ubuntu-linux-kernel/drivers/gpu/drm/i915/intel_dpll_mgr.c

2534 lines
65 KiB
C

/*
* Copyright © 2006-2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "intel_drv.h"
/**
* DOC: Display PLLs
*
* Display PLLs used for driving outputs vary by platform. While some have
* per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL
* from a pool. In the latter scenario, it is possible that multiple pipes
* share a PLL if their configurations match.
*
* This file provides an abstraction over display PLLs. The function
* intel_shared_dpll_init() initializes the PLLs for the given platform. The
* users of a PLL are tracked and that tracking is integrated with the atomic
* modest interface. During an atomic operation, a PLL can be requested for a
* given CRTC and encoder configuration by calling intel_get_shared_dpll() and
* a previously used PLL can be released with intel_release_shared_dpll().
* Changes to the users are first staged in the atomic state, and then made
* effective by calling intel_shared_dpll_swap_state() during the atomic
* commit phase.
*/
static void
intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll_state *shared_dpll)
{
enum intel_dpll_id i;
/* Copy shared dpll state */
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
shared_dpll[i] = pll->state;
}
}
static struct intel_shared_dpll_state *
intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s)
{
struct intel_atomic_state *state = to_intel_atomic_state(s);
WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex));
if (!state->dpll_set) {
state->dpll_set = true;
intel_atomic_duplicate_dpll_state(to_i915(s->dev),
state->shared_dpll);
}
return state->shared_dpll;
}
/**
* intel_get_shared_dpll_by_id - get a DPLL given its id
* @dev_priv: i915 device instance
* @id: pll id
*
* Returns:
* A pointer to the DPLL with @id
*/
struct intel_shared_dpll *
intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
enum intel_dpll_id id)
{
return &dev_priv->shared_dplls[id];
}
/**
* intel_get_shared_dpll_id - get the id of a DPLL
* @dev_priv: i915 device instance
* @pll: the DPLL
*
* Returns:
* The id of @pll
*/
enum intel_dpll_id
intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
if (WARN_ON(pll < dev_priv->shared_dplls||
pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
return -1;
return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
}
/* For ILK+ */
void assert_shared_dpll(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
bool state)
{
bool cur_state;
struct intel_dpll_hw_state hw_state;
if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
return;
cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
I915_STATE_WARN(cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
pll->name, onoff(state), onoff(cur_state));
}
/**
* intel_prepare_shared_dpll - call a dpll's prepare hook
* @crtc: CRTC which has a shared dpll
*
* This calls the PLL's prepare hook if it has one and if the PLL is not
* already enabled. The prepare hook is platform specific.
*/
void intel_prepare_shared_dpll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_shared_dpll *pll = crtc->config->shared_dpll;
if (WARN_ON(pll == NULL))
return;
mutex_lock(&dev_priv->dpll_lock);
WARN_ON(!pll->state.crtc_mask);
if (!pll->active_mask) {
DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
WARN_ON(pll->on);
assert_shared_dpll_disabled(dev_priv, pll);
pll->funcs.prepare(dev_priv, pll);
}
mutex_unlock(&dev_priv->dpll_lock);
}
/**
* intel_enable_shared_dpll - enable a CRTC's shared DPLL
* @crtc: CRTC which has a shared DPLL
*
* Enable the shared DPLL used by @crtc.
*/
void intel_enable_shared_dpll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_shared_dpll *pll = crtc->config->shared_dpll;
unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
unsigned old_mask;
if (WARN_ON(pll == NULL))
return;
mutex_lock(&dev_priv->dpll_lock);
old_mask = pll->active_mask;
if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) ||
WARN_ON(pll->active_mask & crtc_mask))
goto out;
pll->active_mask |= crtc_mask;
DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
pll->name, pll->active_mask, pll->on,
crtc->base.base.id);
if (old_mask) {
WARN_ON(!pll->on);
assert_shared_dpll_enabled(dev_priv, pll);
goto out;
}
WARN_ON(pll->on);
DRM_DEBUG_KMS("enabling %s\n", pll->name);
pll->funcs.enable(dev_priv, pll);
pll->on = true;
out:
mutex_unlock(&dev_priv->dpll_lock);
}
/**
* intel_disable_shared_dpll - disable a CRTC's shared DPLL
* @crtc: CRTC which has a shared DPLL
*
* Disable the shared DPLL used by @crtc.
*/
void intel_disable_shared_dpll(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll = crtc->config->shared_dpll;
unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
/* PCH only available on ILK+ */
if (INTEL_GEN(dev_priv) < 5)
return;
if (pll == NULL)
return;
mutex_lock(&dev_priv->dpll_lock);
if (WARN_ON(!(pll->active_mask & crtc_mask)))
goto out;
DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
pll->name, pll->active_mask, pll->on,
crtc->base.base.id);
assert_shared_dpll_enabled(dev_priv, pll);
WARN_ON(!pll->on);
pll->active_mask &= ~crtc_mask;
if (pll->active_mask)
goto out;
DRM_DEBUG_KMS("disabling %s\n", pll->name);
pll->funcs.disable(dev_priv, pll);
pll->on = false;
out:
mutex_unlock(&dev_priv->dpll_lock);
}
static struct intel_shared_dpll *
intel_find_shared_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
enum intel_dpll_id range_min,
enum intel_dpll_id range_max)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll;
struct intel_shared_dpll_state *shared_dpll;
enum intel_dpll_id i;
shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
for (i = range_min; i <= range_max; i++) {
pll = &dev_priv->shared_dplls[i];
/* Only want to check enabled timings first */
if (shared_dpll[i].crtc_mask == 0)
continue;
if (memcmp(&crtc_state->dpll_hw_state,
&shared_dpll[i].hw_state,
sizeof(crtc_state->dpll_hw_state)) == 0) {
DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
crtc->base.base.id, crtc->base.name, pll->name,
shared_dpll[i].crtc_mask,
pll->active_mask);
return pll;
}
}
/* Ok no matching timings, maybe there's a free one? */
for (i = range_min; i <= range_max; i++) {
pll = &dev_priv->shared_dplls[i];
if (shared_dpll[i].crtc_mask == 0) {
DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
crtc->base.base.id, crtc->base.name, pll->name);
return pll;
}
}
return NULL;
}
static void
intel_reference_shared_dpll(struct intel_shared_dpll *pll,
struct intel_crtc_state *crtc_state)
{
struct intel_shared_dpll_state *shared_dpll;
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
enum intel_dpll_id i = pll->id;
shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
if (shared_dpll[i].crtc_mask == 0)
shared_dpll[i].hw_state =
crtc_state->dpll_hw_state;
crtc_state->shared_dpll = pll;
DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
pipe_name(crtc->pipe));
shared_dpll[pll->id].crtc_mask |= 1 << crtc->pipe;
}
/**
* intel_shared_dpll_swap_state - make atomic DPLL configuration effective
* @state: atomic state
*
* This is the dpll version of drm_atomic_helper_swap_state() since the
* helper does not handle driver-specific global state.
