878 lines
28 KiB
C
878 lines
28 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _INTEL_RINGBUFFER_H_
|
|
#define _INTEL_RINGBUFFER_H_
|
|
|
|
#include <linux/hashtable.h>
|
|
#include "i915_gem_batch_pool.h"
|
|
#include "i915_gem_request.h"
|
|
#include "i915_gem_timeline.h"
|
|
#include "i915_selftest.h"
|
|
|
|
struct drm_printer;
|
|
|
|
#define I915_CMD_HASH_ORDER 9
|
|
|
|
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
|
|
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
|
|
* to give some inclination as to some of the magic values used in the various
|
|
* workarounds!
|
|
*/
|
|
#define CACHELINE_BYTES 64
|
|
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
|
|
|
|
struct intel_hw_status_page {
|
|
struct i915_vma *vma;
|
|
u32 *page_addr;
|
|
u32 ggtt_offset;
|
|
};
|
|
|
|
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
|
|
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
|
|
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
|
|
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
|
|
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
|
|
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
|
|
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
|
|
|
|
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
|
|
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
|
|
*/
|
|
#define gen8_semaphore_seqno_size sizeof(uint64_t)
|
|
#define GEN8_SEMAPHORE_OFFSET(__from, __to) \
|
|
(((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
|
|
#define GEN8_SIGNAL_OFFSET(__ring, to) \
|
|
(dev_priv->semaphore->node.start + \
|
|
GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
|
|
#define GEN8_WAIT_OFFSET(__ring, from) \
|
|
(dev_priv->semaphore->node.start + \
|
|
GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
|
|
|
|
enum intel_engine_hangcheck_action {
|
|
ENGINE_IDLE = 0,
|
|
ENGINE_WAIT,
|
|
ENGINE_ACTIVE_SEQNO,
|
|
ENGINE_ACTIVE_HEAD,
|
|
ENGINE_ACTIVE_SUBUNITS,
|
|
ENGINE_WAIT_KICK,
|
|
ENGINE_DEAD,
|
|
};
|
|
|
|
static inline const char *
|
|
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
|
|
{
|
|
switch (a) {
|
|
case ENGINE_IDLE:
|
|
return "idle";
|
|
case ENGINE_WAIT:
|
|
return "wait";
|
|
case ENGINE_ACTIVE_SEQNO:
|
|
return "active seqno";
|
|
case ENGINE_ACTIVE_HEAD:
|
|
return "active head";
|
|
case ENGINE_ACTIVE_SUBUNITS:
|
|
return "active subunits";
|
|
case ENGINE_WAIT_KICK:
|
|
return "wait kick";
|
|
case ENGINE_DEAD:
|
|
return "dead";
|
|
}
|
|
|
|
return "unknown";
|
|
}
|
|
|
|
#define I915_MAX_SLICES 3
|
|
#define I915_MAX_SUBSLICES 3
|
|
|
|
#define instdone_slice_mask(dev_priv__) \
|
|
(INTEL_GEN(dev_priv__) == 7 ? \
|
|
1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
|
|
|
|
#define instdone_subslice_mask(dev_priv__) \
|
|
(INTEL_GEN(dev_priv__) == 7 ? \
|
|
1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
|
|
|
|
#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
|
|
for ((slice__) = 0, (subslice__) = 0; \
|
|
(slice__) < I915_MAX_SLICES; \
|
|
(subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
|
|
(slice__) += ((subslice__) == 0)) \
|
|
for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
|
|
(BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
|
|
|
|
struct intel_instdone {
|
|
u32 instdone;
|
|
/* The following exist only in the RCS engine */
|
|
u32 slice_common;
|
|
u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
|
|
u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
|
|
};
|
|
|
|
struct intel_engine_hangcheck {
|
|
u64 acthd;
|
|
u32 seqno;
|
|
enum intel_engine_hangcheck_action action;
|
|
unsigned long action_timestamp;
|
|
int deadlock;
|
|
struct intel_instdone instdone;
|
|
struct drm_i915_gem_request *active_request;
|
|
bool stalled;
|
|
};
|
|
|
|
struct intel_ring {
|
|
struct i915_vma *vma;
|
|
void *vaddr;
|
|
|
|
struct list_head request_list;
|
|
|
|
u32 head;
|
|
u32 tail;
|
|
u32 emit;
|
|
|
|
u32 space;
|
|
u32 size;
|
|
u32 effective_size;
|
|
};
|
|
|
|
struct i915_gem_context;
|
|
struct drm_i915_reg_table;
|
|
|
|
/*
|
|
* we use a single page to load ctx workarounds so all of these
|
|
* values are referred in terms of dwords
|
|
*
|
|
* struct i915_wa_ctx_bb:
|
|
* offset: specifies batch starting position, also helpful in case
|
|
* if we want to have multiple batches at different offsets based on
|
|
* some criteria. It is not a requirement at the moment but provides
|
|
* an option for future use.
