ubuntu-linux-kernel/drivers/gpu/drm/amd/powerplay/smumgr/fiji_smumgr.c

2745 lines
93 KiB
C

/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include "smumgr.h"
#include "smu7_dyn_defaults.h"
#include "smu73.h"
#include "smu_ucode_xfer_vi.h"
#include "fiji_smumgr.h"
#include "fiji_ppsmc.h"
#include "smu73_discrete.h"
#include "ppatomctrl.h"
#include "smu/smu_7_1_3_d.h"
#include "smu/smu_7_1_3_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "gca/gfx_8_0_d.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#include "hardwaremanager.h"
#include "cgs_common.h"
#include "atombios.h"
#include "pppcielanes.h"
#include "hwmgr.h"
#include "smu7_hwmgr.h"
#define AVFS_EN_MSB 1568
#define AVFS_EN_LSB 1568
#define FIJI_SMC_SIZE 0x20000
#define VOLTAGE_SCALE 4
#define POWERTUNE_DEFAULT_SET_MAX 1
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
#define VDDC_VDDCI_DELTA 300
#define MC_CG_ARB_FREQ_F1 0x0b
/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
* not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
*/
static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
{600, 1050, 3, 0}, {600, 1050, 6, 1} };
/* [FF, SS] type, [] 4 voltage ranges, and
* [Floor Freq, Boundary Freq, VID min , VID max]
*/
static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
* (coming from PWR_CKS_CNTL.stretch_amount reg spec)
*/
static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
{0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
/*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
{1, 0xF, 0xFD,
/* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
0x19, 5, 45}
};
static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
/* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */
/* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
{ 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
{ 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
{ 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
{ 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
{ 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
{ 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
{ 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
{ 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }
};
static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
{
int result = 0;
/* Wait for smc boot up */
/* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
RCU_UC_EVENTS, boot_seq_done, 0); */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
result = smu7_upload_smu_firmware_image(hwmgr);
if (result)
return result;
/* Clear status */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_STATUS, 0);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
/* De-assert reset */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
/* Wait for ROM firmware to initialize interrupt hendler */
/*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
/* Set SMU Auto Start */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMU_INPUT_DATA, AUTO_START, 1);
/* Clear firmware interrupt enable flag */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixFIRMWARE_FLAGS, 0);
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
INTERRUPTS_ENABLED, 1);
cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, 0x20000);
cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
/* Wait for done bit to be set */
PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
SMU_STATUS, SMU_DONE, 0);
/* Check pass/failed indicator */
if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMU_STATUS, SMU_PASS) != 1) {
PP_ASSERT_WITH_CODE(false,
"SMU Firmware start failed!", return -1);
}
/* Wait for firmware to initialize */
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
return result;
}
static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
{
int result = 0;
/* wait for smc boot up */
PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
RCU_UC_EVENTS, boot_seq_done, 0);
/* Clear firmware interrupt enable flag */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixFIRMWARE_FLAGS, 0);
/* Assert reset */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
result = smu7_upload_smu_firmware_image(hwmgr);
if (result)
return result;
/* Set smc instruct start point at 0x0 */
smu7_program_jump_on_start(hwmgr);
/* Enable clock */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
/* De-assert reset */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
/* Wait for firmware to initialize */
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
return result;
}
static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
if (0 != smu_data->avfs.avfs_btc_param) {
if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_PerformBtc, smu_data->avfs.avfs_btc_param)) {
pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
result = -EINVAL;
}
}
/* Soft-Reset to reset the engine before loading uCode */
/* halt */
cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
/* reset everything */
cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
/* clear reset */
cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
return result;
}
static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
{
int32_t vr_config;
uint32_t table_start;
uint32_t level_addr, vr_config_addr;
uint32_t level_size = sizeof(avfs_graphics_level);
PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, DpmTable),
&table_start, 0x40000),
"[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
"communicate starting address of DPM table",
return -1;);
/* Default value for vr_config =
* VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
vr_config = 0x01000500; /* Real value:0x50001 */
vr_config_addr = table_start +
offsetof(SMU73_Discrete_DpmTable, VRConfig);
PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
(uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
"[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
"vr_config value over to SMC",
return -1;);
level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
(uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
"[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
return -1;);
return 0;
}
static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr, bool smu_started)
{
struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
switch (smu_data->avfs.avfs_btc_status) {
case AVFS_BTC_COMPLETED_PREVIOUSLY:
break;
case AVFS_BTC_BOOT: /*Cold Boot State - Post SMU Start*/
if (!smu_started)
break;
smu_data->avfs.avfs_btc_status = AVFS_BTC_FAILED;
PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
"[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
" table over to SMU",
return -EINVAL;);
smu_data->avfs.avfs_btc_status = AVFS_BTC_VIRUS_FAIL;
PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
"[AVFS][fiji_avfs_event_mgr] Could not setup "
"Pwr Virus for AVFS ",
return -EINVAL;);
smu_data->avfs.avfs_btc_status = AVFS_BTC_FAILED;
PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
"[AVFS][fiji_avfs_event_mgr] Failure at "
"fiji_start_avfs_btc. AVFS Disabled",
return -EINVAL;);
smu_data->avfs.avfs_btc_status = AVFS_BTC_ENABLEAVFS;
break;
case AVFS_BTC_DISABLED: /* Do nothing */
case AVFS_BTC_NOTSUPPORTED: /* Do nothing */
case AVFS_BTC_ENABLEAVFS:
break;
default:
pr_err("AVFS failed status is %x !\n", smu_data->avfs.avfs_btc_status);
break;
}
return 0;
}
static int fiji_start_smu(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
/* Only start SMC if SMC RAM is not running */
if (!(smu7_is_smc_ram_running(hwmgr)
|| cgs_is_virtualization_enabled(hwmgr->device))) {
fiji_avfs_event_mgr(hwmgr, false);
/* Check if SMU is running in protected mode */
if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC,
SMU_FIRMWARE, SMU_MODE)) {
result = fiji_start_smu_in_non_protection_mode(hwmgr);
if (result)
return result;
} else {
result = fiji_start_smu_in_protection_mode(hwmgr);
if (result)
return result;
}
fiji_avfs_event_mgr(hwmgr, true);
}