*
* For consistency with atomic helpers this function does a complete swap,
* i.e. it also puts the current state into @state, even though there is no
* need for that at this moment.
*/
void intel_shared_dpll_swap_state(struct drm_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->dev);
struct intel_shared_dpll_state *shared_dpll;
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
if (!to_intel_atomic_state(state)->dpll_set)
return;
shared_dpll = to_intel_atomic_state(state)->shared_dpll;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll_state tmp;
pll = &dev_priv->shared_dplls[i];
tmp = pll->state;
pll->state = shared_dpll[i];
shared_dpll[i] = tmp;
}
}
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
val = I915_READ(PCH_DPLL(pll->id));
hw_state->dpll = val;
hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
return val & DPLL_VCO_ENABLE;
}
static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
I915_WRITE(PCH_FP0(pll->id), pll->state.hw_state.fp0);
I915_WRITE(PCH_FP1(pll->id), pll->state.hw_state.fp1);
}
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
u32 val;
bool enabled;
I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
val = I915_READ(PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
/* PCH refclock must be enabled first */
ibx_assert_pch_refclk_enabled(dev_priv);
I915_WRITE(PCH_DPLL(pll->id), pll->state.hw_state.dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(PCH_DPLL(pll->id));
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(PCH_DPLL(pll->id), pll->state.hw_state.dpll);
POSTING_READ(PCH_DPLL(pll->id));
udelay(200);
}
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *crtc;
/* Make sure no transcoder isn't still depending on us. */
for_each_intel_crtc(dev, crtc) {
if (crtc->config->shared_dpll == pll)
assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
}
I915_WRITE(PCH_DPLL(pll->id), 0);
POSTING_READ(PCH_DPLL(pll->id));
udelay(200);
}
static struct intel_shared_dpll *
ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
if (HAS_PCH_IBX(dev_priv)) {
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
i = (enum intel_dpll_id) crtc->pipe;
pll = &dev_priv->shared_dplls[i];
DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
crtc->base.base.id, crtc->base.name, pll->name);
} else {
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_PCH_PLL_A,
DPLL_ID_PCH_PLL_B);
}
if (!pll)
return NULL;
/* reference the pll */
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void ibx_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
"fp0: 0x%x, fp1: 0x%x\n",
hw_state->dpll,
hw_state->dpll_md,
hw_state->fp0,
hw_state->fp1);
}
static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
.prepare = ibx_pch_dpll_prepare,
.enable = ibx_pch_dpll_enable,
.disable = ibx_pch_dpll_disable,
.get_hw_state = ibx_pch_dpll_get_hw_state,
};
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
I915_WRITE(WRPLL_CTL(pll->id), pll->state.hw_state.wrpll);
POSTING_READ(WRPLL_CTL(pll->id));
udelay(20);
}
static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
I915_WRITE(SPLL_CTL, pll->state.hw_state.spll);
POSTING_READ(SPLL_CTL);
udelay(20);
}
static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t val;
val = I915_READ(WRPLL_CTL(pll->id));
I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
POSTING_READ(WRPLL_CTL(pll->id));
}
static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t val;
val = I915_READ(SPLL_CTL);
I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
POSTING_READ(SPLL_CTL);
}
static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
val = I915_READ(WRPLL_CTL(pll->id));
hw_state->wrpll = val;
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
return val & WRPLL_PLL_ENABLE;
}
static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
val = I915_READ(SPLL_CTL);
hw_state->spll = val;
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
return val & SPLL_PLL_ENABLE;
}
#define LC_FREQ 2700
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
#define P_MIN 2
#define P_MAX 64
#define P_INC 2
/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800
struct hsw_wrpll_rnp {
unsigned p, n2, r2;
};
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
{
unsigned budget;
switch (clock) {
case 25175000:
case 25200000:
case 27000000:
case 27027000:
case 37762500:
case 37800000:
case 40500000:
case 40541000:
case 54000000:
case 54054000:
case 59341000:
case 59400000:
case 72000000:
case 74176000:
case 74250000:
case 81000000:
case 81081000:
case 89012000:
case 89100000:
case 108000000:
case 108108000:
case 111264000:
case 111375000:
case 148352000:
case 148500000:
case 162000000:
case 162162000:
case 222525000:
case 222750000:
case 296703000:
case 297000000:
budget = 0;
break;
case 233500000:
case 245250000:
case 247750000:
case 253250000:
case 298000000:
budget = 1500;
break;
case 169128000:
case 169500000:
case 179500000:
case 202000000:
budget = 2000;
break;
case 256250000:
case 262500000:
case 270000000:
case 272500000:
case 273750000:
case 280750000:
case 281250000:
case 286000000:
case 291750000:
budget = 4000;
break;
case 267250000:
case 268500000:
budget = 5000;
break;
default:
budget = 1000;
break;
}
return budget;
}
static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
unsigned r2, unsigned n2, unsigned p,
struct hsw_wrpll_rnp *best)
{
uint64_t a, b, c, d, diff, diff_best;
/* No best (r,n,p) yet */
if (best->p == 0) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
return;
}
/*
* Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
* freq2k.
*
* delta = 1e6 *
* abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
* freq2k;
*
* and we would like delta <= budget.
*
* If the discrepancy is above the PPM-based budget, always prefer to
* improve upon the previous solution. However, if you're within the
* budget, try to maximize Ref * VCO, that is N / (P * R^2).
*/
a = freq2k * budget * p * r2;
b = freq2k * budget * best->p * best->r2;
diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
diff_best = abs_diff(freq2k * best->p * best->r2,
LC_FREQ_2K * best->n2);
c = 1000000 * diff;
d = 1000000 * diff_best;
if (a < c && b < d) {
/* If both are above the budget, pick the closer */
if (best->p * best->r2 * diff < p * r2 * diff_best) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
} else if (a >= c && b < d) {
/* If A is below the threshold but B is above it? Update. */
best->p = p;
best->n2 = n2;
best->r2 = r2;
} else if (a >= c && b >= d) {
/* Both are below the limit, so pick the higher n2/(r2*r2) */
if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
}
/* Otherwise a < c && b >= d, do nothing */
}
static void
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
{
uint64_t freq2k;
unsigned p, n2, r2;
struct hsw_wrpll_rnp best = { 0, 0, 0 };
unsigned budget;
freq2k = clock / 100;
budget = hsw_wrpll_get_budget_for_freq(clock);
/* Special case handling for 540 pixel clock: bypass WR PLL entirely
* and directly pass the LC PLL to it. */
if (freq2k == 5400000) {
*n2_out = 2;
*p_out = 1;
*r2_out = 2;
return;
}
/*
* Ref = LC_FREQ / R, where Ref is the actual reference input seen by
* the WR PLL.