|
|
* size: size of the batch in DWORDS
|
|
*/
|
|
struct i915_ctx_workarounds {
|
|
struct i915_wa_ctx_bb {
|
|
u32 offset;
|
|
u32 size;
|
|
} indirect_ctx, per_ctx;
|
|
struct i915_vma *vma;
|
|
};
|
|
|
|
struct drm_i915_gem_request;
|
|
struct intel_render_state;
|
|
|
|
/*
|
|
* Engine IDs definitions.
|
|
* Keep instances of the same type engine together.
|
|
*/
|
|
enum intel_engine_id {
|
|
RCS = 0,
|
|
BCS,
|
|
VCS,
|
|
VCS2,
|
|
#define _VCS(n) (VCS + (n))
|
|
VECS
|
|
};
|
|
|
|
struct i915_priolist {
|
|
struct rb_node node;
|
|
struct list_head requests;
|
|
int priority;
|
|
};
|
|
|
|
/**
|
|
* struct intel_engine_execlists - execlist submission queue and port state
|
|
*
|
|
* The struct intel_engine_execlists represents the combined logical state of
|
|
* driver and the hardware state for execlist mode of submission.
|
|
*/
|
|
struct intel_engine_execlists {
|
|
/**
|
|
* @irq_tasklet: softirq tasklet for bottom handler
|
|
*/
|
|
struct tasklet_struct irq_tasklet;
|
|
|
|
/**
|
|
* @default_priolist: priority list for I915_PRIORITY_NORMAL
|
|
*/
|
|
struct i915_priolist default_priolist;
|
|
|
|
/**
|
|
* @no_priolist: priority lists disabled
|
|
*/
|
|
bool no_priolist;
|
|
|
|
/**
|
|
* @port: execlist port states
|
|
*
|
|
* For each hardware ELSP (ExecList Submission Port) we keep
|
|
* track of the last request and the number of times we submitted
|
|
* that port to hw. We then count the number of times the hw reports
|
|
* a context completion or preemption. As only one context can
|
|
* be active on hw, we limit resubmission of context to port[0]. This
|
|
* is called Lite Restore, of the context.
|
|
*/
|
|
struct execlist_port {
|
|
/**
|
|
* @request_count: combined request and submission count
|
|
*/
|
|
struct drm_i915_gem_request *request_count;
|
|
#define EXECLIST_COUNT_BITS 2
|
|
#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
|
|
#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
|
|
#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
|
|
#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
|
|
#define port_set(p, packed) ((p)->request_count = (packed))
|
|
#define port_isset(p) ((p)->request_count)
|
|
#define port_index(p, execlists) ((p) - (execlists)->port)
|
|
|
|
/**
|
|
* @context_id: context ID for port
|
|
*/
|
|
GEM_DEBUG_DECL(u32 context_id);
|
|
|
|
#define EXECLIST_MAX_PORTS 2
|
|
} port[EXECLIST_MAX_PORTS];
|
|
|
|
/**
|
|
* @active: is the HW active? We consider the HW as active after
|
|
* submitting any context for execution and until we have seen the
|
|
* last context completion event. After that, we do not expect any
|
|
* more events until we submit, and so can park the HW.
|
|
*
|
|
* As we have a small number of different sources from which we feed
|
|
* the HW, we track the state of each inside a single bitfield.
