hdcp_ctrl->ds_type = (bcaps & BIT(6)) ? DS_REPEATER : DS_RECEIVER;
/* Write BCAPS to the hardware */
reg = REG_HDMI_HDCP_RCVPORT_DATA12;
data = (u32)bcaps;
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, &reg, &data, 1);
return rc;
}
static int msm_hdmi_hdcp_auth_part1_key_exchange(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
unsigned long flags;
int rc;
/* Wait for AKSV key and An ready */
rc = msm_hdmi_hdcp_wait_key_an_ready(hdcp_ctrl);
if (rc) {
pr_err("%s: wait key and an ready failed\n", __func__);
return rc;
};
/* Read BCAPS and send to HDCP engine */
rc = msm_hdmi_hdcp_recv_bcaps(hdcp_ctrl);
if (rc) {
pr_err("%s: read bcaps error, abort\n", __func__);
return rc;
}
/*
* 1.1_Features turned off by default.
* No need to write AInfo since 1.1_Features is disabled.
*/
hdmi_write(hdmi, REG_HDMI_HDCP_RCVPORT_DATA4, 0);
/* Send AKSV and An to sink */
rc = msm_hdmi_hdcp_send_aksv_an(hdcp_ctrl);
if (rc) {
pr_err("%s:An/Aksv write failed\n", __func__);
return rc;
}
/* Read BKSV and send to HDCP engine*/
rc = msm_hdmi_hdcp_recv_bksv(hdcp_ctrl);
if (rc) {
pr_err("%s:BKSV Process failed\n", __func__);
return rc;
}
/* Enable HDCP interrupts and ack/clear any stale interrupts */
spin_lock_irqsave(&hdmi->reg_lock, flags);
hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL,
HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_ACK |
HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_MASK |
HDMI_HDCP_INT_CTRL_AUTH_FAIL_ACK |
HDMI_HDCP_INT_CTRL_AUTH_FAIL_MASK |
HDMI_HDCP_INT_CTRL_AUTH_FAIL_INFO_ACK);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
return 0;
}
/* read R0' from sink and pass it to HDCP engine */
static int msm_hdmi_hdcp_auth_part1_recv_r0(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
int rc = 0;
u8 buf[2];
/*
* HDCP Compliance Test case 1A-01:
* Wait here at least 100ms before reading R0'
*/
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 125, AUTH_ABORT_EV);
if (rc)
return rc;
/* Read R0' at offset 0x08 */
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x08, buf, 2);
if (rc) {
pr_err("%s:R0' read failed\n", __func__);
return rc;
}
DBG("R0'=%02x%02x", buf[1], buf[0]);
/* Write R0' to HDCP registers and check to see if it is a match */
hdmi_write(hdmi, REG_HDMI_HDCP_RCVPORT_DATA2_0,
(((u32)buf[1]) << 8) | buf[0]);
return 0;
}
/* Wait for authenticating result: R0/R0' are matched or not */
static int msm_hdmi_hdcp_auth_part1_verify_r0(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 link0_status;
int rc;
/* wait for hdcp irq, 10 sec should be long enough */
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 10000, AUTH_RESULT_RDY_EV);
if (!rc) {
pr_err("%s: Wait Auth IRQ timeout\n", __func__);
return -ETIMEDOUT;
}
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
if (!(link0_status & HDMI_HDCP_LINK0_STATUS_RI_MATCHES)) {
pr_err("%s: Authentication Part I failed\n", __func__);
return -EINVAL;
}
/* Enable HDCP Encryption */
hdmi_write(hdmi, REG_HDMI_HDCP_CTRL,
HDMI_HDCP_CTRL_ENABLE |
HDMI_HDCP_CTRL_ENCRYPTION_ENABLE);
return 0;
}
static int msm_hdmi_hdcp_recv_check_bstatus(struct hdmi_hdcp_ctrl *hdcp_ctrl,
u16 *pbstatus)
{
int rc;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
bool max_devs_exceeded = false, max_cascade_exceeded = false;
u32 repeater_cascade_depth = 0, down_stream_devices = 0;
u16 bstatus;
u8 buf[2];
/* Read BSTATUS at offset 0x41 */
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x41, buf, 2);
if (rc) {
pr_err("%s: BSTATUS read failed\n", __func__);
goto error;
}
*pbstatus = bstatus = (buf[1] << 8) | buf[0];
down_stream_devices = bstatus & 0x7F;
repeater_cascade_depth = (bstatus >> 8) & 0x7;
max_devs_exceeded = (bstatus & BIT(7)) ? true : false;
max_cascade_exceeded = (bstatus & BIT(11)) ? true : false;
if (down_stream_devices == 0) {
/*
* If no downstream devices are attached to the repeater
* then part II fails.