/* To initialize all clock gating before RLC loaded and running.*/
cgs_set_clockgating_state(hwmgr->device,
AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_GATE);
cgs_set_clockgating_state(hwmgr->device,
AMD_IP_BLOCK_TYPE_GMC, AMD_CG_STATE_GATE);
cgs_set_clockgating_state(hwmgr->device,
AMD_IP_BLOCK_TYPE_SDMA, AMD_CG_STATE_GATE);
cgs_set_clockgating_state(hwmgr->device,
AMD_IP_BLOCK_TYPE_COMMON, AMD_CG_STATE_GATE);
/* Setup SoftRegsStart here for register lookup in case
* DummyBackEnd is used and ProcessFirmwareHeader is not executed
*/
smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, SoftRegisters),
&(priv->smu7_data.soft_regs_start), 0x40000);
result = smu7_request_smu_load_fw(hwmgr);
return result;
}
static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
{
uint32_t efuse = 0;
uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1;
if (cgs_is_virtualization_enabled(hwmgr->device))
return 0;
if (!atomctrl_read_efuse(hwmgr->device, AVFS_EN_LSB, AVFS_EN_MSB,
mask, &efuse)) {
if (efuse)
return true;
}
return false;
}
static int fiji_smu_init(struct pp_hwmgr *hwmgr)
{
int i;
struct fiji_smumgr *fiji_priv = NULL;
fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
if (fiji_priv == NULL)
return -ENOMEM;
hwmgr->smu_backend = fiji_priv;
if (smu7_init(hwmgr))
return -EINVAL;
for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
fiji_priv->activity_target[i] = 30;
return 0;
}
static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
{
uint32_t i;
uint16_t vddci;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
*voltage = *mvdd = 0;
/* clock - voltage dependency table is empty table */
if (dep_table->count == 0)
return -EINVAL;
for (i = 0; i < dep_table->count; i++) {
/* find first sclk bigger than request */
if (dep_table->entries[i].clk >= clock) {
*voltage |= (dep_table->entries[i].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else if (dep_table->entries[i].vddci)
*voltage |= (dep_table->entries[i].vddci *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else {
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
(dep_table->entries[i].vddc -
VDDC_VDDCI_DELTA));
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
}
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
*mvdd = data->vbios_boot_state.mvdd_bootup_value *
VOLTAGE_SCALE;
else if (dep_table->entries[i].mvdd)
*mvdd = (uint32_t) dep_table->entries[i].mvdd *
VOLTAGE_SCALE;
*voltage |= 1 << PHASES_SHIFT;
return 0;
}
}
/* sclk is bigger than max sclk in the dependence table */
*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else if (dep_table->entries[i-1].vddci) {
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
(dep_table->entries[i].vddc -
VDDC_VDDCI_DELTA));
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
}
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
else if (dep_table->entries[i].mvdd)
*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
return 0;
}
static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
{
uint32_t tmp;
tmp = raw_setting * 4096 / 100;
return (uint16_t)tmp;
}
static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
{
switch (line) {
case SMU7_I2CLineID_DDC1:
*scl = SMU7_I2C_DDC1CLK;
*sda = SMU7_I2C_DDC1DATA;
break;
case SMU7_I2CLineID_DDC2:
*scl = SMU7_I2C_DDC2CLK;
*sda = SMU7_I2C_DDC2DATA;
break;
case SMU7_I2CLineID_DDC3:
*scl = SMU7_I2C_DDC3CLK;
*sda = SMU7_I2C_DDC3DATA;
break;
case SMU7_I2CLineID_DDC4:
*scl = SMU7_I2C_DDC4CLK;
*sda = SMU7_I2C_DDC4DATA;
break;
case SMU7_I2CLineID_DDC5:
*scl = SMU7_I2C_DDC5CLK;
*sda = SMU7_I2C_DDC5DATA;
break;
case SMU7_I2CLineID_DDC6:
*scl = SMU7_I2C_DDC6CLK;
*sda = SMU7_I2C_DDC6DATA;
break;
case SMU7_I2CLineID_SCLSDA:
*scl = SMU7_I2C_SCL;
*sda = SMU7_I2C_SDA;
break;
case SMU7_I2CLineID_DDCVGA:
*scl = SMU7_I2C_DDCVGACLK;
*sda = SMU7_I2C_DDCVGADATA;
break;
default:
*scl = 0;
*sda = 0;
break;
}
}
static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (table_info &&
table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
table_info->cac_dtp_table->usPowerTuneDataSetID)
smu_data->power_tune_defaults =
&fiji_power_tune_data_set_array
[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
else
smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
}
static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
struct pp_advance_fan_control_parameters *fan_table =
&hwmgr->thermal_controller.advanceFanControlParameters;
uint8_t uc_scl, uc_sda;
/* TDP number of fraction bits are changed from 8 to 7 for Fiji
* as requested by SMC team
*/
dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
(uint16_t)(cac_dtp_table->usTDP * 128));
dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
(uint16_t)(cac_dtp_table->usTDP * 128));
PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
"Target Operating Temp is out of Range!",
);
dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
dpm_table->GpuTjHyst = 8;
dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
/* The following are for new Fiji Multi-input fan/thermal control */
dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
cac_dtp_table->usTargetOperatingTemp * 256);
dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
cac_dtp_table->usTemperatureLimitHotspot * 256);
dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
cac_dtp_table->usTemperatureLimitLiquid1 * 256);
dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
cac_dtp_table->usTemperatureLimitLiquid2 * 256);
dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
cac_dtp_table->usTemperatureLimitVrVddc * 256);
dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
cac_dtp_table->usTemperatureLimitVrMvdd * 256);
dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
cac_dtp_table->usTemperatureLimitPlx * 256);
dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainEdge));
dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainHotspot));
dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainLiquid));
dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainVrVddc));
dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainPlx));
dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainHbm));
dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
dpm_table->Liquid_I2C_LineSCL = uc_scl;
dpm_table->Liquid_I2C_LineSDA = uc_sda;
get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
dpm_table->Vr_I2C_LineSCL = uc_scl;
dpm_table->Vr_I2C_LineSDA = uc_sda;
get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
dpm_table->Plx_I2C_LineSCL = uc_scl;
dpm_table->Plx_I2C_LineSDA = uc_sda;
return 0;
}
static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
return 0;
}
static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
{
uint16_t tdc_limit;
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
/* TDC number of fraction bits are changed from 8 to 7
* for Fiji as requested by SMC team
*/
tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
smu_data->power_tune_table.TDC_VDDC_PkgLimit =
CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
return 0;
}
static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
uint32_t temp;
if (smu7_read_smc_sram_dword(hwmgr,
fuse_table_offset +
offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
(uint32_t *)&temp, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
return -EINVAL);
else {
smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
smu_data->power_tune_table.LPMLTemperatureMin =
(uint8_t)((temp >> 16) & 0xff);
smu_data->power_tune_table.LPMLTemperatureMax =
(uint8_t)((temp >> 8) & 0xff);
smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
}
return 0;
}
static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
{
int i;
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
/* Currently not used. Set all to zero. */
for (i = 0; i < 16; i++)
smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
return 0;
}
static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
if ((hwmgr->thermal_controller.advanceFanControlParameters.