|
|
*/
|
|
unsigned int active;
|
|
#define EXECLISTS_ACTIVE_USER 0
|
|
#define EXECLISTS_ACTIVE_PREEMPT 1
|
|
|
|
/**
|
|
* @port_mask: number of execlist ports - 1
|
|
*/
|
|
unsigned int port_mask;
|
|
|
|
/**
|
|
* @queue: queue of requests, in priority lists
|
|
*/
|
|
struct rb_root queue;
|
|
|
|
/**
|
|
* @first: leftmost level in priority @queue
|
|
*/
|
|
struct rb_node *first;
|
|
|
|
/**
|
|
* @fw_domains: forcewake domains for irq tasklet
|
|
*/
|
|
unsigned int fw_domains;
|
|
|
|
/**
|
|
* @csb_head: context status buffer head
|
|
*/
|
|
unsigned int csb_head;
|
|
|
|
/**
|
|
* @csb_use_mmio: access csb through mmio, instead of hwsp
|
|
*/
|
|
bool csb_use_mmio;
|
|
};
|
|
|
|
#define INTEL_ENGINE_CS_MAX_NAME 8
|
|
|
|
struct intel_engine_cs {
|
|
struct drm_i915_private *i915;
|
|
char name[INTEL_ENGINE_CS_MAX_NAME];
|
|
enum intel_engine_id id;
|
|
unsigned int uabi_id;
|
|
unsigned int hw_id;
|
|
unsigned int guc_id;
|
|
|
|
u8 class;
|
|
u8 instance;
|
|
u32 context_size;
|
|
u32 mmio_base;
|
|
unsigned int irq_shift;
|
|
|
|
struct intel_ring *buffer;
|
|
struct intel_timeline *timeline;
|
|
|
|
struct intel_render_state *render_state;
|
|
|
|
atomic_t irq_count;
|
|
unsigned long irq_posted;
|
|
#define ENGINE_IRQ_BREADCRUMB 0
|
|
#define ENGINE_IRQ_EXECLIST 1
|
|
|
|
/* Rather than have every client wait upon all user interrupts,
|
|
* with the herd waking after every interrupt and each doing the
|
|
* heavyweight seqno dance, we delegate the task (of being the
|
|
* bottom-half of the user interrupt) to the first client. After
|
|
* every interrupt, we wake up one client, who does the heavyweight
|
|
* coherent seqno read and either goes back to sleep (if incomplete),
|
|
* or wakes up all the completed clients in parallel, before then
|
|
* transferring the bottom-half status to the next client in the queue.
|
|
*
|
|
* Compared to walking the entire list of waiters in a single dedicated
|
|
* bottom-half, we reduce the latency of the first waiter by avoiding
|
|
* a context switch, but incur additional coherent seqno reads when
|
|
* following the chain of request breadcrumbs. Since it is most likely
|
|
* that we have a single client waiting on each seqno, then reducing
|
|
* the overhead of waking that client is much preferred.
|
|
*/
|
|
struct intel_breadcrumbs {
|
|
spinlock_t irq_lock; /* protects irq_*; irqsafe */
|
|
struct intel_wait *irq_wait; /* oldest waiter by retirement */
|
|
|
|
spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
|
|
struct rb_root waiters; /* sorted by retirement, priority */
|
|
struct rb_root signals; /* sorted by retirement */
|
|
struct task_struct *signaler; /* used for fence signalling */
|
|
struct drm_i915_gem_request __rcu *first_signal;
|
|
struct timer_list fake_irq; /* used after a missed interrupt */
|
|
struct timer_list hangcheck; /* detect missed interrupts */
|
|
|
|
unsigned int hangcheck_interrupts;
|
|
|
|
bool irq_armed : 1;
|
|
bool irq_enabled : 1;
|
|
I915_SELFTEST_DECLARE(bool mock : 1);
|
|
} breadcrumbs;
|
|
|
|
/*
|
|
* A pool of objects to use as shadow copies of client batch buffers
|
|
* when the command parser is enabled. Prevents the client from
|
|
* modifying the batch contents after software parsing.
