ubuntu-linux-kernel/drivers/gpu/drm/msm/adreno/a5xx_gpu.c

1227 lines
37 KiB
C

/* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/types.h>
#include <linux/cpumask.h>
#include <linux/qcom_scm.h>
#include <linux/dma-mapping.h>
#include <linux/of_address.h>
#include <linux/soc/qcom/mdt_loader.h>
#include "msm_gem.h"
#include "msm_mmu.h"
#include "a5xx_gpu.h"
extern bool hang_debug;
static void a5xx_dump(struct msm_gpu *gpu);
#define GPU_PAS_ID 13
static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname)
{
struct device *dev = &gpu->pdev->dev;
const struct firmware *fw;
struct device_node *np;
struct resource r;
phys_addr_t mem_phys;
ssize_t mem_size;
void *mem_region = NULL;
int ret;
if (!IS_ENABLED(CONFIG_ARCH_QCOM))
return -EINVAL;
np = of_get_child_by_name(dev->of_node, "zap-shader");
if (!np)
return -ENODEV;
np = of_parse_phandle(np, "memory-region", 0);
if (!np)
return -EINVAL;
ret = of_address_to_resource(np, 0, &r);
if (ret)
return ret;
mem_phys = r.start;
mem_size = resource_size(&r);
/* Request the MDT file for the firmware */
fw = adreno_request_fw(to_adreno_gpu(gpu), fwname);
if (IS_ERR(fw)) {
DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname);
return PTR_ERR(fw);
}
/* Figure out how much memory we need */
mem_size = qcom_mdt_get_size(fw);
if (mem_size < 0) {
ret = mem_size;
goto out;
}
/* Allocate memory for the firmware image */
mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC);
if (!mem_region) {
ret = -ENOMEM;
goto out;
}
/*
* Load the rest of the MDT
*
* Note that we could be dealing with two different paths, since
* with upstream linux-firmware it would be in a qcom/ subdir..
* adreno_request_fw() handles this, but qcom_mdt_load() does
* not. But since we've already gotten thru adreno_request_fw()
* we know which of the two cases it is:
*/
if (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY) {
ret = qcom_mdt_load(dev, fw, fwname, GPU_PAS_ID,
mem_region, mem_phys, mem_size);
} else {
char newname[strlen("qcom/") + strlen(fwname) + 1];
sprintf(newname, "qcom/%s", fwname);
ret = qcom_mdt_load(dev, fw, newname, GPU_PAS_ID,
mem_region, mem_phys, mem_size);
}
if (ret)
goto out;
/* Send the image to the secure world */
ret = qcom_scm_pas_auth_and_reset(GPU_PAS_ID);
if (ret)
DRM_DEV_ERROR(dev, "Unable to authorize the image\n");
out:
if (mem_region)
memunmap(mem_region);
release_firmware(fw);
return ret;
}
static void a5xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
uint32_t wptr;
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
/* Copy the shadow to the actual register */
ring->cur = ring->next;
/* Make sure to wrap wptr if we need to */
wptr = get_wptr(ring);
spin_unlock_irqrestore(&ring->lock, flags);
/* Make sure everything is posted before making a decision */
mb();
/* Update HW if this is the current ring and we are not in preempt */
if (a5xx_gpu->cur_ring == ring && !a5xx_in_preempt(a5xx_gpu))
gpu_write(gpu, REG_A5XX_CP_RB_WPTR, wptr);
}
static void a5xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
struct msm_file_private *ctx)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
struct msm_drm_private *priv = gpu->dev->dev_private;
struct msm_ringbuffer *ring = submit->ring;
unsigned int i, ibs = 0;
OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
OUT_RING(ring, 0x02);
/* Turn off protected mode to write to special registers */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 0);
/* Set the save preemption record for the ring/command */
OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
/* Turn back on protected mode */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 1);
/* Enable local preemption for finegrain preemption */
OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
OUT_RING(ring, 0x02);
/* Allow CP_CONTEXT_SWITCH_YIELD packets in the IB2 */
OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
OUT_RING(ring, 0x02);
/* Submit the commands */
for (i = 0; i < submit->nr_cmds; i++) {
switch (submit->cmd[i].type) {
case MSM_SUBMIT_CMD_IB_TARGET_BUF:
break;
case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
if (priv->lastctx == ctx)
break;
case MSM_SUBMIT_CMD_BUF:
OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
OUT_RING(ring, submit->cmd[i].size);
ibs++;
break;
}
}
/*
* Write the render mode to NULL (0) to indicate to the CP that the IBs
* are done rendering - otherwise a lucky preemption would start
* replaying from the last checkpoint
*/