* todo: The other approach would be to continue PART II.
*/
pr_err("%s: No downstream devices\n", __func__);
rc = -EINVAL;
goto error;
}
/*
* HDCP Compliance 1B-05:
* Check if no. of devices connected to repeater
* exceed max_devices_connected from bit 7 of Bstatus.
*/
if (max_devs_exceeded) {
pr_err("%s: no. of devs connected exceeds max allowed",
__func__);
rc = -EINVAL;
goto error;
}
/*
* HDCP Compliance 1B-06:
* Check if no. of cascade connected to repeater
* exceed max_cascade_connected from bit 11 of Bstatus.
*/
if (max_cascade_exceeded) {
pr_err("%s: no. of cascade conn exceeds max allowed",
__func__);
rc = -EINVAL;
goto error;
}
error:
hdcp_ctrl->dev_count = down_stream_devices;
hdcp_ctrl->max_cascade_exceeded = max_cascade_exceeded;
hdcp_ctrl->max_dev_exceeded = max_devs_exceeded;
hdcp_ctrl->depth = repeater_cascade_depth;
return rc;
}
static int msm_hdmi_hdcp_auth_part2_wait_ksv_fifo_ready(
struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 reg, data;
u32 timeout_count;
u16 bstatus;
u8 bcaps;
/*
* Wait until READY bit is set in BCAPS, as per HDCP specifications
* maximum permitted time to check for READY bit is five seconds.
*/
timeout_count = 100;
do {
/* Read BCAPS at offset 0x40 */
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x40, &bcaps, 1);
if (rc) {
pr_err("%s: BCAPS read failed\n", __func__);
return rc;
}
if (bcaps & BIT(5))
break;
timeout_count--;
if (!timeout_count) {
pr_err("%s: Wait KSV fifo ready timedout", __func__);
return -ETIMEDOUT;
}
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
if (rc)
return rc;
} while (1);
rc = msm_hdmi_hdcp_recv_check_bstatus(hdcp_ctrl, &bstatus);
if (rc) {
pr_err("%s: bstatus error\n", __func__);
return rc;
}
/* Write BSTATUS and BCAPS to HDCP registers */
reg = REG_HDMI_HDCP_RCVPORT_DATA12;
data = bcaps | (bstatus << 8);
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, &reg, &data, 1);
if (rc) {
pr_err("%s: BSTATUS write failed\n", __func__);
return rc;
}
return 0;
}
/*
* hdcp authenticating part 2: 2nd
* read ksv fifo from sink
* transfer V' from sink to HDCP engine
* reset SHA engine
*/
static int msm_hdmi_hdcp_transfer_v_h(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
int rc = 0;
struct hdmi_hdcp_reg_data reg_data[] = {
{REG_HDMI_HDCP_RCVPORT_DATA7, 0x20, "V' H0"},
{REG_HDMI_HDCP_RCVPORT_DATA8, 0x24, "V' H1"},
{REG_HDMI_HDCP_RCVPORT_DATA9, 0x28, "V' H2"},
{REG_HDMI_HDCP_RCVPORT_DATA10, 0x2C, "V' H3"},
{REG_HDMI_HDCP_RCVPORT_DATA11, 0x30, "V' H4"},
};
struct hdmi_hdcp_reg_data *rd;
u32 size = ARRAY_SIZE(reg_data);
u32 reg[ARRAY_SIZE(reg_data)];
u32 data[ARRAY_SIZE(reg_data)];
int i;
for (i = 0; i < size; i++) {
rd = &reg_data[i];
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR,
rd->off, (u8 *)&data[i], (u16)sizeof(data[i]));
if (rc) {
pr_err("%s: Read %s failed\n", __func__, rd->name);
goto error;
}
DBG("%s =%x", rd->name, data[i]);
reg[i] = reg_data[i].reg_id;
}
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, size);
error:
return rc;
}
static int msm_hdmi_hdcp_recv_ksv_fifo(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 ksv_bytes;
ksv_bytes = 5 * hdcp_ctrl->dev_count;
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x43,
hdcp_ctrl->ksv_list, ksv_bytes);
if (rc)
pr_err("%s: KSV FIFO read failed\n", __func__);
return rc;
}
static int msm_hdmi_hdcp_reset_sha_engine(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