|
|
*/
|
|
struct i915_gem_batch_pool batch_pool;
|
|
|
|
struct intel_hw_status_page status_page;
|
|
struct i915_ctx_workarounds wa_ctx;
|
|
struct i915_vma *scratch;
|
|
|
|
u32 irq_keep_mask; /* always keep these interrupts */
|
|
u32 irq_enable_mask; /* bitmask to enable ring interrupt */
|
|
void (*irq_enable)(struct intel_engine_cs *engine);
|
|
void (*irq_disable)(struct intel_engine_cs *engine);
|
|
|
|
int (*init_hw)(struct intel_engine_cs *engine);
|
|
void (*reset_hw)(struct intel_engine_cs *engine,
|
|
struct drm_i915_gem_request *req);
|
|
|
|
void (*set_default_submission)(struct intel_engine_cs *engine);
|
|
|
|
struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
|
|
struct i915_gem_context *ctx);
|
|
void (*context_unpin)(struct intel_engine_cs *engine,
|
|
struct i915_gem_context *ctx);
|
|
int (*request_alloc)(struct drm_i915_gem_request *req);
|
|
int (*init_context)(struct drm_i915_gem_request *req);
|
|
|
|
int (*emit_flush)(struct drm_i915_gem_request *request,
|
|
u32 mode);
|
|
#define EMIT_INVALIDATE BIT(0)
|
|
#define EMIT_FLUSH BIT(1)
|
|
#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
|
|
int (*emit_bb_start)(struct drm_i915_gem_request *req,
|
|
u64 offset, u32 length,
|
|
unsigned int dispatch_flags);
|
|
#define I915_DISPATCH_SECURE BIT(0)
|
|
#define I915_DISPATCH_PINNED BIT(1)
|
|
#define I915_DISPATCH_RS BIT(2)
|
|
void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
|
|
u32 *cs);
|
|
int emit_breadcrumb_sz;
|
|
|
|
/* Pass the request to the hardware queue (e.g. directly into
|
|
* the legacy ringbuffer or to the end of an execlist).
|
|
*
|
|
* This is called from an atomic context with irqs disabled; must
|
|
* be irq safe.
|
|
*/
|
|
void (*submit_request)(struct drm_i915_gem_request *req);
|
|
|
|
/* Call when the priority on a request has changed and it and its
|
|
* dependencies may need rescheduling. Note the request itself may
|
|
* not be ready to run!
|
|
*
|
|
* Called under the struct_mutex.
|
|
*/
|
|
void (*schedule)(struct drm_i915_gem_request *request,
|
|
int priority);
|
|
|
|
/*
|
|
* Cancel all requests on the hardware, or queued for execution.
|
|
* This should only cancel the ready requests that have been
|
|
* submitted to the engine (via the engine->submit_request callback).
|
|
* This is called when marking the device as wedged.
|
|
*/
|
|
void (*cancel_requests)(struct intel_engine_cs *engine);
|
|
|
|
/* Some chipsets are not quite as coherent as advertised and need
|
|
* an expensive kick to force a true read of the up-to-date seqno.
|
|
* However, the up-to-date seqno is not always required and the last
|
|
* seen value is good enough. Note that the seqno will always be
|
|
* monotonic, even if not coherent.
|
|
*/
|
|
void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
|
|
void (*cleanup)(struct intel_engine_cs *engine);
|
|
|
|
/* GEN8 signal/wait table - never trust comments!
|
|
* signal to signal to signal to signal to signal to
|
|
* RCS VCS BCS VECS VCS2
|
|
* --------------------------------------------------------------------
|
|
* RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
|
|
* |-------------------------------------------------------------------
|
|
* VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
|
|
* |-------------------------------------------------------------------
|
|
* BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
|
|
* |-------------------------------------------------------------------
|
|
* VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
|
|
* |-------------------------------------------------------------------
|
|
* VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
|
|
* |-------------------------------------------------------------------
|
|
*
|
|
* Generalization:
|
|
* f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
|
|
* ie. transpose of g(x, y)
|
|
*
|
|
* sync from sync from sync from sync from sync from
|
|
* RCS VCS BCS VECS VCS2
|
|
* --------------------------------------------------------------------
|
|
* RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
|
|
* |-------------------------------------------------------------------
|
|
* VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
|
|
* |-------------------------------------------------------------------
|
|
* BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
|
|
* |-------------------------------------------------------------------
|
|
* VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
|
|
* |-------------------------------------------------------------------
|
|
* VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
|
|
* |-------------------------------------------------------------------
|
|
*
|
|
* Generalization:
|
|
* g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
|
|
* ie. transpose of f(x, y)
|
|
*/
|
|
struct {
|
|
union {
|
|
#define GEN6_SEMAPHORE_LAST VECS_HW
|
|
#define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
|
|
#define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
|
|
struct {
|
|
/* our mbox written by others */
|
|
u32 wait[GEN6_NUM_SEMAPHORES];
|
|
/* mboxes this ring signals to */
|
|
i915_reg_t signal[GEN6_NUM_SEMAPHORES];
|
|
} mbox;
|
|
u64 signal_ggtt[I915_NUM_ENGINES];
|
|
};
|
|
|
|
/* AKA wait() */
|
|
int (*sync_to)(struct drm_i915_gem_request *req,
|
|
struct drm_i915_gem_request *signal);
|
|
u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
|
|
} semaphore;
|
|
|
|
struct intel_engine_execlists execlists;
|
|
|
|
/* Contexts are pinned whilst they are active on the GPU. The last
|
|
* context executed remains active whilst the GPU is idle - the
|
|
* switch away and write to the context object only occurs on the
|
|
* next execution. Contexts are only unpinned on retirement of the
|
|
* following request ensuring that we can always write to the object
|
|
* on the context switch even after idling. Across suspend, we switch
|
|
* to the kernel context and trash it as the save may not happen
|
|
* before the hardware is powered down.