usFanOutputSensitivity & (1 << 15)) ||
0 == hwmgr->thermal_controller.advanceFanControlParameters.
usFanOutputSensitivity)
hwmgr->thermal_controller.advanceFanControlParameters.
usFanOutputSensitivity = hwmgr->thermal_controller.
advanceFanControlParameters.usDefaultFanOutputSensitivity;
smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
advanceFanControlParameters.usFanOutputSensitivity);
return 0;
}
static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
{
int i;
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
/* Currently not used. Set all to zero. */
for (i = 0; i < 16; i++)
smu_data->power_tune_table.GnbLPML[i] = 0;
return 0;
}
static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
return 0;
}
static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
{
uint32_t pm_fuse_table_offset;
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment)) {
if (smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, PmFuseTable),
&pm_fuse_table_offset, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to get pm_fuse_table_offset Failed!",
return -EINVAL);
/* DW6 */
if (fiji_populate_svi_load_line(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate SviLoadLine Failed!",
return -EINVAL);
/* DW7 */
if (fiji_populate_tdc_limit(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TDCLimit Failed!", return -EINVAL);
/* DW8 */
if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TdcWaterfallCtl, "
"LPMLTemperature Min and Max Failed!",
return -EINVAL);
/* DW9-DW12 */
if (0 != fiji_populate_temperature_scaler(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate LPMLTemperatureScaler Failed!",
return -EINVAL);
/* DW13-DW14 */
if (fiji_populate_fuzzy_fan(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate Fuzzy Fan Control parameters Failed!",
return -EINVAL);
/* DW15-DW18 */
if (fiji_populate_gnb_lpml(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate GnbLPML Failed!",
return -EINVAL);
/* DW20 */
if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
"Sidd Failed!", return -EINVAL);
if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
(uint8_t *)&smu_data->power_tune_table,
sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to download PmFuseTable Failed!",
return -EINVAL);
}
return 0;
}
static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
uint32_t count;
uint8_t index;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_voltage_lookup_table *lookup_table =
table_info->vddc_lookup_table;
/* tables is already swapped, so in order to use the value from it,
* we need to swap it back.
* We are populating vddc CAC data to BapmVddc table
* in split and merged mode
*/
for (count = 0; count < lookup_table->count; count++) {
index = phm_get_voltage_index(lookup_table,
data->vddc_voltage_table.entries[count].value);
table->BapmVddcVidLoSidd[count] =
convert_to_vid(lookup_table->entries[index].us_cac_low);
table->BapmVddcVidHiSidd[count] =
convert_to_vid(lookup_table->entries[index].us_cac_high);
}
return 0;
}
static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
int result;
result = fiji_populate_cac_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate CAC voltage tables to SMC",
return -EINVAL);
return 0;
}
static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_Ulv *state)
{
int result = 0;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
state->CcPwrDynRm = 0;
state->CcPwrDynRm1 = 0;
state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
state->VddcPhase = 1;
if (!result) {
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
}
return result;
}
static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
return fiji_populate_ulv_level(hwmgr, &table->Ulv);
}
static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
int i;
/* Index (dpm_table->pcie_speed_table.count)
* is reserved for PCIE boot level. */
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity = 1;
table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
}
smu_data->smc_state_table.LinkLevelCount =
(uint8_t)dpm_table->pcie_speed_table.count;
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
return 0;
}
static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
{
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct pp_atomctrl_clock_dividers_vi dividers;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
uint32_t ref_clock;
uint32_t ref_divider;
uint32_t fbdiv;
int result;
/* get the engine clock dividers for this clock value */
result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.",
return result);
/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
ref_clock = atomctrl_get_reference_clock(hwmgr);
ref_divider = 1 + dividers.uc_pll_ref_div;
/* low 14 bits is fraction and high 12 bits is divider */
fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
/* SPLL_FUNC_CNTL setup */
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_REF_DIV, dividers.uc_pll_ref_div);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_PDIV_A, dividers.uc_pll_post_div);
/* SPLL_FUNC_CNTL_3 setup*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
SPLL_FB_DIV, fbdiv);
/* set to use fractional accumulation*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
SPLL_DITHEN, 1);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
struct pp_atomctrl_internal_ss_info ssInfo;
uint32_t vco_freq = clock * dividers.uc_pll_post_div;
if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
vco_freq, &ssInfo)) {
/*
* ss_info.speed_spectrum_percentage -- in unit of 0.01%
* ss_info.speed_spectrum_rate -- in unit of khz
*
* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
*/
uint32_t clk_s = ref_clock * 5 /
(ref_divider * ssInfo.speed_spectrum_rate);
/* clkv = 2 * D * fbdiv / NS */
uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
fbdiv / (clk_s * 10000);
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
}
}
sclk->SclkFrequency = clock;
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
return 0;
}
static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
uint32_t clock, uint16_t sclk_al_threshold,
struct SMU73_Discrete_GraphicsLevel *level)
{
int result;
/* PP_Clocks minClocks; */
uint32_t threshold, mvdd;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
result = fiji_calculate_sclk_params(hwmgr, clock, level);
/* populate graphics levels */
result = fiji_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_sclk, clock,
(uint32_t *)(&level->MinVoltage), &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find VDDC voltage value for "
"VDDC engine clock dependency table",
return result);
level->SclkFrequency = clock;
level->ActivityLevel = sclk_al_threshold;
level->CcPwrDynRm = 0;
level->CcPwrDynRm1 = 0;
level->EnabledForActivity = 0;
level->EnabledForThrottle = 1;
level->UpHyst = 10;
level->DownHyst = 0;
level->VoltageDownHyst = 0;
level->PowerThrottle = 0;
threshold = clock * data->fast_watermark_threshold / 100;
data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
hwmgr->display_config.min_core_set_clock_in_sr);
/* Default to slow, highest DPM level will be
* set to PPSMC_DISPLAY_WATERMARK_LOW later.