*
* We want R so that REF_MIN <= Ref <= REF_MAX.
* Injecting R2 = 2 * R gives:
* REF_MAX * r2 > LC_FREQ * 2 and
* REF_MIN * r2 < LC_FREQ * 2
*
* Which means the desired boundaries for r2 are:
* LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
*
*/
for (r2 = LC_FREQ * 2 / REF_MAX + 1;
r2 <= LC_FREQ * 2 / REF_MIN;
r2++) {
/*
* VCO = N * Ref, that is: VCO = N * LC_FREQ / R
*
* Once again we want VCO_MIN <= VCO <= VCO_MAX.
* Injecting R2 = 2 * R and N2 = 2 * N, we get:
* VCO_MAX * r2 > n2 * LC_FREQ and
* VCO_MIN * r2 < n2 * LC_FREQ)
*
* Which means the desired boundaries for n2 are:
* VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
*/
for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
n2 <= VCO_MAX * r2 / LC_FREQ;
n2++) {
for (p = P_MIN; p <= P_MAX; p += P_INC)
hsw_wrpll_update_rnp(freq2k, budget,
r2, n2, p, &best);
}
}
*n2_out = best.n2;
*p_out = best.p;
*r2_out = best.r2;
}
static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct intel_shared_dpll *pll;
uint32_t val;
unsigned int p, n2, r2;
hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
WRPLL_DIVIDER_POST(p);
crtc_state->dpll_hw_state.wrpll = val;
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
if (!pll)
return NULL;
return pll;
}
static struct intel_shared_dpll *
hsw_ddi_dp_get_dpll(struct intel_encoder *encoder, int clock)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_shared_dpll *pll;
enum intel_dpll_id pll_id;
switch (clock / 2) {
case 81000:
pll_id = DPLL_ID_LCPLL_810;
break;
case 135000:
pll_id = DPLL_ID_LCPLL_1350;
break;
case 270000:
pll_id = DPLL_ID_LCPLL_2700;
break;
default:
DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
return NULL;
}
pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
if (!pll)
return NULL;
return pll;
}
static struct intel_shared_dpll *
hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct intel_shared_dpll *pll;
int clock = crtc_state->port_clock;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (encoder->type == INTEL_OUTPUT_HDMI) {
pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
} else if (encoder->type == INTEL_OUTPUT_DP ||
encoder->type == INTEL_OUTPUT_DP_MST ||
encoder->type == INTEL_OUTPUT_EDP) {
pll = hsw_ddi_dp_get_dpll(encoder, clock);
} else if (encoder->type == INTEL_OUTPUT_ANALOG) {
if (WARN_ON(crtc_state->port_clock / 2 != 135000))
return NULL;
crtc_state->dpll_hw_state.spll =
SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_SPLL, DPLL_ID_SPLL);
} else {
return NULL;
}
if (!pll)
return NULL;
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void hsw_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
hw_state->wrpll, hw_state->spll);
}
static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
.enable = hsw_ddi_wrpll_enable,
.disable = hsw_ddi_wrpll_disable,
.get_hw_state = hsw_ddi_wrpll_get_hw_state,
};
static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
.enable = hsw_ddi_spll_enable,
.disable = hsw_ddi_spll_disable,
.get_hw_state = hsw_ddi_spll_get_hw_state,
};
static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
}
static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
}
static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
return true;
}
static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
.enable = hsw_ddi_lcpll_enable,
.disable = hsw_ddi_lcpll_disable,
.get_hw_state = hsw_ddi_lcpll_get_hw_state,
};
struct skl_dpll_regs {
i915_reg_t ctl, cfgcr1, cfgcr2;
};
/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[4] = {
{
/* DPLL 0 */
.ctl = LCPLL1_CTL,
/* DPLL 0 doesn't support HDMI mode */
},
{
/* DPLL 1 */
.ctl = LCPLL2_CTL,
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
},
{
/* DPLL 2 */
.ctl = WRPLL_CTL(0),
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
},
{
/* DPLL 3 */
.ctl = WRPLL_CTL(1),
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
},
};
static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t val;
val = I915_READ(DPLL_CTRL1);
val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
DPLL_CTRL1_LINK_RATE_MASK(pll->id));
val |= pll->state.hw_state.ctrl1 << (pll->id * 6);
I915_WRITE(DPLL_CTRL1, val);
POSTING_READ(DPLL_CTRL1);
}
static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
skl_ddi_pll_write_ctrl1(dev_priv, pll);
I915_WRITE(regs[pll->id].cfgcr1, pll->state.hw_state.cfgcr1);
I915_WRITE(regs[pll->id].cfgcr2, pll->state.hw_state.cfgcr2);
POSTING_READ(regs[pll->id].cfgcr1);
POSTING_READ(regs[pll->id].cfgcr2);
/* the enable bit is always bit 31 */
I915_WRITE(regs[pll->id].ctl,
I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
if (intel_wait_for_register(dev_priv,
DPLL_STATUS,
DPLL_LOCK(pll->id),
DPLL_LOCK(pll->id),
5))
DRM_ERROR("DPLL %d not locked\n", pll->id);
}
static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
skl_ddi_pll_write_ctrl1(dev_priv, pll);
}
static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
/* the enable bit is always bit 31 */
I915_WRITE(regs[pll->id].ctl,
I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
POSTING_READ(regs[pll->id].ctl);
}
static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
}
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
const struct skl_dpll_regs *regs = skl_dpll_regs;
bool ret;
if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
ret = false;
val = I915_READ(regs[pll->id].ctl);
if (!(val & LCPLL_PLL_ENABLE))
goto out;
val = I915_READ(DPLL_CTRL1);
hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
/* avoid reading back stale values if HDMI mode is not enabled */
if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
}
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
return ret;
}
static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
const struct skl_dpll_regs *regs = skl_dpll_regs;
bool ret;
if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
ret = false;
/* DPLL0 is always enabled since it drives CDCLK */