OUT_PKT7(ring, CP_SET_RENDER_MODE, 5);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
/* Turn off IB level preemptions */
OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
OUT_RING(ring, 0x01);
/* Write the fence to the scratch register */
OUT_PKT4(ring, REG_A5XX_CP_SCRATCH_REG(2), 1);
OUT_RING(ring, submit->seqno);
/*
* Execute a CACHE_FLUSH_TS event. This will ensure that the
* timestamp is written to the memory and then triggers the interrupt
*/
OUT_PKT7(ring, CP_EVENT_WRITE, 4);
OUT_RING(ring, CACHE_FLUSH_TS | (1 << 31));
OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, submit->seqno);
/* Yield the floor on command completion */
OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
/*
* If dword[2:1] are non zero, they specify an address for the CP to
* write the value of dword[3] to on preemption complete. Write 0 to
* skip the write
*/
OUT_RING(ring, 0x00);
OUT_RING(ring, 0x00);
/* Data value - not used if the address above is 0 */
OUT_RING(ring, 0x01);
/* Set bit 0 to trigger an interrupt on preempt complete */
OUT_RING(ring, 0x01);
a5xx_flush(gpu, ring);
/* Check to see if we need to start preemption */
a5xx_preempt_trigger(gpu);
}
static const struct {
u32 offset;
u32 value;
} a5xx_hwcg[] = {
{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL_SP2, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL_SP3, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP2, 0x02222220},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP3, 0x02222220},
{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_HYST_SP2, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_HYST_SP3, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
{REG_A5XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
{REG_A5XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_TP2, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_TP3, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP2, 0x00002222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP3, 0x00002222},
{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP2, 0x00007777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP3, 0x00007777},
{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP2, 0x00001111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP3, 0x00001111},
{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB2, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB3, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU2, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU3, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU2, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU3, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_2, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_3, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}
};
void a5xx_set_hwcg(struct msm_gpu *gpu, bool state)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(a5xx_hwcg); i++)
gpu_write(gpu, a5xx_hwcg[i].offset,
state ? a5xx_hwcg[i].value : 0);
gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, state ? 0xAAA8AA00 : 0);
gpu_write(gpu, REG_A5XX_RBBM_ISDB_CNT, state ? 0x182 : 0x180);
}
static int a5xx_me_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct msm_ringbuffer *ring = gpu->rb[0];
OUT_PKT7(ring, CP_ME_INIT, 8);
OUT_RING(ring, 0x0000002F);
/* Enable multiple hardware contexts */
OUT_RING(ring, 0x00000003);
/* Enable error detection */
OUT_RING(ring, 0x20000000);
/* Don't enable header dump */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
/* Specify workarounds for various microcode issues */
if (adreno_is_a530(adreno_gpu)) {
/* Workaround for token end syncs
* Force a WFI after every direct-render 3D mode draw and every
* 2D mode 3 draw
*/
OUT_RING(ring, 0x0000000B);
} else {
/* No workarounds enabled */
OUT_RING(ring, 0x00000000);
}
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
gpu->funcs->flush(gpu, ring);
return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
}
static int a5xx_preempt_start(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = gpu->rb[0];
if (gpu->nr_rings == 1)
return 0;
/* Turn off protected mode to write to special registers */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 0);
/* Set the save preemption record for the ring/command */
OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[ring->id]));
OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[ring->id]));
/* Turn back on protected mode */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 1);
OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
OUT_RING(ring, 0x00);
OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1);
OUT_RING(ring, 0x01);
OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
OUT_RING(ring, 0x01);
/* Yield the floor on command completion */
OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
OUT_RING(ring, 0x00);
OUT_RING(ring, 0x00);
OUT_RING(ring, 0x01);
OUT_RING(ring, 0x01);
gpu->funcs->flush(gpu, ring);
return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
}
static struct drm_gem_object *a5xx_ucode_load_bo(struct msm_gpu *gpu,
const struct firmware *fw, u64 *iova)
{
struct drm_gem_object *bo;
void *ptr;
ptr = msm_gem_kernel_new_locked(gpu->dev, fw->size - 4,
MSM_BO_UNCACHED | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova);
if (IS_ERR(ptr))
return ERR_CAST(ptr);
memcpy(ptr, &fw->data[4], fw->size - 4);
msm_gem_put_vaddr(bo);
return bo;
}
static int a5xx_ucode_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
int ret;
if (!a5xx_gpu->pm4_bo) {
a5xx_gpu->pm4_bo = a5xx_ucode_load_bo(gpu, adreno_gpu->pm4,
&a5xx_gpu->pm4_iova);
if (IS_ERR(a5xx_gpu->pm4_bo)) {
ret = PTR_ERR(a5xx_gpu->pm4_bo);
a5xx_gpu->pm4_bo = NULL;
dev_err(gpu->dev->dev, "could not allocate PM4: %d\n",
ret);
return ret;
}
}
if (!a5xx_gpu->pfp_bo) {
a5xx_gpu->pfp_bo = a5xx_ucode_load_bo(gpu, adreno_gpu->pfp,
&a5xx_gpu->pfp_iova);
if (IS_ERR(a5xx_gpu->pfp_bo)) {
ret = PTR_ERR(a5xx_gpu->pfp_bo);
a5xx_gpu->pfp_bo = NULL;
dev_err(gpu->dev->dev, "could not allocate PFP: %d\n",
ret);
return ret;
}
}
gpu_write64(gpu, REG_A5XX_CP_ME_INSTR_BASE_LO,
REG_A5XX_CP_ME_INSTR_BASE_HI, a5xx_gpu->pm4_iova);
gpu_write64(gpu, REG_A5XX_CP_PFP_INSTR_BASE_LO,
REG_A5XX_CP_PFP_INSTR_BASE_HI, a5xx_gpu->pfp_iova);
return 0;
}
#define SCM_GPU_ZAP_SHADER_RESUME 0
static int a5xx_zap_shader_resume(struct msm_gpu *gpu)
{
int ret;
ret = qcom_scm_set_remote_state(SCM_GPU_ZAP_SHADER_RESUME, GPU_PAS_ID);
if (ret)
DRM_ERROR("%s: zap-shader resume failed: %d\n",
gpu->name, ret);
return ret;
}
static int a5xx_zap_shader_init(struct msm_gpu *gpu)
{
static bool loaded;
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct platform_device *pdev = gpu->pdev;
int ret;
/*
* If the zap shader is already loaded into memory we just need to kick
* the remote processor to reinitialize it
*/
if (loaded)
return a5xx_zap_shader_resume(gpu);
/* We need SCM to be able to load the firmware */
if (!qcom_scm_is_available()) {
DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n");
return -EPROBE_DEFER;
}
/* Each GPU has a target specific zap shader firmware name to use */
if (!adreno_gpu->info->zapfw) {
DRM_DEV_ERROR(&pdev->dev,
"Zap shader firmware file not specified for this target\n");
return -ENODEV;
}
ret = zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw);
loaded = !ret;
return ret;
}
#define A5XX_INT_MASK (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW | \
A5XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT | \
A5XX_RBBM_INT_0_MASK_CP_SW | \
A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
static int a5xx_hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int ret;
gpu_write(gpu, REG_A5XX_VBIF_ROUND_ROBIN_QOS_ARB, 0x00000003);
/* Make all blocks contribute to the GPU BUSY perf counter */
gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xFFFFFFFF);
/* Enable RBBM error reporting bits */
gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL0, 0x00000001);
if (adreno_gpu->info->quirks & ADRENO_QUIRK_FAULT_DETECT_MASK) {
/*
* Mask out the activity signals from RB1-3 to avoid false
* positives
*/
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL11,
0xF0000000);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL12,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL13,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL14,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL15,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL16,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL17,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL18,
0xFFFFFFFF);
}
/* Enable fault detection */
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_INT_CNTL,
(1 << 30) | 0xFFFF);
/* Turn on performance counters */
gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_CNTL, 0x01);
/* Increase VFD cache access so LRZ and other data gets evicted less */
gpu_write(gpu, REG_A5XX_UCHE_CACHE_WAYS, 0x02);
/* Disable L2 bypass in the UCHE */
gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_LO, 0xFFFF0000);
gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_HI, 0x0001FFFF);
gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_LO, 0xFFFF0000);
gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_HI, 0x0001FFFF);
/* Set the GMEM VA range (0 to gpu->gmem) */
gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000);
gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_HI, 0x00000000);
gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_LO,
0x00100000 + adreno_gpu->gmem - 1);
gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_HI, 0x00000000);
gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x40);
gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x40);
gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x80000060);
gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x40201B16);
gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL, (0x400 << 11 | 0x300 << 22));
if (adreno_gpu->info->quirks & ADRENO_QUIRK_TWO_PASS_USE_WFI)
gpu_rmw(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 0, (1 << 8));
gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 0xc0200100);
/* Enable USE_RETENTION_FLOPS */
gpu_write(gpu, REG_A5XX_CP_CHICKEN_DBG, 0x02000000);
/* Enable ME/PFP split notification */
gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL1, 0xA6FFFFFF);
/* Enable HWCG */
a5xx_set_hwcg(gpu, true);
gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL2, 0x0000003F);
/* Set the highest bank bit */
gpu_write(gpu, REG_A5XX_TPL1_MODE_CNTL, 2 << 7);
gpu_write(gpu, REG_A5XX_RB_MODE_CNTL, 2 << 1);
/* Protect registers from the CP */
gpu_write(gpu, REG_A5XX_CP_PROTECT_CNTL, 0x00000007);
/* RBBM */
gpu_write(gpu, REG_A5XX_CP_PROTECT(0), ADRENO_PROTECT_RW(0x04, 4));
gpu_write(gpu, REG_A5XX_CP_PROTECT(1), ADRENO_PROTECT_RW(0x08, 8));
gpu_write(gpu, REG_A5XX_CP_PROTECT(2), ADRENO_PROTECT_RW(0x10, 16));
gpu_write(gpu, REG_A5XX_CP_PROTECT(3), ADRENO_PROTECT_RW(0x20, 32));
gpu_write(gpu, REG_A5XX_CP_PROTECT(4), ADRENO_PROTECT_RW(0x40, 64));
gpu_write(gpu, REG_A5XX_CP_PROTECT(5), ADRENO_PROTECT_RW(0x80, 64));
/* Content protect */
gpu_write(gpu, REG_A5XX_CP_PROTECT(6),
ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
16));
gpu_write(gpu, REG_A5XX_CP_PROTECT(7),
ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TRUST_CNTL, 2));
/* CP */
gpu_write(gpu, REG_A5XX_CP_PROTECT(8), ADRENO_PROTECT_RW(0x800, 64));
gpu_write(gpu, REG_A5XX_CP_PROTECT(9), ADRENO_PROTECT_RW(0x840, 8));
gpu_write(gpu, REG_A5XX_CP_PROTECT(10), ADRENO_PROTECT_RW(0x880, 32));
gpu_write(gpu, REG_A5XX_CP_PROTECT(11), ADRENO_PROTECT_RW(0xAA0, 1));
/* RB */
gpu_write(gpu, REG_A5XX_CP_PROTECT(12), ADRENO_PROTECT_RW(0xCC0, 1));
gpu_write(gpu, REG_A5XX_CP_PROTECT(13), ADRENO_PROTECT_RW(0xCF0, 2));
/* VPC */
gpu_write(gpu, REG_A5XX_CP_PROTECT(14), ADRENO_PROTECT_RW(0xE68, 8));
gpu_write(gpu, REG_A5XX_CP_PROTECT(15), ADRENO_PROTECT_RW(0xE70, 4));
/* UCHE */
gpu_write(gpu, REG_A5XX_CP_PROTECT(16), ADRENO_PROTECT_RW(0xE80, 16));
if (adreno_is_a530(adreno_gpu))
gpu_write(gpu, REG_A5XX_CP_PROTECT(17),
ADRENO_PROTECT_RW(0x10000, 0x8000));
gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_CNTL, 0);
/*
* Disable the trusted memory range - we don't actually supported secure
* memory rendering at this point in time and we don't want to block off
* part of the virtual memory space.
*/
gpu_write64(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
ret = adreno_hw_init(gpu);
if (ret)
return ret;
a5xx_preempt_hw_init(gpu);
a5xx_gpmu_ucode_init(gpu);
ret = a5xx_ucode_init(gpu);
if (ret)
return ret;
/* Disable the interrupts through the initial bringup stage */
gpu_write(gpu, REG_A5XX_RBBM_INT_0_MASK, A5XX_INT_MASK);
/* Clear ME_HALT to start the micro engine */
gpu_write(gpu, REG_A5XX_CP_PFP_ME_CNTL, 0);
ret = a5xx_me_init(gpu);
if (ret)
return ret;
ret = a5xx_power_init(gpu);
if (ret)
return ret;
/*
* Send a pipeline event stat to get misbehaving counters to start
* ticking correctly
*/
if (adreno_is_a530(adreno_gpu)) {
OUT_PKT7(gpu->rb[0], CP_EVENT_WRITE, 1);
OUT_RING(gpu->rb[0], 0x0F);
gpu->funcs->flush(gpu, gpu->rb[0]);
if (!a5xx_idle(gpu, gpu->rb[0]))
return -EINVAL;
}
/*
* Try to load a zap shader into the secure world. If successful
* we can use the CP to switch out of secure mode. If not then we
* have no resource but to try to switch ourselves out manually. If we
* guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
* be blocked and a permissions violation will soon follow.