u32 reg[2], data[2];
u32 rc = 0;
reg[0] = REG_HDMI_HDCP_SHA_CTRL;
data[0] = HDCP_REG_ENABLE;
reg[1] = REG_HDMI_HDCP_SHA_CTRL;
data[1] = HDCP_REG_DISABLE;
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, 2);
return rc;
}
static int msm_hdmi_hdcp_auth_part2_recv_ksv_fifo(
struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc;
u32 timeout_count;
/*
* Read KSV FIFO over DDC
* Key Selection vector FIFO Used to pull downstream KSVs
* from HDCP Repeaters.
* All bytes (DEVICE_COUNT * 5) must be read in a single,
* auto incrementing access.
* All bytes read as 0x00 for HDCP Receivers that are not
* HDCP Repeaters (REPEATER == 0).
*/
timeout_count = 100;
do {
rc = msm_hdmi_hdcp_recv_ksv_fifo(hdcp_ctrl);
if (!rc)
break;
timeout_count--;
if (!timeout_count) {
pr_err("%s: Recv ksv fifo timedout", __func__);
return -ETIMEDOUT;
}
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 25, AUTH_ABORT_EV);
if (rc)
return rc;
} while (1);
rc = msm_hdmi_hdcp_transfer_v_h(hdcp_ctrl);
if (rc) {
pr_err("%s: transfer V failed\n", __func__);
return rc;
}
/* reset SHA engine before write ksv fifo */
rc = msm_hdmi_hdcp_reset_sha_engine(hdcp_ctrl);
if (rc) {
pr_err("%s: fail to reset sha engine\n", __func__);
return rc;
}
return 0;
}
/*
* Write KSV FIFO to HDCP_SHA_DATA.
* This is done 1 byte at time starting with the LSB.
* Once 64 bytes have been written, we need to poll for
* HDCP_SHA_BLOCK_DONE before writing any further
* If the last byte is written, we need to poll for
* HDCP_SHA_COMP_DONE to wait until HW finish
*/
static int msm_hdmi_hdcp_write_ksv_fifo(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int i;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 ksv_bytes, last_byte = 0;
u8 *ksv_fifo = NULL;
u32 reg_val, data, reg;
u32 rc = 0;
ksv_bytes = 5 * hdcp_ctrl->dev_count;
/* Check if need to wait for HW completion */
if (hdcp_ctrl->ksv_fifo_w_index) {
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_SHA_STATUS);
DBG("HDCP_SHA_STATUS=%08x", reg_val);
if (hdcp_ctrl->ksv_fifo_w_index == ksv_bytes) {
/* check COMP_DONE if last write */
if (reg_val & HDMI_HDCP_SHA_STATUS_COMP_DONE) {
DBG("COMP_DONE");
return 0;
} else {
return -EAGAIN;
}
} else {
/* check BLOCK_DONE if not last write */
if (!(reg_val & HDMI_HDCP_SHA_STATUS_BLOCK_DONE))
return -EAGAIN;
DBG("BLOCK_DONE");
}
}
ksv_bytes -= hdcp_ctrl->ksv_fifo_w_index;
if (ksv_bytes <= 64)
last_byte = 1;
else
ksv_bytes = 64;
ksv_fifo = hdcp_ctrl->ksv_list;
ksv_fifo += hdcp_ctrl->ksv_fifo_w_index;
for (i = 0; i < ksv_bytes; i++) {
/* Write KSV byte and set DONE bit[0] for last byte*/
reg_val = ksv_fifo[i] << 16;
if ((i == (ksv_bytes - 1)) && last_byte)
reg_val |= HDMI_HDCP_SHA_DATA_DONE;
reg = REG_HDMI_HDCP_SHA_DATA;
data = reg_val;
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, &reg, &data, 1);
if (rc)
return rc;
}
hdcp_ctrl->ksv_fifo_w_index += ksv_bytes;
/*
*return -EAGAIN to notify caller to wait for COMP_DONE or BLOCK_DONE
*/
return -EAGAIN;
}
/* write ksv fifo into HDCP engine */
static int msm_hdmi_hdcp_auth_part2_write_ksv_fifo(
struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc;
u32 timeout_count;
hdcp_ctrl->ksv_fifo_w_index = 0;
timeout_count = 100;
do {
rc = msm_hdmi_hdcp_write_ksv_fifo(hdcp_ctrl);
if (!rc)
break;
if (rc != -EAGAIN)
return rc;
timeout_count--;
if (!timeout_count) {