val = I915_READ(regs[pll->id].ctl);
if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
goto out;
val = I915_READ(DPLL_CTRL1);
hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
return ret;
}
struct skl_wrpll_context {
uint64_t min_deviation; /* current minimal deviation */
uint64_t central_freq; /* chosen central freq */
uint64_t dco_freq; /* chosen dco freq */
unsigned int p; /* chosen divider */
};
static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
memset(ctx, 0, sizeof(*ctx));
ctx->min_deviation = U64_MAX;
}
/* DCO freq must be within +1%/-6% of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION 100
#define SKL_DCO_MAX_NDEVIATION 600
static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
uint64_t central_freq,
uint64_t dco_freq,
unsigned int divider)
{
uint64_t deviation;
deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
central_freq);
/* positive deviation */
if (dco_freq >= central_freq) {
if (deviation < SKL_DCO_MAX_PDEVIATION &&
deviation < ctx->min_deviation) {
ctx->min_deviation = deviation;
ctx->central_freq = central_freq;
ctx->dco_freq = dco_freq;
ctx->p = divider;
}
/* negative deviation */
} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
deviation < ctx->min_deviation) {
ctx->min_deviation = deviation;
ctx->central_freq = central_freq;
ctx->dco_freq = dco_freq;
ctx->p = divider;
}
}
static void skl_wrpll_get_multipliers(unsigned int p,
unsigned int *p0 /* out */,
unsigned int *p1 /* out */,
unsigned int *p2 /* out */)
{
/* even dividers */
if (p % 2 == 0) {
unsigned int half = p / 2;
if (half == 1 || half == 2 || half == 3 || half == 5) {
*p0 = 2;
*p1 = 1;
*p2 = half;
} else if (half % 2 == 0) {
*p0 = 2;
*p1 = half / 2;
*p2 = 2;
} else if (half % 3 == 0) {
*p0 = 3;
*p1 = half / 3;
*p2 = 2;
} else if (half % 7 == 0) {
*p0 = 7;
*p1 = half / 7;
*p2 = 2;
}
} else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
*p0 = 3;
*p1 = 1;
*p2 = p / 3;
} else if (p == 5 || p == 7) {
*p0 = p;
*p1 = 1;
*p2 = 1;
} else if (p == 15) {
*p0 = 3;
*p1 = 1;
*p2 = 5;
} else if (p == 21) {
*p0 = 7;
*p1 = 1;
*p2 = 3;
} else if (p == 35) {
*p0 = 7;
*p1 = 1;
*p2 = 5;
}
}
struct skl_wrpll_params {
uint32_t dco_fraction;
uint32_t dco_integer;
uint32_t qdiv_ratio;
uint32_t qdiv_mode;
uint32_t kdiv;
uint32_t pdiv;
uint32_t central_freq;
};
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
uint64_t afe_clock,
uint64_t central_freq,
uint32_t p0, uint32_t p1, uint32_t p2)
{
uint64_t dco_freq;
switch (central_freq) {
case 9600000000ULL:
params->central_freq = 0;
break;
case 9000000000ULL:
params->central_freq = 1;
break;
case 8400000000ULL:
params->central_freq = 3;
}
switch (p0) {
case 1:
params->pdiv = 0;
break;
case 2:
params->pdiv = 1;
break;
case 3:
params->pdiv = 2;
break;
case 7:
params->pdiv = 4;
break;
default:
WARN(1, "Incorrect PDiv\n");
}
switch (p2) {
case 5:
params->kdiv = 0;
break;
case 2:
params->kdiv = 1;
break;
case 3:
params->kdiv = 2;
break;
case 1:
params->kdiv = 3;
break;
default:
WARN(1, "Incorrect KDiv\n");
}
params->qdiv_ratio = p1;
params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
dco_freq = p0 * p1 * p2 * afe_clock;
/*
* Intermediate values are in Hz.
* Divide by MHz to match bsepc
*/
params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
params->dco_fraction =
div_u64((div_u64(dco_freq, 24) -
params->dco_integer * MHz(1)) * 0x8000, MHz(1));
}
static bool
skl_ddi_calculate_wrpll(int clock /* in Hz */,
struct skl_wrpll_params *wrpll_params)
{
uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
uint64_t dco_central_freq[3] = {8400000000ULL,
9000000000ULL,
9600000000ULL};
static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
24, 28, 30, 32, 36, 40, 42, 44,
48, 52, 54, 56, 60, 64, 66, 68,
70, 72, 76, 78, 80, 84, 88, 90,
92, 96, 98 };
static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
static const struct {
const int *list;
int n_dividers;
} dividers[] = {
{ even_dividers, ARRAY_SIZE(even_dividers) },
{ odd_dividers, ARRAY_SIZE(odd_dividers) },
};
struct skl_wrpll_context ctx;
unsigned int dco, d, i;
unsigned int p0, p1, p2;
skl_wrpll_context_init(&ctx);
for (d = 0; d < ARRAY_SIZE(dividers); d++) {
for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
for (i = 0; i < dividers[d].n_dividers; i++) {
unsigned int p = dividers[d].list[i];
uint64_t dco_freq = p * afe_clock;
skl_wrpll_try_divider(&ctx,
dco_central_freq[dco],
dco_freq,
p);
/*
* Skip the remaining dividers if we're sure to
* have found the definitive divider, we can't
* improve a 0 deviation.
*/
if (ctx.min_deviation == 0)
goto skip_remaining_dividers;
}
}
skip_remaining_dividers:
/*
* If a solution is found with an even divider, prefer
* this one.
*/
if (d == 0 && ctx.p)
break;
}
if (!ctx.p) {
DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
return false;
}
/*
* gcc incorrectly analyses that these can be used without being
* initialized. To be fair, it's hard to guess.
*/
p0 = p1 = p2 = 0;
skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
p0, p1, p2);
return true;
}
static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
int clock)
{
uint32_t ctrl1, cfgcr1, cfgcr2;
struct skl_wrpll_params wrpll_params = { 0, };
/*
* See comment in intel_dpll_hw_state to understand why we always use 0
* as the DPLL id in this function.
*/
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
return false;
cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
wrpll_params.dco_integer;
cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
wrpll_params.central_freq;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.ctrl1 = ctrl1;
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
return true;
}
static bool
skl_ddi_dp_set_dpll_hw_state(int clock,
struct intel_dpll_hw_state *dpll_hw_state)
{
uint32_t ctrl1;
/*
* See comment in intel_dpll_hw_state to understand why we always use 0
* as the DPLL id in this function.