*/
ret = a5xx_zap_shader_init(gpu);
if (!ret) {
OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
OUT_RING(gpu->rb[0], 0x00000000);
gpu->funcs->flush(gpu, gpu->rb[0]);
if (!a5xx_idle(gpu, gpu->rb[0]))
return -EINVAL;
} else {
/* Print a warning so if we die, we know why */
dev_warn_once(gpu->dev->dev,
"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
gpu_write(gpu, REG_A5XX_RBBM_SECVID_TRUST_CNTL, 0x0);
}
/* Last step - yield the ringbuffer */
a5xx_preempt_start(gpu);
return 0;
}
static void a5xx_recover(struct msm_gpu *gpu)
{
int i;
adreno_dump_info(gpu);
for (i = 0; i < 8; i++) {
printk("CP_SCRATCH_REG%d: %u\n", i,
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(i)));
}
if (hang_debug)
a5xx_dump(gpu);
gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 1);
gpu_read(gpu, REG_A5XX_RBBM_SW_RESET_CMD);
gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 0);
adreno_recover(gpu);
}
static void a5xx_destroy(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
DBG("%s", gpu->name);
a5xx_preempt_fini(gpu);
if (a5xx_gpu->pm4_bo) {
if (a5xx_gpu->pm4_iova)
msm_gem_put_iova(a5xx_gpu->pm4_bo, gpu->aspace);
drm_gem_object_unreference_unlocked(a5xx_gpu->pm4_bo);
}
if (a5xx_gpu->pfp_bo) {
if (a5xx_gpu->pfp_iova)
msm_gem_put_iova(a5xx_gpu->pfp_bo, gpu->aspace);
drm_gem_object_unreference_unlocked(a5xx_gpu->pfp_bo);
}
if (a5xx_gpu->gpmu_bo) {
if (a5xx_gpu->gpmu_iova)
msm_gem_put_iova(a5xx_gpu->gpmu_bo, gpu->aspace);
drm_gem_object_unreference_unlocked(a5xx_gpu->gpmu_bo);
}
adreno_gpu_cleanup(adreno_gpu);
kfree(a5xx_gpu);
}
static inline bool _a5xx_check_idle(struct msm_gpu *gpu)
{
if (gpu_read(gpu, REG_A5XX_RBBM_STATUS) & ~A5XX_RBBM_STATUS_HI_BUSY)
return false;
/*
* Nearly every abnormality ends up pausing the GPU and triggering a
* fault so we can safely just watch for this one interrupt to fire
*/
return !(gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS) &
A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT);
}
bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
if (ring != a5xx_gpu->cur_ring) {
WARN(1, "Tried to idle a non-current ringbuffer\n");
return false;
}
/* wait for CP to drain ringbuffer: */
if (!adreno_idle(gpu, ring))
return false;
if (spin_until(_a5xx_check_idle(gpu))) {
DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
gpu->name, __builtin_return_address(0),
gpu_read(gpu, REG_A5XX_RBBM_STATUS),
gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS),
gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
gpu_read(gpu, REG_A5XX_CP_RB_WPTR));
return false;
}
return true;
}
static int a5xx_fault_handler(void *arg, unsigned long iova, int flags)
{
struct msm_gpu *gpu = arg;
pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
iova, flags,
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(4)),
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(5)),
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(6)),
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(7)));
return -EFAULT;
}
static void a5xx_cp_err_irq(struct msm_gpu *gpu)
{
u32 status = gpu_read(gpu, REG_A5XX_CP_INTERRUPT_STATUS);
if (status & A5XX_CP_INT_CP_OPCODE_ERROR) {
u32 val;
gpu_write(gpu, REG_A5XX_CP_PFP_STAT_ADDR, 0);
/*
* REG_A5XX_CP_PFP_STAT_DATA is indexed, and we want index 1 so
* read it twice
*/
gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
val = gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
dev_err_ratelimited(gpu->dev->dev, "CP | opcode error | possible opcode=0x%8.8X\n",
val);
}
if (status & A5XX_CP_INT_CP_HW_FAULT_ERROR)
dev_err_ratelimited(gpu->dev->dev, "CP | HW fault | status=0x%8.8X\n",
gpu_read(gpu, REG_A5XX_CP_HW_FAULT));
if (status & A5XX_CP_INT_CP_DMA_ERROR)