|
|
*/
|
|
struct i915_gem_context *last_retired_context;
|
|
|
|
/* We track the current MI_SET_CONTEXT in order to eliminate
|
|
* redudant context switches. This presumes that requests are not
|
|
* reordered! Or when they are the tracking is updated along with
|
|
* the emission of individual requests into the legacy command
|
|
* stream (ring).
|
|
*/
|
|
struct i915_gem_context *legacy_active_context;
|
|
|
|
/* status_notifier: list of callbacks for context-switch changes */
|
|
struct atomic_notifier_head context_status_notifier;
|
|
|
|
struct intel_engine_hangcheck hangcheck;
|
|
|
|
bool needs_cmd_parser;
|
|
|
|
/*
|
|
* Table of commands the command parser needs to know about
|
|
* for this engine.
|
|
*/
|
|
DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
|
|
|
|
/*
|
|
* Table of registers allowed in commands that read/write registers.
|
|
*/
|
|
const struct drm_i915_reg_table *reg_tables;
|
|
int reg_table_count;
|
|
|
|
/*
|
|
* Returns the bitmask for the length field of the specified command.
|
|
* Return 0 for an unrecognized/invalid command.
|
|
*
|
|
* If the command parser finds an entry for a command in the engine's
|
|
* cmd_tables, it gets the command's length based on the table entry.
|
|
* If not, it calls this function to determine the per-engine length
|
|
* field encoding for the command (i.e. different opcode ranges use
|
|
* certain bits to encode the command length in the header).
|
|
*/
|
|
u32 (*get_cmd_length_mask)(u32 cmd_header);
|
|
};
|
|
|
|
static inline void
|
|
execlists_set_active(struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
__set_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
static inline void
|
|
execlists_clear_active(struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
__clear_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
static inline bool
|
|
execlists_is_active(const struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
return test_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
static inline unsigned int
|
|
execlists_num_ports(const struct intel_engine_execlists * const execlists)
|
|
{
|
|
return execlists->port_mask + 1;
|
|
}
|
|
|
|
static inline void
|
|
execlists_port_complete(struct intel_engine_execlists * const execlists,
|
|
struct execlist_port * const port)
|
|
{
|
|
const unsigned int m = execlists->port_mask;
|
|
|
|
GEM_BUG_ON(port_index(port, execlists) != 0);
|
|
GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
|
|
|
|
memmove(port, port + 1, m * sizeof(struct execlist_port));
|
|
memset(port + m, 0, sizeof(struct execlist_port));
|
|
}
|
|
|
|
static inline unsigned int
|
|
intel_engine_flag(const struct intel_engine_cs *engine)
|
|
{
|
|
return BIT(engine->id);
|
|
}
|
|
|
|
static inline u32
|
|
intel_read_status_page(struct intel_engine_cs *engine, int reg)
|
|
{
|
|
/* Ensure that the compiler doesn't optimize away the load. */
|
|
return READ_ONCE(engine->status_page.page_addr[reg]);
|
|
}
|
|
|
|
static inline void
|
|
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
|
|
{
|
|
/* Writing into the status page should be done sparingly. Since
|
|
* we do when we are uncertain of the device state, we take a bit
|
|
* of extra paranoia to try and ensure that the HWS takes the value
|
|
* we give and that it doesn't end up trapped inside the CPU!
|
|
*/
|
|
if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
|
|
mb();
|
|
clflush(&engine->status_page.page_addr[reg]);
|
|
engine->status_page.page_addr[reg] = value;
|
|
clflush(&engine->status_page.page_addr[reg]);
|
|
mb();
|
|
} else {
|
|
WRITE_ONCE(engine->status_page.page_addr[reg], value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reads a dword out of the status page, which is written to from the command
|
|
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
|
|
* MI_STORE_DATA_IMM.