*/
level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
return 0;
}
static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
int result = 0;
uint32_t array = smu_data->smu7_data.dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
SMU73_MAX_LEVELS_GRAPHICS;
struct SMU73_Discrete_GraphicsLevel *levels =
smu_data->smc_state_table.GraphicsLevel;
uint32_t i, max_entry;
uint8_t hightest_pcie_level_enabled = 0,
lowest_pcie_level_enabled = 0,
mid_pcie_level_enabled = 0,
count = 0;
for (i = 0; i < dpm_table->sclk_table.count; i++) {
result = fiji_populate_single_graphic_level(hwmgr,
dpm_table->sclk_table.dpm_levels[i].value,
(uint16_t)smu_data->activity_target[i],
&levels[i]);
if (result)
return result;
/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
if (i > 1)
levels[i].DeepSleepDivId = 0;
}
/* Only enable level 0 for now.*/
levels[0].EnabledForActivity = 1;
/* set highest level watermark to high */
levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
smu_data->smc_state_table.GraphicsDpmLevelCount =
(uint8_t)dpm_table->sclk_table.count;
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
if (pcie_table != NULL) {
PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
"There must be 1 or more PCIE levels defined in PPTable.",
return -EINVAL);
max_entry = pcie_entry_cnt - 1;
for (i = 0; i < dpm_table->sclk_table.count; i++)
levels[i].pcieDpmLevel =
(uint8_t) ((i < max_entry) ? i : max_entry);
} else {
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (hightest_pcie_level_enabled + 1))) != 0))
hightest_pcie_level_enabled++;
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << lowest_pcie_level_enabled)) == 0))
lowest_pcie_level_enabled++;
while ((count < hightest_pcie_level_enabled) &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
count++;
mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
hightest_pcie_level_enabled ?
(lowest_pcie_level_enabled + 1 + count) :
hightest_pcie_level_enabled;
/* set pcieDpmLevel to hightest_pcie_level_enabled */
for (i = 2; i < dpm_table->sclk_table.count; i++)
levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
/* set pcieDpmLevel to lowest_pcie_level_enabled */
levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
/* set pcieDpmLevel to mid_pcie_level_enabled */
levels[1].pcieDpmLevel = mid_pcie_level_enabled;
}
/* level count will send to smc once at init smc table and never change */
result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
(uint32_t)array_size, SMC_RAM_END);
return result;
}
/**
* MCLK Frequency Ratio
* SEQ_CG_RESP Bit[31:24] - 0x0
* Bit[27:24] \96 DDR3 Frequency ratio
* 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
* 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
* 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
* 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
* 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
* 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
* 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
* 400 < 0x7 <= 450MHz, 800 < 0xF
*/
static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
{
if (mem_clock <= 10000)
return 0x0;
if (mem_clock <= 15000)
return 0x1;
if (mem_clock <= 20000)
return 0x2;
if (mem_clock <= 25000)
return 0x3;
if (mem_clock <= 30000)
return 0x4;
if (mem_clock <= 35000)
return 0x5;
if (mem_clock <= 40000)
return 0x6;
if (mem_clock <= 45000)
return 0x7;
if (mem_clock <= 50000)
return 0x8;
if (mem_clock <= 55000)
return 0x9;
if (mem_clock <= 60000)
return 0xa;
if (mem_clock <= 65000)
return 0xb;
if (mem_clock <= 70000)
return 0xc;
if (mem_clock <= 75000)
return 0xd;
if (mem_clock <= 80000)
return 0xe;
/* mem_clock > 800MHz */
return 0xf;
}
static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
{
struct pp_atomctrl_memory_clock_param mem_param;
int result;
result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to get Memory PLL Dividers.",
);
/* Save the result data to outpupt memory level structure */
mclk->MclkFrequency = clock;
mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
return result;
}
static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
int result = 0;
uint32_t mclk_stutter_mode_threshold = 60000;
if (table_info->vdd_dep_on_mclk) {
result = fiji_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_mclk, clock,
(uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find MinVddc voltage value from memory "
"VDDC voltage dependency table", return result);
}
mem_level->EnabledForThrottle = 1;
mem_level->EnabledForActivity = 0;
mem_level->UpHyst = 0;
mem_level->DownHyst = 100;
mem_level->VoltageDownHyst = 0;
mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
mem_level->StutterEnable = false;
mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
/* enable stutter mode if all the follow condition applied
* PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
* &(data->DisplayTiming.numExistingDisplays));
*/
data->display_timing.num_existing_displays = 1;
if (mclk_stutter_mode_threshold &&
(clock <= mclk_stutter_mode_threshold) &&
(!data->is_uvd_enabled) &&
(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
STUTTER_ENABLE) & 0x1))
mem_level->StutterEnable = true;
result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
if (!result) {
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
}
return result;
}
static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
int result;
/* populate MCLK dpm table to SMU7 */
uint32_t array = smu_data->smu7_data.dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
SMU73_MAX_LEVELS_MEMORY;
struct SMU73_Discrete_MemoryLevel *levels =
smu_data->smc_state_table.MemoryLevel;
uint32_t i;
for (i = 0; i < dpm_table->mclk_table.count; i++) {
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
"can not populate memory level as memory clock is zero",
return -EINVAL);
result = fiji_populate_single_memory_level(hwmgr,
dpm_table->mclk_table.dpm_levels[i].value,
&levels[i]);
if (result)
return result;
}
/* Only enable level 0 for now. */
levels[0].EnabledForActivity = 1;
/* in order to prevent MC activity from stutter mode to push DPM up.