dev_err_ratelimited(gpu->dev->dev, "CP | DMA error\n");
if (status & A5XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
u32 val = gpu_read(gpu, REG_A5XX_CP_PROTECT_STATUS);
dev_err_ratelimited(gpu->dev->dev,
"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
val & (1 << 24) ? "WRITE" : "READ",
(val & 0xFFFFF) >> 2, val);
}
if (status & A5XX_CP_INT_CP_AHB_ERROR) {
u32 status = gpu_read(gpu, REG_A5XX_CP_AHB_FAULT);
const char *access[16] = { "reserved", "reserved",
"timestamp lo", "timestamp hi", "pfp read", "pfp write",
"", "", "me read", "me write", "", "", "crashdump read",
"crashdump write" };
dev_err_ratelimited(gpu->dev->dev,
"CP | AHB error | addr=%X access=%s error=%d | status=0x%8.8X\n",
status & 0xFFFFF, access[(status >> 24) & 0xF],
(status & (1 << 31)), status);
}
}
static void a5xx_rbbm_err_irq(struct msm_gpu *gpu, u32 status)
{
if (status & A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR) {
u32 val = gpu_read(gpu, REG_A5XX_RBBM_AHB_ERROR_STATUS);
dev_err_ratelimited(gpu->dev->dev,
"RBBM | AHB bus error | %s | addr=0x%X | ports=0x%X:0x%X\n",
val & (1 << 28) ? "WRITE" : "READ",
(val & 0xFFFFF) >> 2, (val >> 20) & 0x3,
(val >> 24) & 0xF);
/* Clear the error */
gpu_write(gpu, REG_A5XX_RBBM_AHB_CMD, (1 << 4));
/* Clear the interrupt */
gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
}
if (status & A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT)
dev_err_ratelimited(gpu->dev->dev, "RBBM | AHB transfer timeout\n");
if (status & A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT)
dev_err_ratelimited(gpu->dev->dev, "RBBM | ME master split | status=0x%X\n",
gpu_read(gpu, REG_A5XX_RBBM_AHB_ME_SPLIT_STATUS));
if (status & A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT)
dev_err_ratelimited(gpu->dev->dev, "RBBM | PFP master split | status=0x%X\n",
gpu_read(gpu, REG_A5XX_RBBM_AHB_PFP_SPLIT_STATUS));
if (status & A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT)
dev_err_ratelimited(gpu->dev->dev, "RBBM | ETS master split | status=0x%X\n",
gpu_read(gpu, REG_A5XX_RBBM_AHB_ETS_SPLIT_STATUS));
if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB ASYNC overflow\n");
if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB bus overflow\n");
}
static void a5xx_uche_err_irq(struct msm_gpu *gpu)
{
uint64_t addr = (uint64_t) gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_HI);
addr |= gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_LO);
dev_err_ratelimited(gpu->dev->dev, "UCHE | Out of bounds access | addr=0x%llX\n",
addr);
}
static void a5xx_gpmu_err_irq(struct msm_gpu *gpu)
{
dev_err_ratelimited(gpu->dev->dev, "GPMU | voltage droop\n");
}
static void a5xx_fault_detect_irq(struct msm_gpu *gpu)
{
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
dev_err(dev->dev, "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
ring ? ring->id : -1, ring ? ring->seqno : 0,
gpu_read(gpu, REG_A5XX_RBBM_STATUS),
gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
gpu_read(gpu, REG_A5XX_CP_RB_WPTR),
gpu_read64(gpu, REG_A5XX_CP_IB1_BASE, REG_A5XX_CP_IB1_BASE_HI),
gpu_read(gpu, REG_A5XX_CP_IB1_BUFSZ),
gpu_read64(gpu, REG_A5XX_CP_IB2_BASE, REG_A5XX_CP_IB2_BASE_HI),
gpu_read(gpu, REG_A5XX_CP_IB2_BUFSZ));
/* Turn off the hangcheck timer to keep it from bothering us */
del_timer(&gpu->hangcheck_timer);
queue_work(priv->wq, &gpu->recover_work);
}
#define RBBM_ERROR_MASK \
(A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
static irqreturn_t a5xx_irq(struct msm_gpu *gpu)
{
u32 status = gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS);
/*
* Clear all the interrupts except RBBM_AHB_ERROR - if we clear it
* before the source is cleared the interrupt will storm.