|
|
*
|
|
* The following dwords have a reserved meaning:
|
|
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
|
|
* 0x04: ring 0 head pointer
|
|
* 0x05: ring 1 head pointer (915-class)
|
|
* 0x06: ring 2 head pointer (915-class)
|
|
* 0x10-0x1b: Context status DWords (GM45)
|
|
* 0x1f: Last written status offset. (GM45)
|
|
* 0x20-0x2f: Reserved (Gen6+)
|
|
*
|
|
* The area from dword 0x30 to 0x3ff is available for driver usage.
|
|
*/
|
|
#define I915_GEM_HWS_INDEX 0x30
|
|
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
|
|
#define I915_GEM_HWS_SCRATCH_INDEX 0x40
|
|
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
|
|
|
|
#define I915_HWS_CSB_BUF0_INDEX 0x10
|
|
#define I915_HWS_CSB_WRITE_INDEX 0x1f
|
|
#define CNL_HWS_CSB_WRITE_INDEX 0x2f
|
|
|
|
struct intel_ring *
|
|
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
|
|
int intel_ring_pin(struct intel_ring *ring,
|
|
struct drm_i915_private *i915,
|
|
unsigned int offset_bias);
|
|
void intel_ring_reset(struct intel_ring *ring, u32 tail);
|
|
unsigned int intel_ring_update_space(struct intel_ring *ring);
|
|
void intel_ring_unpin(struct intel_ring *ring);
|
|
void intel_ring_free(struct intel_ring *ring);
|
|
|
|
void intel_engine_stop(struct intel_engine_cs *engine);
|
|
void intel_engine_cleanup(struct intel_engine_cs *engine);
|
|
|
|
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
|
|
|
|
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
|
|
|
|
u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
|
|
unsigned int n);
|
|
|
|
static inline void
|
|
intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
|
|
{
|
|
/* Dummy function.
|
|
*
|
|
* This serves as a placeholder in the code so that the reader
|
|
* can compare against the preceding intel_ring_begin() and
|
|
* check that the number of dwords emitted matches the space
|
|
* reserved for the command packet (i.e. the value passed to
|
|
* intel_ring_begin()).
|
|
*/
|
|
GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
|
|
}
|
|
|
|
static inline u32
|
|
intel_ring_wrap(const struct intel_ring *ring, u32 pos)
|
|
{
|
|
return pos & (ring->size - 1);
|
|
}
|
|
|
|
static inline u32
|
|
intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
|
|
{
|
|
/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
|
|
u32 offset = addr - req->ring->vaddr;
|
|
GEM_BUG_ON(offset > req->ring->size);
|
|
return intel_ring_wrap(req->ring, offset);
|
|
}
|
|
|
|
static inline void
|
|
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
|
|
{
|
|
/* We could combine these into a single tail operation, but keeping
|
|
* them as seperate tests will help identify the cause should one
|
|
* ever fire.
|
|
*/
|
|
GEM_BUG_ON(!IS_ALIGNED(tail, 8));
|
|
GEM_BUG_ON(tail >= ring->size);
|
|
|
|
/*
|
|
* "Ring Buffer Use"
|
|
* Gen2 BSpec "1. Programming Environment" / 1.4.4.6
|
|
* Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
|
|
* Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
|
|
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the
|
|
* same cacheline, the Head Pointer must not be greater than the Tail
|
|
* Pointer."
|
|
*
|
|
* We use ring->head as the last known location of the actual RING_HEAD,
|
|
* it may have advanced but in the worst case it is equally the same
|
|
* as ring->head and so we should never program RING_TAIL to advance
|
|
* into the same cacheline as ring->head.
|
|
*/
|
|
#define cacheline(a) round_down(a, CACHELINE_BYTES)
|
|
GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
|
|
tail < ring->head);
|
|
#undef cacheline
|
|
}
|
|
|
|
static inline unsigned int
|
|
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
|
|
{
|
|
/* Whilst writes to the tail are strictly order, there is no
|
|
* serialisation between readers and the writers. The tail may be
|
|
* read by i915_gem_request_retire() just as it is being updated
|
|
* by execlists, as although the breadcrumb is complete, the context
|
|
* switch hasn't been seen.