pr_err("%s: Write KSV fifo timedout", __func__);
return -ETIMEDOUT;
}
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
if (rc)
return rc;
} while (1);
return 0;
}
static int msm_hdmi_hdcp_auth_part2_check_v_match(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc = 0;
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 link0_status;
u32 timeout_count = 100;
do {
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
if (link0_status & HDMI_HDCP_LINK0_STATUS_V_MATCHES)
break;
timeout_count--;
if (!timeout_count) {
pr_err("%s: HDCP V Match timedout", __func__);
return -ETIMEDOUT;
}
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
if (rc)
return rc;
} while (1);
return 0;
}
static void msm_hdmi_hdcp_auth_work(struct work_struct *work)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(work,
struct hdmi_hdcp_ctrl, hdcp_auth_work);
int rc;
rc = msm_hdmi_hdcp_auth_prepare(hdcp_ctrl);
if (rc) {
pr_err("%s: auth prepare failed %d\n", __func__, rc);
goto end;
}
/* HDCP PartI */
rc = msm_hdmi_hdcp_auth_part1_key_exchange(hdcp_ctrl);
if (rc) {
pr_err("%s: key exchange failed %d\n", __func__, rc);
goto end;
}
rc = msm_hdmi_hdcp_auth_part1_recv_r0(hdcp_ctrl);
if (rc) {
pr_err("%s: receive r0 failed %d\n", __func__, rc);
goto end;
}
rc = msm_hdmi_hdcp_auth_part1_verify_r0(hdcp_ctrl);
if (rc) {
pr_err("%s: verify r0 failed %d\n", __func__, rc);
goto end;
}
pr_info("%s: Authentication Part I successful\n", __func__);
if (hdcp_ctrl->ds_type == DS_RECEIVER)
goto end;
/* HDCP PartII */
rc = msm_hdmi_hdcp_auth_part2_wait_ksv_fifo_ready(hdcp_ctrl);
if (rc) {
pr_err("%s: wait ksv fifo ready failed %d\n", __func__, rc);
goto end;
}
rc = msm_hdmi_hdcp_auth_part2_recv_ksv_fifo(hdcp_ctrl);
if (rc) {
pr_err("%s: recv ksv fifo failed %d\n", __func__, rc);
goto end;
}
rc = msm_hdmi_hdcp_auth_part2_write_ksv_fifo(hdcp_ctrl);
if (rc) {
pr_err("%s: write ksv fifo failed %d\n", __func__, rc);
goto end;
}
rc = msm_hdmi_hdcp_auth_part2_check_v_match(hdcp_ctrl);
if (rc)
pr_err("%s: check v match failed %d\n", __func__, rc);
end:
if (rc == -ECANCELED) {
pr_info("%s: hdcp authentication canceled\n", __func__);
} else if (rc == -ENOTSUPP) {
pr_info("%s: hdcp is not supported\n", __func__);
} else if (rc) {
pr_err("%s: hdcp authentication failed\n", __func__);
msm_hdmi_hdcp_auth_fail(hdcp_ctrl);
} else {
msm_hdmi_hdcp_auth_done(hdcp_ctrl);
}
}
void msm_hdmi_hdcp_on(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
u32 reg_val;
unsigned long flags;
if ((HDCP_STATE_INACTIVE != hdcp_ctrl->hdcp_state) ||
(HDCP_STATE_NO_AKSV == hdcp_ctrl->hdcp_state)) {
DBG("still active or activating or no askv. returning");
return;
}
/* clear HDMI Encrypt */
spin_lock_irqsave(&hdmi->reg_lock, flags);
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
reg_val &= ~HDMI_CTRL_ENCRYPTED;
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
hdcp_ctrl->auth_event = 0;
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATING;
hdcp_ctrl->auth_retries = 0;
queue_work(hdmi->workq, &hdcp_ctrl->hdcp_auth_work);
}
void msm_hdmi_hdcp_off(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct hdmi *hdmi = hdcp_ctrl->hdmi;
unsigned long flags;
u32 reg_val;
if ((HDCP_STATE_INACTIVE == hdcp_ctrl->hdcp_state) ||
(HDCP_STATE_NO_AKSV == hdcp_ctrl->hdcp_state)) {
DBG("hdcp inactive or no aksv. returning");
return;
}
/*
* Disable HPD circuitry.