*/
gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
status & ~A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
/* Pass status to a5xx_rbbm_err_irq because we've already cleared it */
if (status & RBBM_ERROR_MASK)
a5xx_rbbm_err_irq(gpu, status);
if (status & A5XX_RBBM_INT_0_MASK_CP_HW_ERROR)
a5xx_cp_err_irq(gpu);
if (status & A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT)
a5xx_fault_detect_irq(gpu);
if (status & A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
a5xx_uche_err_irq(gpu);
if (status & A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
a5xx_gpmu_err_irq(gpu);
if (status & A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) {
a5xx_preempt_trigger(gpu);
msm_gpu_retire(gpu);
}
if (status & A5XX_RBBM_INT_0_MASK_CP_SW)
a5xx_preempt_irq(gpu);
return IRQ_HANDLED;
}
static const u32 a5xx_register_offsets[REG_ADRENO_REGISTER_MAX] = {
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE, REG_A5XX_CP_RB_BASE),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE_HI, REG_A5XX_CP_RB_BASE_HI),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR, REG_A5XX_CP_RB_RPTR_ADDR),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR_HI,
REG_A5XX_CP_RB_RPTR_ADDR_HI),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR, REG_A5XX_CP_RB_RPTR),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_WPTR, REG_A5XX_CP_RB_WPTR),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_CNTL, REG_A5XX_CP_RB_CNTL),
};
static const u32 a5xx_registers[] = {
0x0000, 0x0002, 0x0004, 0x0020, 0x0022, 0x0026, 0x0029, 0x002B,
0x002E, 0x0035, 0x0038, 0x0042, 0x0044, 0x0044, 0x0047, 0x0095,
0x0097, 0x00BB, 0x03A0, 0x0464, 0x0469, 0x046F, 0x04D2, 0x04D3,
0x04E0, 0x0533, 0x0540, 0x0555, 0x0800, 0x081A, 0x081F, 0x0841,
0x0860, 0x0860, 0x0880, 0x08A0, 0x0B00, 0x0B12, 0x0B15, 0x0B28,
0x0B78, 0x0B7F, 0x0BB0, 0x0BBD, 0x0BC0, 0x0BC6, 0x0BD0, 0x0C53,
0x0C60, 0x0C61, 0x0C80, 0x0C82, 0x0C84, 0x0C85, 0x0C90, 0x0C98,
0x0CA0, 0x0CA0, 0x0CB0, 0x0CB2, 0x2180, 0x2185, 0x2580, 0x2585,
0x0CC1, 0x0CC1, 0x0CC4, 0x0CC7, 0x0CCC, 0x0CCC, 0x0CD0, 0x0CD8,
0x0CE0, 0x0CE5, 0x0CE8, 0x0CE8, 0x0CEC, 0x0CF1, 0x0CFB, 0x0D0E,
0x2100, 0x211E, 0x2140, 0x2145, 0x2500, 0x251E, 0x2540, 0x2545,
0x0D10, 0x0D17, 0x0D20, 0x0D23, 0x0D30, 0x0D30, 0x20C0, 0x20C0,
0x24C0, 0x24C0, 0x0E40, 0x0E43, 0x0E4A, 0x0E4A, 0x0E50, 0x0E57,
0x0E60, 0x0E7C, 0x0E80, 0x0E8E, 0x0E90, 0x0E96, 0x0EA0, 0x0EA8,
0x0EB0, 0x0EB2, 0xE140, 0xE147, 0xE150, 0xE187, 0xE1A0, 0xE1A9,
0xE1B0, 0xE1B6, 0xE1C0, 0xE1C7, 0xE1D0, 0xE1D1, 0xE200, 0xE201,
0xE210, 0xE21C, 0xE240, 0xE268, 0xE000, 0xE006, 0xE010, 0xE09A,
0xE0A0, 0xE0A4, 0xE0AA, 0xE0EB, 0xE100, 0xE105, 0xE380, 0xE38F,
0xE3B0, 0xE3B0, 0xE400, 0xE405, 0xE408, 0xE4E9, 0xE4F0, 0xE4F0,
0xE280, 0xE280, 0xE282, 0xE2A3, 0xE2A5, 0xE2C2, 0xE940, 0xE947,
0xE950, 0xE987, 0xE9A0, 0xE9A9, 0xE9B0, 0xE9B6, 0xE9C0, 0xE9C7,
0xE9D0, 0xE9D1, 0xEA00, 0xEA01, 0xEA10, 0xEA1C, 0xEA40, 0xEA68,
0xE800, 0xE806, 0xE810, 0xE89A, 0xE8A0, 0xE8A4, 0xE8AA, 0xE8EB,
0xE900, 0xE905, 0xEB80, 0xEB8F, 0xEBB0, 0xEBB0, 0xEC00, 0xEC05,
0xEC08, 0xECE9, 0xECF0, 0xECF0, 0xEA80, 0xEA80, 0xEA82, 0xEAA3,
0xEAA5, 0xEAC2, 0xA800, 0xA8FF, 0xAC60, 0xAC60, 0xB000, 0xB97F,
0xB9A0, 0xB9BF, ~0
};
static void a5xx_dump(struct msm_gpu *gpu)
{
dev_info(gpu->dev->dev, "status: %08x\n",
gpu_read(gpu, REG_A5XX_RBBM_STATUS));
adreno_dump(gpu);
}
static int a5xx_pm_resume(struct msm_gpu *gpu)