* the UVD change complements this by putting the MCLK in
* a higher state by default such that we are not effected by
* up threshold or and MCLK DPM latency.
*/
levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
smu_data->smc_state_table.MemoryDpmLevelCount =
(uint8_t)dpm_table->mclk_table.count;
data->dpm_level_enable_mask.mclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
/* set highest level watermark to high */
levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
/* level count will send to smc once at init smc table and never change */
result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
(uint32_t)array_size, SMC_RAM_END);
return result;
}
static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
uint32_t mclk, SMIO_Pattern *smio_pat)
{
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i = 0;
if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
/* find mvdd value which clock is more than request */
for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
break;
}
}
PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
"MVDD Voltage is outside the supported range.",
return -EINVAL);
} else
return -EINVAL;
return 0;
}
static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
SMU73_Discrete_DpmTable *table)
{
int result = 0;
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct pp_atomctrl_clock_dividers_vi dividers;
SMIO_Pattern vol_level;
uint32_t mvdd;
uint16_t us_mvdd;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
if (!data->sclk_dpm_key_disabled) {
/* Get MinVoltage and Frequency from DPM0,
* already converted to SMC_UL */
table->ACPILevel.SclkFrequency =
data->dpm_table.sclk_table.dpm_levels[0].value;
result = fiji_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_sclk,
table->ACPILevel.SclkFrequency,
(uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"Cannot find ACPI VDDC voltage value " \
"in Clock Dependency Table",
);
} else {
table->ACPILevel.SclkFrequency =
data->vbios_boot_state.sclk_bootup_value;
table->ACPILevel.MinVoltage =
data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
}
/* get the engine clock dividers for this clock value */
result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
table->ACPILevel.SclkFrequency, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.",
return result);
table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
table->ACPILevel.DeepSleepDivId = 0;
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_PWRON, 0);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_RESET, 1);
spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
SCLK_MUX_SEL, 4);
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
if (!data->mclk_dpm_key_disabled) {
/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
table->MemoryACPILevel.MclkFrequency =
data->dpm_table.mclk_table.dpm_levels[0].value;
result = fiji_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_mclk,
table->MemoryACPILevel.MclkFrequency,
(uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
);
} else {
table->MemoryACPILevel.MclkFrequency =
data->vbios_boot_state.mclk_bootup_value;
table->MemoryACPILevel.MinVoltage =
data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
}
us_mvdd = 0;
if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
(data->mclk_dpm_key_disabled))
us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
else {
if (!fiji_populate_mvdd_value(hwmgr,
data->dpm_table.mclk_table.dpm_levels[0].value,
&vol_level))
us_mvdd = vol_level.Voltage;
}
table->MemoryACPILevel.MinMvdd =
PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpHyst = 0;
table->MemoryACPILevel.DownHyst = 100;
table->MemoryACPILevel.VoltageDownHyst = 0;
table->MemoryACPILevel.ActivityLevel =
PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
table->MemoryACPILevel.StutterEnable = false;
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
return result;
}
static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
SMU73_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
table->VceLevelCount = (uint8_t)(mm_table->count);
table->VceBootLevel = 0;
for (count = 0; count < table->VceLevelCount; count++) {
table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
table->VceLevel[count].MinVoltage = 0;
table->VceLevel[count].MinVoltage |=
(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
table->VceLevel[count].MinVoltage |=
((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
VOLTAGE_SCALE) << VDDCI_SHIFT;
table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/*retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->VceLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for VCE engine clock",
return result);
table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
}
return result;
}
static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
SMU73_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
table->AcpLevelCount = (uint8_t)(mm_table->count);
table->AcpBootLevel = 0;
for (count = 0; count < table->AcpLevelCount; count++) {
table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->AcpLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for engine clock", return result);
table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
}
return result;
}
static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU73_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t)(mm_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
/* not sure whether we need evclk or not */
table->SamuLevel[count].MinVoltage = 0;
table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
}
return result;
}
static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
int32_t eng_clock, int32_t mem_clock,
struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
uint32_t dram_timing;
uint32_t dram_timing2;
uint32_t burstTime;
ULONG state, trrds, trrdl;
int result;
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
eng_clock, mem_clock);
PP_ASSERT_WITH_CODE(result == 0,
"Error calling VBIOS to set DRAM_TIMING.", return result);
dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
arb_regs->McArbBurstTime = (uint8_t)burstTime;
arb_regs->TRRDS = (uint8_t)trrds;
arb_regs->TRRDL = (uint8_t)trrdl;
return 0;
}
static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
uint32_t i, j;
int result = 0;
for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
result = fiji_populate_memory_timing_parameters(hwmgr,
data->dpm_table.sclk_table.dpm_levels[i].value,
data->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (result)
break;
}
}
if (!result)
result = smu7_copy_bytes_to_smc(
hwmgr,
smu_data->smu7_data.arb_table_start,
(uint8_t *)&arb_regs,
sizeof(SMU73_Discrete_MCArbDramTimingTable),
SMC_RAM_END);
return result;
}
static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
table->UvdLevelCount = (uint8_t)(mm_table->count);
table->UvdBootLevel = 0;
for (count = 0; count < table->UvdLevelCount; count++) {
table->UvdLevel[count].MinVoltage = 0;
table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].VclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Vclk clock", return result);
table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].DclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Dclk clock", return result);
table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
}
return result;
}
static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
int result = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
/* find boot level from dpm table */
result = phm_find_boot_level(&(data->dpm_table.sclk_table),
data->vbios_boot_state.sclk_bootup_value,
(uint32_t *)&(table->GraphicsBootLevel));
result = phm_find_boot_level(&(data->dpm_table.mclk_table),
data->vbios_boot_state.mclk_bootup_value,
(uint32_t *)&(table->MemoryBootLevel));
table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
VOLTAGE_SCALE;
table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE;
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
VOLTAGE_SCALE;
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
return 0;
}
static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint8_t count, level;
count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
for (level = 0; level < count; level++) {
if (table_info->vdd_dep_on_sclk->entries[level].clk >=
data->vbios_boot_state.sclk_bootup_value) {
smu_data->smc_state_table.GraphicsBootLevel = level;
break;
}
}
count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
for (level = 0; level < count; level++) {
if (table_info->vdd_dep_on_mclk->entries[level].clk >=
data->vbios_boot_state.mclk_bootup_value) {
smu_data->smc_state_table.MemoryBootLevel = level;
break;
}
}
return 0;
}
static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
{
uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
volt_with_cks, value;
uint16_t clock_freq_u16;
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
volt_offset = 0;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
/* Read SMU_Eefuse to read and calculate RO and determine
* if the part is SS or FF. if RO >= 1660MHz, part is FF.