* This is needed to reset the HDCP cipher engine so that when we
* attempt a re-authentication, HW would clear the AN0_READY and
* AN1_READY bits in HDMI_HDCP_LINK0_STATUS register
*/
spin_lock_irqsave(&hdmi->reg_lock, flags);
reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL);
reg_val &= ~HDMI_HPD_CTRL_ENABLE;
hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val);
/*
* Disable HDCP interrupts.
* Also, need to set the state to inactive here so that any ongoing
* reauth works will know that the HDCP session has been turned off.
*/
hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, 0);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
/*
* Cancel any pending auth/reauth attempts.
* If one is ongoing, this will wait for it to finish.
* No more reauthentication attempts will be scheduled since we
* set the current state to inactive.
*/
set_bit(AUTH_ABORT_EV, &hdcp_ctrl->auth_event);
wake_up_all(&hdcp_ctrl->auth_event_queue);
cancel_work_sync(&hdcp_ctrl->hdcp_auth_work);
cancel_work_sync(&hdcp_ctrl->hdcp_reauth_work);
hdmi_write(hdmi, REG_HDMI_HDCP_RESET,
HDMI_HDCP_RESET_LINK0_DEAUTHENTICATE);
/* Disable encryption and disable the HDCP block */
hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, 0);
spin_lock_irqsave(&hdmi->reg_lock, flags);
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
reg_val &= ~HDMI_CTRL_ENCRYPTED;
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
/* Enable HPD circuitry */
reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL);
reg_val |= HDMI_HPD_CTRL_ENABLE;
hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val);
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE;
DBG("HDCP: Off");
}
struct hdmi_hdcp_ctrl *msm_hdmi_hdcp_init(struct hdmi *hdmi)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = NULL;
if (!hdmi->qfprom_mmio) {
pr_err("%s: HDCP is not supported without qfprom\n",
__func__);
return ERR_PTR(-EINVAL);
}
hdcp_ctrl = kzalloc(sizeof(*hdcp_ctrl), GFP_KERNEL);
if (!hdcp_ctrl)
return ERR_PTR(-ENOMEM);
INIT_WORK(&hdcp_ctrl->hdcp_auth_work, msm_hdmi_hdcp_auth_work);
INIT_WORK(&hdcp_ctrl->hdcp_reauth_work, msm_hdmi_hdcp_reauth_work);
init_waitqueue_head(&hdcp_ctrl->auth_event_queue);
hdcp_ctrl->hdmi = hdmi;
hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE;
hdcp_ctrl->aksv_valid = false;
if (qcom_scm_hdcp_available())
hdcp_ctrl->tz_hdcp = true;
else
hdcp_ctrl->tz_hdcp = false;
return hdcp_ctrl;
}
void msm_hdmi_hdcp_destroy(struct hdmi *hdmi)
{
if (hdmi) {
kfree(hdmi->hdcp_ctrl);
hdmi->hdcp_ctrl = NULL;
}
}