*/
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
switch (clock / 2) {
case 81000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
break;
case 135000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
break;
case 270000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
break;
/* eDP 1.4 rates */
case 162000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
break;
case 108000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
break;
case 216000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
break;
}
dpll_hw_state->ctrl1 = ctrl1;
return true;
}
static struct intel_shared_dpll *
skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct intel_shared_dpll *pll;
int clock = crtc_state->port_clock;
bool bret;
struct intel_dpll_hw_state dpll_hw_state;
memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
if (encoder->type == INTEL_OUTPUT_HDMI) {
bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
if (!bret) {
DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
return NULL;
}
} else if (encoder->type == INTEL_OUTPUT_DP ||
encoder->type == INTEL_OUTPUT_DP_MST ||
encoder->type == INTEL_OUTPUT_EDP) {
bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
if (!bret) {
DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
return NULL;
}
crtc_state->dpll_hw_state = dpll_hw_state;
} else {
return NULL;
}
if (encoder->type == INTEL_OUTPUT_EDP)
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_SKL_DPLL0,
DPLL_ID_SKL_DPLL0);
else
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_SKL_DPLL1,
DPLL_ID_SKL_DPLL3);
if (!pll)
return NULL;
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void skl_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: "
"ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
hw_state->ctrl1,
hw_state->cfgcr1,
hw_state->cfgcr2);
}
static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
.enable = skl_ddi_pll_enable,
.disable = skl_ddi_pll_disable,
.get_hw_state = skl_ddi_pll_get_hw_state,
};
static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
.enable = skl_ddi_dpll0_enable,
.disable = skl_ddi_dpll0_disable,
.get_hw_state = skl_ddi_dpll0_get_hw_state,
};
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t temp;
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
enum dpio_phy phy;
enum dpio_channel ch;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
/* Non-SSC reference */
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_REF_SEL;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
if (IS_GEMINILAKE(dev_priv)) {
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_POWER_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
PORT_PLL_POWER_STATE), 200))
DRM_ERROR("Power state not set for PLL:%d\n", port);
}
/* Disable 10 bit clock */
temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
/* Write P1 & P2 */
temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
temp |= pll->state.hw_state.ebb0;
I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
/* Write M2 integer */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
temp &= ~PORT_PLL_M2_MASK;
temp |= pll->state.hw_state.pll0;
I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
/* Write N */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
temp &= ~PORT_PLL_N_MASK;
temp |= pll->state.hw_state.pll1;
I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
/* Write M2 fraction */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
temp &= ~PORT_PLL_M2_FRAC_MASK;
temp |= pll->state.hw_state.pll2;
I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
/* Write M2 fraction enable */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
temp &= ~PORT_PLL_M2_FRAC_ENABLE;
temp |= pll->state.hw_state.pll3;
I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
/* Write coeff */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
temp &= ~PORT_PLL_PROP_COEFF_MASK;
temp &= ~PORT_PLL_INT_COEFF_MASK;
temp &= ~PORT_PLL_GAIN_CTL_MASK;
temp |= pll->state.hw_state.pll6;
I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
/* Write calibration val */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
temp &= ~PORT_PLL_TARGET_CNT_MASK;
temp |= pll->state.hw_state.pll8;
I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
temp |= pll->state.hw_state.pll9;
I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
temp &= ~PORT_PLL_DCO_AMP_MASK;
temp |= pll->state.hw_state.pll10;
I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
/* Recalibrate with new settings */
temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
temp |= PORT_PLL_RECALIBRATE;
I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
temp |= pll->state.hw_state.ebb4;
I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
/* Enable PLL */
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
200))
DRM_ERROR("PLL %d not locked\n", port);
if (IS_GEMINILAKE(dev_priv)) {
temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
temp |= DCC_DELAY_RANGE_2;
I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
}
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
temp &= ~LANE_STAGGER_MASK;
temp &= ~LANESTAGGER_STRAP_OVRD;
temp |= pll->state.hw_state.pcsdw12;
I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
}
static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
uint32_t temp;
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
if (IS_GEMINILAKE(dev_priv)) {
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_POWER_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
PORT_PLL_POWER_STATE), 200))
DRM_ERROR("Power state not reset for PLL:%d\n", port);
}
}
static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
uint32_t val;
bool ret;
enum dpio_phy phy;
enum dpio_channel ch;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
ret = false;
val = I915_READ(BXT_PORT_PLL_ENABLE(port));
if (!(val & PORT_PLL_ENABLE))
goto out;
hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
hw_state->pll0 &= PORT_PLL_M2_MASK;
hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
hw_state->pll1 &= PORT_PLL_N_MASK;
hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
PORT_PLL_INT_COEFF_MASK |
PORT_PLL_GAIN_CTL_MASK;
hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
PORT_PLL_DCO_AMP_MASK;
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers. We configure all lanes the same way, so
* here just read out lanes 0/1 and output a note if lanes 2/3 differ.
*/
hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
hw_state->pcsdw12,
I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
return ret;
}
/* bxt clock parameters */
struct bxt_clk_div {
int clock;
uint32_t p1;
uint32_t p2;
uint32_t m2_int;
uint32_t m2_frac;
bool m2_frac_en;
uint32_t n;
int vco;
};
/* pre-calculated values for DP linkrates */
static const struct bxt_clk_div bxt_dp_clk_val[] = {
{162000, 4, 2, 32, 1677722, 1, 1},
{270000, 4, 1, 27, 0, 0, 1},
{540000, 2, 1, 27, 0, 0, 1},
{216000, 3, 2, 32, 1677722, 1, 1},
{243000, 4, 1, 24, 1258291, 1, 1},
{324000, 4, 1, 32, 1677722, 1, 1},
{432000, 3, 1, 32, 1677722, 1, 1}
};
static bool
bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state, int clock,
struct bxt_clk_div *clk_div)
{
struct dpll best_clock;
/* Calculate HDMI div */
/*
* FIXME: tie the following calculation into
* i9xx_crtc_compute_clock
*/
if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
clock, pipe_name(intel_crtc->pipe));
return false;
}
clk_div->p1 = best_clock.p1;
clk_div->p2 = best_clock.p2;
WARN_ON(best_clock.m1 != 2);
clk_div->n = best_clock.n;
clk_div->m2_int = best_clock.m2 >> 22;
clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
clk_div->m2_frac_en = clk_div->m2_frac != 0;
clk_div->vco = best_clock.vco;
return true;
}
static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
{
int i;
*clk_div = bxt_dp_clk_val[0];
for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
if (bxt_dp_clk_val[i].clock == clock) {
*clk_div = bxt_dp_clk_val[i];
break;
}
}
clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
}
static bool bxt_ddi_set_dpll_hw_state(int clock,