*/
efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_EFUSE_0 + (146 * 4));
efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_EFUSE_0 + (148 * 4));
efuse &= 0xFF000000;
efuse = efuse >> 24;
efuse2 &= 0xF;
if (efuse2 == 1)
ro = (2300 - 1350) * efuse / 255 + 1350;
else
ro = (2500 - 1000) * efuse / 255 + 1000;
if (ro >= 1660)
type = 0;
else
type = 1;
/* Populate Stretch amount */
smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
for (i = 0; i < sclk_table->count; i++) {
smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
sclk_table->entries[i].cks_enable << i;
volt_without_cks = (uint32_t)((14041 *
(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
volt_with_cks = (uint32_t)((13946 *
(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
if (volt_without_cks >= volt_with_cks)
volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
}
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
STRETCH_ENABLE, 0x0);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
masterReset, 0x1);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
staticEnable, 0x1);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
masterReset, 0x0);
/* Populate CKS Lookup Table */
if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
stretch_amount2 = 0;
else if (stretch_amount == 3 || stretch_amount == 4)
stretch_amount2 = 1;
else {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
PP_ASSERT_WITH_CODE(false,
"Stretch Amount in PPTable not supported\n",
return -EINVAL);
}
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixPWR_CKS_CNTL);
value &= 0xFFC2FF87;
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
fiji_clock_stretcher_lookup_table[stretch_amount2][0];
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
fiji_clock_stretcher_lookup_table[stretch_amount2][1];
clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
SclkFrequency) / 100);
if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
clock_freq_u16 &&
fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
clock_freq_u16) {
/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
value |= (fiji_clock_stretch_amount_conversion
[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
[stretch_amount]) << 3;
}
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
CKS_LOOKUPTableEntry[0].minFreq);
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
CKS_LOOKUPTableEntry[0].maxFreq);
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixPWR_CKS_CNTL, value);
/* Populate DDT Lookup Table */
for (i = 0; i < 4; i++) {
/* Assign the minimum and maximum VID stored
* in the last row of Clock Stretcher Voltage Table.
*/
smu_data->smc_state_table.ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].minVID =
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
smu_data->smc_state_table.ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].maxVID =
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
/* Loop through each SCLK and check the frequency
* to see if it lies within the frequency for clock stretcher.
*/
for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
cks_setting = 0;
clock_freq = PP_SMC_TO_HOST_UL(
smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
/* Check the allowed frequency against the sclk level[j].
* Sclk's endianness has already been converted,
* and it's in 10Khz unit,
* as opposed to Data table, which is in Mhz unit.
*/
if (clock_freq >=
(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
cks_setting |= 0x2;
if (clock_freq <
(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
cks_setting |= 0x1;
}
smu_data->smc_state_table.ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
}
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].setting);
}
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
value &= 0xFFFFFFFE;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
return 0;
}
static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint16_t config;
config = VR_MERGED_WITH_VDDC;
table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
/* Set Vddc Voltage Controller */
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
config = VR_SVI2_PLANE_1;
table->VRConfig |= config;
} else {
PP_ASSERT_WITH_CODE(false,
"VDDC should be on SVI2 control in merged mode!",
);
}
/* Set Vddci Voltage Controller */
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
config = VR_SVI2_PLANE_2; /* only in merged mode */
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
config = VR_SMIO_PATTERN_1;
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
} else {
config = VR_STATIC_VOLTAGE;
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
}
/* Set Mvdd Voltage Controller */
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
config = VR_SVI2_PLANE_2;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
config = VR_SMIO_PATTERN_2;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
} else {
config = VR_STATIC_VOLTAGE;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
}
return 0;
}
static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
uint32_t tmp;
int result;
/* This is a read-modify-write on the first byte of the ARB table.
* The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
* is the field 'current'.
* This solution is ugly, but we never write the whole table only
* individual fields in it.
* In reality this field should not be in that structure
* but in a soft register.