{
int ret;
/* Turn on the core power */
ret = msm_gpu_pm_resume(gpu);
if (ret)
return ret;
/* Turn the RBCCU domain first to limit the chances of voltage droop */
gpu_write(gpu, REG_A5XX_GPMU_RBCCU_POWER_CNTL, 0x778000);
/* Wait 3 usecs before polling */
udelay(3);
ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS,
(1 << 20), (1 << 20));
if (ret) {
DRM_ERROR("%s: timeout waiting for RBCCU GDSC enable: %X\n",
gpu->name,
gpu_read(gpu, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS));
return ret;
}
/* Turn on the SP domain */
gpu_write(gpu, REG_A5XX_GPMU_SP_POWER_CNTL, 0x778000);
ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_SP_PWR_CLK_STATUS,
(1 << 20), (1 << 20));
if (ret)
DRM_ERROR("%s: timeout waiting for SP GDSC enable\n",
gpu->name);
return ret;
}
static int a5xx_pm_suspend(struct msm_gpu *gpu)
{
/* Clear the VBIF pipe before shutting down */
gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, 0xF);
spin_until((gpu_read(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL1) & 0xF) == 0xF);
gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, 0);
/*
* Reset the VBIF before power collapse to avoid issue with FIFO
* entries
*/
gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x003C0000);
gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x00000000);
return msm_gpu_pm_suspend(gpu);
}
static int a5xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
{
*value = gpu_read64(gpu, REG_A5XX_RBBM_PERFCTR_CP_0_LO,
REG_A5XX_RBBM_PERFCTR_CP_0_HI);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static void a5xx_show(struct msm_gpu *gpu, struct seq_file *m)
{
seq_printf(m, "status: %08x\n",
gpu_read(gpu, REG_A5XX_RBBM_STATUS));
/*
* Temporarily disable hardware clock gating before going into
* adreno_show to avoid issues while reading the registers
*/
a5xx_set_hwcg(gpu, false);
adreno_show(gpu, m);
a5xx_set_hwcg(gpu, true);
}
#endif
static struct msm_ringbuffer *a5xx_active_ring(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
return a5xx_gpu->cur_ring;
}
static const struct adreno_gpu_funcs funcs = {
.base = {
.get_param = adreno_get_param,
.hw_init = a5xx_hw_init,
.pm_suspend = a5xx_pm_suspend,
.pm_resume = a5xx_pm_resume,
.recover = a5xx_recover,
.submit = a5xx_submit,
.flush = a5xx_flush,
.active_ring = a5xx_active_ring,
.irq = a5xx_irq,
.destroy = a5xx_destroy,
#ifdef CONFIG_DEBUG_FS
.show = a5xx_show,
#endif
},
.get_timestamp = a5xx_get_timestamp,
};
struct msm_gpu *a5xx_gpu_init(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct platform_device *pdev = priv->gpu_pdev;
struct a5xx_gpu *a5xx_gpu = NULL;
struct adreno_gpu *adreno_gpu;
struct msm_gpu *gpu;
int ret;
if (!pdev) {
dev_err(dev->dev, "No A5XX device is defined\n");
return ERR_PTR(-ENXIO);
}
a5xx_gpu = kzalloc(sizeof(*a5xx_gpu), GFP_KERNEL);
if (!a5xx_gpu)
return ERR_PTR(-ENOMEM);
adreno_gpu = &a5xx_gpu->base;
gpu = &adreno_gpu->base;
adreno_gpu->registers = a5xx_registers;
adreno_gpu->reg_offsets = a5xx_register_offsets;
a5xx_gpu->lm_leakage = 0x4E001A;
ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 4);
if (ret) {
a5xx_destroy(&(a5xx_gpu->base.base));
return ERR_PTR(ret);
}
if (gpu->aspace)
msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, a5xx_fault_handler);
/* Set up the preemption specific bits and pieces for each ringbuffer */
a5xx_preempt_init(gpu);
return gpu;
}