struct bxt_clk_div *clk_div,
struct intel_dpll_hw_state *dpll_hw_state)
{
int vco = clk_div->vco;
uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
uint32_t lanestagger;
if (vco >= 6200000 && vco <= 6700000) {
prop_coef = 4;
int_coef = 9;
gain_ctl = 3;
targ_cnt = 8;
} else if ((vco > 5400000 && vco < 6200000) ||
(vco >= 4800000 && vco < 5400000)) {
prop_coef = 5;
int_coef = 11;
gain_ctl = 3;
targ_cnt = 9;
} else if (vco == 5400000) {
prop_coef = 3;
int_coef = 8;
gain_ctl = 1;
targ_cnt = 9;
} else {
DRM_ERROR("Invalid VCO\n");
return false;
}
if (clock > 270000)
lanestagger = 0x18;
else if (clock > 135000)
lanestagger = 0x0d;
else if (clock > 67000)
lanestagger = 0x07;
else if (clock > 33000)
lanestagger = 0x04;
else
lanestagger = 0x02;
dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
dpll_hw_state->pll0 = clk_div->m2_int;
dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
dpll_hw_state->pll2 = clk_div->m2_frac;
if (clk_div->m2_frac_en)
dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
dpll_hw_state->pll8 = targ_cnt;
dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
dpll_hw_state->pll10 =
PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
| PORT_PLL_DCO_AMP_OVR_EN_H;
dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
return true;
}
static bool
bxt_ddi_dp_set_dpll_hw_state(int clock,
struct intel_dpll_hw_state *dpll_hw_state)
{
struct bxt_clk_div clk_div = {0};
bxt_ddi_dp_pll_dividers(clock, &clk_div);
return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}
static bool
bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state, int clock,
struct intel_dpll_hw_state *dpll_hw_state)
{
struct bxt_clk_div clk_div = { };
bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);
return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}
static struct intel_shared_dpll *
bxt_get_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct intel_dpll_hw_state dpll_hw_state = { };
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_digital_port *intel_dig_port;
struct intel_shared_dpll *pll;
int i, clock = crtc_state->port_clock;
if (encoder->type == INTEL_OUTPUT_HDMI &&
!bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
&dpll_hw_state))
return NULL;
if ((encoder->type == INTEL_OUTPUT_DP ||
encoder->type == INTEL_OUTPUT_EDP ||
encoder->type == INTEL_OUTPUT_DP_MST) &&
!bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
return NULL;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state = dpll_hw_state;
if (encoder->type == INTEL_OUTPUT_DP_MST) {
struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);
intel_dig_port = intel_mst->primary;
} else
intel_dig_port = enc_to_dig_port(&encoder->base);
/* 1:1 mapping between ports and PLLs */
i = (enum intel_dpll_id) intel_dig_port->port;
pll = intel_get_shared_dpll_by_id(dev_priv, i);
DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
crtc->base.base.id, crtc->base.name, pll->name);
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void bxt_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
"pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
"pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
hw_state->ebb0,
hw_state->ebb4,
hw_state->pll0,
hw_state->pll1,
hw_state->pll2,
hw_state->pll3,
hw_state->pll6,
hw_state->pll8,
hw_state->pll9,
hw_state->pll10,
hw_state->pcsdw12);
}
static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
.enable = bxt_ddi_pll_enable,
.disable = bxt_ddi_pll_disable,
.get_hw_state = bxt_ddi_pll_get_hw_state,
};
static void intel_ddi_pll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (INTEL_GEN(dev_priv) < 9) {
uint32_t val = I915_READ(LCPLL_CTL);
/*
* The LCPLL register should be turned on by the BIOS. For now
* let's just check its state and print errors in case
* something is wrong. Don't even try to turn it on.
*/
if (val & LCPLL_CD_SOURCE_FCLK)
DRM_ERROR("CDCLK source is not LCPLL\n");
if (val & LCPLL_PLL_DISABLE)
DRM_ERROR("LCPLL is disabled\n");
}
}
struct dpll_info {
const char *name;
const int id;
const struct intel_shared_dpll_funcs *funcs;
uint32_t flags;
};
struct intel_dpll_mgr {
const struct dpll_info *dpll_info;
struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder);
void (*dump_hw_state)(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state);
};
static const struct dpll_info pch_plls[] = {
{ "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
{ "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
{ NULL, -1, NULL, 0 },
};
static const struct intel_dpll_mgr pch_pll_mgr = {
.dpll_info = pch_plls,
.get_dpll = ibx_get_dpll,
.dump_hw_state = ibx_dump_hw_state,
};
static const struct dpll_info hsw_plls[] = {
{ "WRPLL 1", DPLL_ID_WRPLL1, &hsw_ddi_wrpll_funcs, 0 },
{ "WRPLL 2", DPLL_ID_WRPLL2, &hsw_ddi_wrpll_funcs, 0 },
{ "SPLL", DPLL_ID_SPLL, &hsw_ddi_spll_funcs, 0 },
{ "LCPLL 810", DPLL_ID_LCPLL_810, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
{ "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
{ "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
{ NULL, -1, NULL, },
};
static const struct intel_dpll_mgr hsw_pll_mgr = {
.dpll_info = hsw_plls,
.get_dpll = hsw_get_dpll,
.dump_hw_state = hsw_dump_hw_state,
};
static const struct dpll_info skl_plls[] = {
{ "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
{ "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs, 0 },
{ "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs, 0 },
{ "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs, 0 },
{ NULL, -1, NULL, },
};
static const struct intel_dpll_mgr skl_pll_mgr = {
.dpll_info = skl_plls,
.get_dpll = skl_get_dpll,
.dump_hw_state = skl_dump_hw_state,
};
static const struct dpll_info bxt_plls[] = {
{ "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
{ "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
{ "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
{ NULL, -1, NULL, },
};
static const struct intel_dpll_mgr bxt_pll_mgr = {
.dpll_info = bxt_plls,
.get_dpll = bxt_get_dpll,
.dump_hw_state = bxt_dump_hw_state,
};
static void cnl_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t val;
/* 1. Enable DPLL power in DPLL_ENABLE. */
val = I915_READ(CNL_DPLL_ENABLE(pll->id));
val |= PLL_POWER_ENABLE;
I915_WRITE(CNL_DPLL_ENABLE(pll->id), val);
/* 2. Wait for DPLL power state enabled in DPLL_ENABLE. */
if (intel_wait_for_register(dev_priv,
CNL_DPLL_ENABLE(pll->id),
PLL_POWER_STATE,
PLL_POWER_STATE,
5))
DRM_ERROR("PLL %d Power not enabled\n", pll->id);
/*
* 3. Configure DPLL_CFGCR0 to set SSC enable/disable,
* select DP mode, and set DP link rate.
*/
val = pll->state.hw_state.cfgcr0;
I915_WRITE(CNL_DPLL_CFGCR0(pll->id), val);
/* 4. Reab back to ensure writes completed */
POSTING_READ(CNL_DPLL_CFGCR0(pll->id));
/* 3. Configure DPLL_CFGCR0 */
/* Avoid touch CFGCR1 if HDMI mode is not enabled */
if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
val = pll->state.hw_state.cfgcr1;
I915_WRITE(CNL_DPLL_CFGCR1(pll->id), val);
/* 4. Reab back to ensure writes completed */
POSTING_READ(CNL_DPLL_CFGCR1(pll->id));
}
/*
* 5. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence Before Frequency Change
*
* FIXME: (DVFS) is used to adjust the display voltage to match the
* display clock frequencies
*/
/* 6. Enable DPLL in DPLL_ENABLE. */
val = I915_READ(CNL_DPLL_ENABLE(pll->id));
val |= PLL_ENABLE;
I915_WRITE(CNL_DPLL_ENABLE(pll->id), val);
/* 7. Wait for PLL lock status in DPLL_ENABLE. */
if (intel_wait_for_register(dev_priv,
CNL_DPLL_ENABLE(pll->id),
PLL_LOCK,
PLL_LOCK,
5))
DRM_ERROR("PLL %d not locked\n", pll->id);
/*
* 8. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence After Frequency Change
*
* FIXME: (DVFS) is used to adjust the display voltage to match the
* display clock frequencies
*/
/*
* 9. turn on the clock for the DDI and map the DPLL to the DDI
* Done at intel_ddi_clk_select
*/
}
static void cnl_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t val;
/*
* 1. Configure DPCLKA_CFGCR0 to turn off the clock for the DDI.