*/
result = smu7_read_smc_sram_dword(hwmgr,
smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
if (result)
return result;
tmp &= 0x00FFFFFF;
tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
return smu7_write_smc_sram_dword(hwmgr,
smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
}
static int fiji_save_default_power_profile(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *data = (struct fiji_smumgr *)(hwmgr->smu_backend);
struct SMU73_Discrete_GraphicsLevel *levels =
data->smc_state_table.GraphicsLevel;
unsigned min_level = 1;
hwmgr->default_gfx_power_profile.activity_threshold =
be16_to_cpu(levels[0].ActivityLevel);
hwmgr->default_gfx_power_profile.up_hyst = levels[0].UpHyst;
hwmgr->default_gfx_power_profile.down_hyst = levels[0].DownHyst;
hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE;
hwmgr->default_compute_power_profile = hwmgr->default_gfx_power_profile;
hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE;
/* Workaround compute SDMA instability: disable lowest SCLK
* DPM level. Optimize compute power profile: Use only highest
* 2 power levels (if more than 2 are available), Hysteresis:
* 0ms up, 5ms down
*/
if (data->smc_state_table.GraphicsDpmLevelCount > 2)
min_level = data->smc_state_table.GraphicsDpmLevelCount - 2;
else if (data->smc_state_table.GraphicsDpmLevelCount == 2)
min_level = 1;
else
min_level = 0;
hwmgr->default_compute_power_profile.min_sclk =
be32_to_cpu(levels[min_level].SclkFrequency);
hwmgr->default_compute_power_profile.up_hyst = 0;
hwmgr->default_compute_power_profile.down_hyst = 5;
hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile;
hwmgr->compute_power_profile = hwmgr->default_compute_power_profile;
return 0;
}
static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
{
pp_atomctrl_voltage_table param_led_dpm;
int result = 0;
u32 mask = 0;
result = atomctrl_get_voltage_table_v3(hwmgr,
VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
&param_led_dpm);
if (result == 0) {
int i, j;
u32 tmp = param_led_dpm.mask_low;
for (i = 0, j = 0; i < 32; i++) {
if (tmp & 1) {
mask |= (i << (8 * j));
if (++j >= 3)
break;
}
tmp >>= 1;
}
}
if (mask)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_LedConfig,
mask);
return 0;
}
static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
uint8_t i;
struct pp_atomctrl_gpio_pin_assignment gpio_pin;
fiji_initialize_power_tune_defaults(hwmgr);
if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
fiji_populate_smc_voltage_tables(hwmgr, table);
table->SystemFlags = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition))
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StepVddc))
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (data->is_memory_gddr5)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
result = fiji_populate_ulv_state(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ULV state!", return result);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_ULV_PARAMETER, 0x40035);
}
result = fiji_populate_smc_link_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Link Level!", return result);
result = fiji_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Graphics Level!", return result);
result = fiji_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Memory Level!", return result);
result = fiji_populate_smc_acpi_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACPI Level!", return result);
result = fiji_populate_smc_vce_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize VCE Level!", return result);
result = fiji_populate_smc_acp_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACP Level!", return result);
result = fiji_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level!", return result);
/* Since only the initial state is completely set up at this point
* (the other states are just copies of the boot state) we only
* need to populate the ARB settings for the initial state.
*/
result = fiji_program_memory_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to Write ARB settings for the initial state.", return result);
result = fiji_populate_smc_uvd_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize UVD Level!", return result);
result = fiji_populate_smc_boot_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Boot Level!", return result);
result = fiji_populate_smc_initailial_state(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Boot State!", return result);
result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate BAPM Parameters!", return result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
result = fiji_populate_clock_stretcher_data_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate Clock Stretcher Data Table!",
return result);
}
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh =
table_info->cac_dtp_table->usTargetOperatingTemp *
SMU7_Q88_FORMAT_CONVERSION_UNIT;
table->TemperatureLimitLow =
(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
SMU7_Q88_FORMAT_CONVERSION_UNIT;
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
table->PCIeGenInterval = 1;
table->VRConfig = 0;
result = fiji_populate_vr_config(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate VRConfig setting!", return result);
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
} else {
table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
}
if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
&gpio_pin)) {
table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
} else {
table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
}
/* Thermal Output GPIO */
if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
&gpio_pin)) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalOutGPIO);
table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
/* For porlarity read GPIOPAD_A with assigned Gpio pin
* since VBIOS will program this register to set 'inactive state',
* driver can then determine 'active state' from this and
* program SMU with correct polarity
*/
table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
/* if required, combine VRHot/PCC with thermal out GPIO */
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot) &&
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_CombinePCCWithThermalSignal))
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
} else {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalOutGPIO);
table->ThermOutGpio = 17;
table->ThermOutPolarity = 1;
table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
}
for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
result = smu7_copy_bytes_to_smc(hwmgr,
smu_data->smu7_data.dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, SystemFlags),
(uint8_t *)&(table->SystemFlags),
sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
SMC_RAM_END);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to upload dpm data to SMC memory!", return result);
result = fiji_init_arb_table_index(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to upload arb data to SMC memory!", return result);
result = fiji_populate_pm_fuses(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate PM fuses to SMC memory!", return result);
result = fiji_setup_dpm_led_config(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to setup dpm led config", return result);
fiji_save_default_power_profile(hwmgr);
return 0;
}
static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
uint32_t duty100;
uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
uint16_t fdo_min, slope1, slope2;
uint32_t reference_clock;
int res;
uint64_t tmp64;
if (hwmgr->thermal_controller.fanInfo.bNoFan) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
if (smu_data->smu7_data.fan_table_start == 0) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
CG_FDO_CTRL1, FMAX_DUTY100);
if (duty100 == 0) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
usPWMMin * duty100;
do_div(tmp64, 10000);
fdo_min = (uint16_t)tmp64;
t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
fan_table.TempMin = cpu_to_be16((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMin) / 100);
fan_table.TempMed = cpu_to_be16((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMed) / 100);
fan_table.TempMax = cpu_to_be16((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMax) / 100);
fan_table.Slope1 = cpu_to_be16(slope1);
fan_table.Slope2 = cpu_to_be16(slope2);
fan_table.FdoMin = cpu_to_be16(fdo_min);
fan_table.HystDown = cpu_to_be16(hwmgr->
thermal_controller.advanceFanControlParameters.ucTHyst);
fan_table.HystUp = cpu_to_be16(1);
fan_table.HystSlope = cpu_to_be16(1);
fan_table.TempRespLim = cpu_to_be16(5);
reference_clock = smu7_get_xclk(hwmgr);
fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
thermal_controller.advanceFanControlParameters.ulCycleDelay *
reference_clock) / 1600);
fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
hwmgr->device, CGS_IND_REG__SMC,
CG_MULT_THERMAL_CTRL, TEMP_SEL);
res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
(uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
SMC_RAM_END);
if (!res && hwmgr->thermal_controller.