|
|
*/
|
|
assert_ring_tail_valid(ring, tail);
|
|
ring->tail = tail;
|
|
return tail;
|
|
}
|
|
|
|
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
|
|
|
|
void intel_engine_setup_common(struct intel_engine_cs *engine);
|
|
int intel_engine_init_common(struct intel_engine_cs *engine);
|
|
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
|
|
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
|
|
|
|
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
|
|
|
|
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
|
|
u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
|
|
|
|
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
|
|
{
|
|
return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
|
|
}
|
|
|
|
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
|
|
{
|
|
/* We are only peeking at the tail of the submit queue (and not the
|
|
* queue itself) in order to gain a hint as to the current active
|
|
* state of the engine. Callers are not expected to be taking
|
|
* engine->timeline->lock, nor are they expected to be concerned
|
|
* wtih serialising this hint with anything, so document it as
|
|
* a hint and nothing more.
|
|
*/
|
|
return READ_ONCE(engine->timeline->seqno);
|
|
}
|
|
|
|
int init_workarounds_ring(struct intel_engine_cs *engine);
|
|
int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
|
|
|
|
void intel_engine_get_instdone(struct intel_engine_cs *engine,
|
|
struct intel_instdone *instdone);
|
|
|
|
/*
|
|
* Arbitrary size for largest possible 'add request' sequence. The code paths
|
|
* are complex and variable. Empirical measurement shows that the worst case
|
|
* is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
|
|
* we need to allocate double the largest single packet within that emission
|
|
* to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
|
|
*/
|
|
#define MIN_SPACE_FOR_ADD_REQUEST 336
|
|
|
|
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
|
|
{
|
|
return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
|
|
}
|
|
|
|
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
|
|
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
|
|
|
|
static inline void intel_wait_init(struct intel_wait *wait,
|
|
struct drm_i915_gem_request *rq)
|
|
{
|
|
wait->tsk = current;
|
|
wait->request = rq;
|
|
}
|
|
|
|
static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
|
|
{
|
|
wait->tsk = current;
|
|
wait->seqno = seqno;
|
|
}
|
|
|
|
static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
|
|
{
|
|
return wait->seqno;
|
|
}
|
|
|
|
static inline bool
|
|
intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
|
|
{
|
|
wait->seqno = seqno;
|
|
return intel_wait_has_seqno(wait);
|
|
}
|
|
|
|
static inline bool
|
|
intel_wait_update_request(struct intel_wait *wait,
|
|
const struct drm_i915_gem_request *rq)
|
|
{
|
|
return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
|
|
}
|
|
|
|
static inline bool
|
|
intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
|
|
{
|
|
return wait->seqno == seqno;
|
|
}
|
|
|
|
static inline bool
|
|
intel_wait_check_request(const struct intel_wait *wait,
|
|
const struct drm_i915_gem_request *rq)
|
|
{
|
|
return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
|
|
}
|
|
|
|
static inline bool intel_wait_complete(const struct intel_wait *wait)
|
|
{
|
|
return RB_EMPTY_NODE(&wait->node);
|
|
}
|
|
|
|
bool intel_engine_add_wait(struct intel_engine_cs *engine,
|
|
struct intel_wait *wait);
|
|
void intel_engine_remove_wait(struct intel_engine_cs *engine,
|
|
struct intel_wait *wait);
|
|
void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
|
|
bool wakeup);
|
|
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
|
|
|
|
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
|
|
{
|
|
return READ_ONCE(engine->breadcrumbs.irq_wait);
|
|
}
|
|
|
|
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
|
|
#define ENGINE_WAKEUP_WAITER BIT(0)
|
|
#define ENGINE_WAKEUP_ASLEEP BIT(1)
|
|
|
|
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
|
|
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
|
|
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
|
|
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
|
|
|
|
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
|
|
{
|
|
memset(batch, 0, 6 * sizeof(u32));
|
|
|
|
batch[0] = GFX_OP_PIPE_CONTROL(6);
|
|
batch[1] = flags;
|
|
batch[2] = offset;
|
|
|
|
return batch + 6;
|
|
}
|
|
|
|
bool intel_engine_is_idle(struct intel_engine_cs *engine);
|
|
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
|
|
|
|
void intel_engines_mark_idle(struct drm_i915_private *i915);
|
|
void intel_engines_reset_default_submission(struct drm_i915_private *i915);
|
|
|
|
bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *p);
|
|
|
|
#endif /* _INTEL_RINGBUFFER_H_ */
|