* Done at intel_ddi_post_disable
*/
/*
* 2. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence Before Frequency Change
*
* FIXME: (DVFS) is used to adjust the display voltage to match the
* display clock frequencies
*/
/* 3. Disable DPLL through DPLL_ENABLE. */
val = I915_READ(CNL_DPLL_ENABLE(pll->id));
val &= ~PLL_ENABLE;
I915_WRITE(CNL_DPLL_ENABLE(pll->id), val);
/* 4. Wait for PLL not locked status in DPLL_ENABLE. */
if (intel_wait_for_register(dev_priv,
CNL_DPLL_ENABLE(pll->id),
PLL_LOCK,
0,
5))
DRM_ERROR("PLL %d locked\n", pll->id);
/*
* 5. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence After Frequency Change
*
* FIXME: (DVFS) is used to adjust the display voltage to match the
* display clock frequencies
*/
/* 6. Disable DPLL power in DPLL_ENABLE. */
val = I915_READ(CNL_DPLL_ENABLE(pll->id));
val &= ~PLL_POWER_ENABLE;
I915_WRITE(CNL_DPLL_ENABLE(pll->id), val);
/* 7. Wait for DPLL power state disabled in DPLL_ENABLE. */
if (intel_wait_for_register(dev_priv,
CNL_DPLL_ENABLE(pll->id),
PLL_POWER_STATE,
0,
5))
DRM_ERROR("PLL %d Power not disabled\n", pll->id);
}
static bool cnl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
bool ret;
if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
ret = false;
val = I915_READ(CNL_DPLL_ENABLE(pll->id));
if (!(val & PLL_ENABLE))
goto out;
val = I915_READ(CNL_DPLL_CFGCR0(pll->id));
hw_state->cfgcr0 = val;
/* avoid reading back stale values if HDMI mode is not enabled */
if (val & DPLL_CFGCR0_HDMI_MODE) {
hw_state->cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(pll->id));
}
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
return ret;
}
static void cnl_wrpll_get_multipliers(unsigned int bestdiv,
unsigned int *pdiv,
unsigned int *qdiv,
unsigned int *kdiv)
{
/* even dividers */
if (bestdiv % 2 == 0) {
if (bestdiv == 2) {
*pdiv = 2;
*qdiv = 1;
*kdiv = 1;
} else if (bestdiv % 4 == 0) {
*pdiv = 2;
*qdiv = bestdiv / 4;
*kdiv = 2;
} else if (bestdiv % 6 == 0) {
*pdiv = 3;
*qdiv = bestdiv / 6;
*kdiv = 2;
} else if (bestdiv % 5 == 0) {
*pdiv = 5;
*qdiv = bestdiv / 10;
*kdiv = 2;
} else if (bestdiv % 14 == 0) {
*pdiv = 7;
*qdiv = bestdiv / 14;
*kdiv = 2;
}
} else {
if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) {
*pdiv = bestdiv;
*qdiv = 1;
*kdiv = 1;
} else { /* 9, 15, 21 */
*pdiv = bestdiv / 3;
*qdiv = 1;
*kdiv = 3;
}
}
}
static void cnl_wrpll_params_populate(struct skl_wrpll_params *params, uint32_t dco_freq,
uint32_t ref_freq, uint32_t pdiv, uint32_t qdiv,
uint32_t kdiv)
{
switch (kdiv) {
case 1:
params->kdiv = 1;
break;
case 2:
params->kdiv = 2;
break;
case 3:
params->kdiv = 4;
break;
default:
WARN(1, "Incorrect KDiv\n");
}
switch (pdiv) {
case 2:
params->pdiv = 1;
break;
case 3:
params->pdiv = 2;
break;
case 5:
params->pdiv = 4;
break;
case 7:
params->pdiv = 8;
break;
default:
WARN(1, "Incorrect PDiv\n");
}
if (kdiv != 2)
qdiv = 1;
params->qdiv_ratio = qdiv;
params->qdiv_mode = (qdiv == 1) ? 0 : 1;
params->dco_integer = div_u64(dco_freq, ref_freq);
params->dco_fraction = div_u64((div_u64((uint64_t)dco_freq<<15, (uint64_t)ref_freq) -
((uint64_t)params->dco_integer<<15)) * 0x8000, 0x8000);
}
static bool
cnl_ddi_calculate_wrpll(int clock /* in Hz */,
struct drm_i915_private *dev_priv,
struct skl_wrpll_params *wrpll_params)
{
uint64_t afe_clock = clock * 5 / KHz(1); /* clocks in kHz */
unsigned int dco_min = 7998 * KHz(1);
unsigned int dco_max = 10000 * KHz(1);
unsigned int dco_mid = (dco_min + dco_max) / 2;
static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 24, 28, 30, 32, 36, 40,
42, 44, 48, 50, 52, 54, 56, 60,
64, 66, 68, 70, 72, 76, 78, 80,
84, 88, 90, 92, 96, 98, 100, 102,
3, 5, 7, 9, 15, 21 };
unsigned int d, dco;
unsigned int dco_centrality = 0;
unsigned int best_dco_centrality = 999999;
unsigned int best_div = 0;
unsigned int best_dco = 0;
unsigned int pdiv = 0, qdiv = 0, kdiv = 0;
for (d = 0; d < ARRAY_SIZE(dividers); d++) {
dco = afe_clock * dividers[d];
if ((dco <= dco_max) && (dco >= dco_min)) {
dco_centrality = abs(dco - dco_mid);
if (dco_centrality < best_dco_centrality) {
best_dco_centrality = dco_centrality;
best_div = dividers[d];
best_dco = dco;
}
}
}
if (best_div == 0)
return false;
cnl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv);
cnl_wrpll_params_populate(wrpll_params, best_dco,
dev_priv->cdclk.hw.ref, pdiv, qdiv, kdiv);
return true;
}
static bool cnl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
int clock)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
uint32_t cfgcr0, cfgcr1;
struct skl_wrpll_params wrpll_params = { 0, };
cfgcr0 = DPLL_CFGCR0_HDMI_MODE;
if (!cnl_ddi_calculate_wrpll(clock * 1000, dev_priv, &wrpll_params))
return false;
cfgcr0 |= DPLL_CFGCR0_DCO_FRACTION(wrpll_params.dco_fraction) |
wrpll_params.dco_integer;
cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(wrpll_params.qdiv_ratio) |
DPLL_CFGCR1_QDIV_MODE(wrpll_params.qdiv_mode) |
DPLL_CFGCR1_KDIV(wrpll_params.kdiv) |
DPLL_CFGCR1_PDIV(wrpll_params.pdiv) |
wrpll_params.central_freq |
DPLL_CFGCR1_CENTRAL_FREQ;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
return true;
}
static bool
cnl_ddi_dp_set_dpll_hw_state(int clock,
struct intel_dpll_hw_state *dpll_hw_state)
{
uint32_t cfgcr0;
cfgcr0 = DPLL_CFGCR0_SSC_ENABLE;
switch (clock / 2) {
case 81000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_810;
break;
case 135000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1350;
break;
case 270000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2700;
break;
/* eDP 1.4 rates */
case 162000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1620;
break;
case 108000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1080;
break;
case 216000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2160;
break;
case 324000:
/* Some SKUs may require elevated I/O voltage to support this */
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_3240;
break;
case 405000:
/* Some SKUs may require elevated I/O voltage to support this */
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_4050;
break;
}
dpll_hw_state->cfgcr0 = cfgcr0;
return true;
}
static struct intel_shared_dpll *
cnl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct intel_shared_dpll *pll;
int clock = crtc_state->port_clock;
bool bret;
struct intel_dpll_hw_state dpll_hw_state;
memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
if (encoder->type == INTEL_OUTPUT_HDMI) {
bret = cnl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
if (!bret) {
DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
return NULL;
}
} else if (encoder->type == INTEL_OUTPUT_DP ||
encoder->type == INTEL_OUTPUT_DP_MST ||
encoder->type == INTEL_OUTPUT_EDP) {
bret = cnl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
if (!bret) {
DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
return NULL;
}
crtc_state->dpll_hw_state = dpll_hw_state;
} else {
DRM_DEBUG_KMS("Skip DPLL setup for encoder %d\n",
encoder->type);
return NULL;
}
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_SKL_DPLL0,
DPLL_ID_SKL_DPLL2);
if (!pll) {
DRM_DEBUG_KMS("No PLL selected\n");
return NULL;
}
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void cnl_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: "
"cfgcr0: 0x%x, cfgcr1: 0x%x\n",
hw_state->cfgcr0,
hw_state->cfgcr1);
}
static const struct intel_shared_dpll_funcs cnl_ddi_pll_funcs = {
.enable = cnl_ddi_pll_enable,
.disable = cnl_ddi_pll_disable,
.get_hw_state = cnl_ddi_pll_get_hw_state,
};
static const struct dpll_info cnl_plls[] = {
{ "DPLL 0", DPLL_ID_SKL_DPLL0, &cnl_ddi_pll_funcs, 0 },
{ "DPLL 1", DPLL_ID_SKL_DPLL1, &cnl_ddi_pll_funcs, 0 },
{ "DPLL 2", DPLL_ID_SKL_DPLL2, &cnl_ddi_pll_funcs, 0 },
{ NULL, -1, NULL, },
};
static const struct intel_dpll_mgr cnl_pll_mgr = {
.dpll_info = cnl_plls,
.get_dpll = cnl_get_dpll,
.dump_hw_state = cnl_dump_hw_state,
};
/**
* intel_shared_dpll_init - Initialize shared DPLLs
* @dev: drm device
*
* Initialize shared DPLLs for @dev.
*/
void intel_shared_dpll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
const struct intel_dpll_mgr *dpll_mgr = NULL;
const struct dpll_info *dpll_info;
int i;
if (IS_CANNONLAKE(dev_priv))
dpll_mgr = &cnl_pll_mgr;
else if (IS_GEN9_BC(dev_priv))
dpll_mgr = &skl_pll_mgr;
else if (IS_GEN9_LP(dev_priv))
dpll_mgr = &bxt_pll_mgr;
else if (HAS_DDI(dev_priv))
dpll_mgr = &hsw_pll_mgr;
else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
dpll_mgr = &pch_pll_mgr;
if (!dpll_mgr) {
dev_priv->num_shared_dpll = 0;
return;
}
dpll_info = dpll_mgr->dpll_info;
for (i = 0; dpll_info[i].id >= 0; i++) {
WARN_ON(i != dpll_info[i].id);
dev_priv->shared_dplls[i].id = dpll_info[i].id;
dev_priv->shared_dplls[i].name = dpll_info[i].name;
dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
}
dev_priv->dpll_mgr = dpll_mgr;
dev_priv->num_shared_dpll = i;
mutex_init(&dev_priv->dpll_lock);
BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
/* FIXME: Move this to a more suitable place */
if (HAS_DDI(dev_priv))
intel_ddi_pll_init(dev);
}
/**
* intel_get_shared_dpll - get a shared DPLL for CRTC and encoder combination
* @crtc: CRTC
* @crtc_state: atomic state for @crtc
* @encoder: encoder
*
* Find an appropriate DPLL for the given CRTC and encoder combination. A
* reference from the @crtc to the returned pll is registered in the atomic
* state. That configuration is made effective by calling
* intel_shared_dpll_swap_state(). The reference should be released by calling
* intel_release_shared_dpll().
*
* Returns:
* A shared DPLL to be used by @crtc and @encoder with the given @crtc_state.
*/
struct intel_shared_dpll *
intel_get_shared_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
if (WARN_ON(!dpll_mgr))
return NULL;
return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
}
/**
* intel_release_shared_dpll - end use of DPLL by CRTC in atomic state
* @dpll: dpll in use by @crtc
* @crtc: crtc
* @state: atomic state
*
* This function releases the reference from @crtc to @dpll from the
* atomic @state. The new configuration is made effective by calling
* intel_shared_dpll_swap_state().
*/
void intel_release_shared_dpll(struct intel_shared_dpll *dpll,
struct intel_crtc *crtc,
struct drm_atomic_state *state)
{
struct intel_shared_dpll_state *shared_dpll_state;
shared_dpll_state = intel_atomic_get_shared_dpll_state(state);
shared_dpll_state[dpll->id].crtc_mask &= ~(1 << crtc->pipe);
}
/**
* intel_shared_dpll_dump_hw_state - write hw_state to dmesg
* @dev_priv: i915 drm device
* @hw_state: hw state to be written to the log
*
* Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS.
*/
void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
if (dev_priv->dpll_mgr) {
dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state);
} else {
/* fallback for platforms that don't use the shared dpll
* infrastructure
*/
DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
"fp0: 0x%x, fp1: 0x%x\n",
hw_state->dpll,
hw_state->dpll_md,
hw_state->fp0,
hw_state->fp1);
}
}