advanceFanControlParameters.ucMinimumPWMLimit)
res = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetFanMinPwm,
hwmgr->thermal_controller.
advanceFanControlParameters.ucMinimumPWMLimit);
if (!res && hwmgr->thermal_controller.
advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
res = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetFanSclkTarget,
hwmgr->thermal_controller.
advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
if (res)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
{
int ret;
struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
if (smu_data->avfs.avfs_btc_status != AVFS_BTC_ENABLEAVFS)
return 0;
ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
if (!ret)
/* If this param is not changed, this function could fire unnecessarily */
smu_data->avfs.avfs_btc_status = AVFS_BTC_COMPLETED_PREVIOUSLY;
return ret;
}
static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
return fiji_program_memory_timing_parameters(hwmgr);
return 0;
}
static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
int result = 0;
uint32_t low_sclk_interrupt_threshold = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification)
&& (hwmgr->gfx_arbiter.sclk_threshold !=
data->low_sclk_interrupt_threshold)) {
data->low_sclk_interrupt_threshold =
hwmgr->gfx_arbiter.sclk_threshold;
low_sclk_interrupt_threshold =
data->low_sclk_interrupt_threshold;
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
result = smu7_copy_bytes_to_smc(
hwmgr,
smu_data->smu7_data.dpm_table_start +
offsetof(SMU73_Discrete_DpmTable,
LowSclkInterruptThreshold),
(uint8_t *)&low_sclk_interrupt_threshold,
sizeof(uint32_t),
SMC_RAM_END);
}
result = fiji_program_mem_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE((result == 0),
"Failed to program memory timing parameters!",
);
return result;
}
static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
{
switch (type) {
case SMU_SoftRegisters:
switch (member) {
case HandshakeDisables:
return offsetof(SMU73_SoftRegisters, HandshakeDisables);
case VoltageChangeTimeout:
return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
case AverageGraphicsActivity:
return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
case PreVBlankGap:
return offsetof(SMU73_SoftRegisters, PreVBlankGap);
case VBlankTimeout:
return offsetof(SMU73_SoftRegisters, VBlankTimeout);
case UcodeLoadStatus:
return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
case DRAM_LOG_ADDR_H:
return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
case DRAM_LOG_ADDR_L:
return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
case DRAM_LOG_PHY_ADDR_H:
return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
case DRAM_LOG_PHY_ADDR_L:
return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
case DRAM_LOG_BUFF_SIZE:
return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
}
case SMU_Discrete_DpmTable:
switch (member) {
case UvdBootLevel:
return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
case VceBootLevel:
return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
case SamuBootLevel:
return offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
case LowSclkInterruptThreshold:
return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
}
}
pr_warn("can't get the offset of type %x member %x\n", type, member);
return 0;
}
static uint32_t fiji_get_mac_definition(uint32_t value)
{
switch (value) {
case SMU_MAX_LEVELS_GRAPHICS:
return SMU73_MAX_LEVELS_GRAPHICS;
case SMU_MAX_LEVELS_MEMORY:
return SMU73_MAX_LEVELS_MEMORY;
case SMU_MAX_LEVELS_LINK:
return SMU73_MAX_LEVELS_LINK;
case SMU_MAX_ENTRIES_SMIO:
return SMU73_MAX_ENTRIES_SMIO;
case SMU_MAX_LEVELS_VDDC:
return SMU73_MAX_LEVELS_VDDC;
case SMU_MAX_LEVELS_VDDGFX:
return SMU73_MAX_LEVELS_VDDGFX;
case SMU_MAX_LEVELS_VDDCI:
return SMU73_MAX_LEVELS_VDDCI;
case SMU_MAX_LEVELS_MVDD:
return SMU73_MAX_LEVELS_MVDD;
}
pr_warn("can't get the mac of %x\n", value);
return 0;
}
static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
smu_data->smc_state_table.UvdBootLevel = 0;
if (table_info->mm_dep_table->count > 0)
smu_data->smc_state_table.UvdBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
UvdBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0x00FFFFFF;
mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDPM) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_UVDDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
return 0;
}
static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smu_data->smc_state_table.VceBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
else
smu_data->smc_state_table.VceBootLevel = 0;
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFF00FFFF;
mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_VCEDPM_SetEnabledMask,
(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
return 0;
}
static int fiji_update_samu_smc_table(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
smu_data->smc_state_table.SamuBootLevel = 0;
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFFFFFF00;
mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
return 0;
}
static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
{
switch (type) {
case SMU_UVD_TABLE:
fiji_update_uvd_smc_table(hwmgr);
break;
case SMU_VCE_TABLE:
fiji_update_vce_smc_table(hwmgr);
break;
case SMU_SAMU_TABLE:
fiji_update_samu_smc_table(hwmgr);
break;
default:
break;
}
return 0;
}
static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
uint32_t tmp;
int result;
bool error = false;
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, DpmTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->smu7_data.dpm_table_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, SoftRegisters),
&tmp, SMC_RAM_END);
if (!result) {
data->soft_regs_start = tmp;
smu_data->smu7_data.soft_regs_start = tmp;
}
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, mcRegisterTable),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.mc_reg_table_start = tmp;
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, FanTable),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.fan_table_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.arb_table_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, Version),
&tmp, SMC_RAM_END);
if (!result)
hwmgr->microcode_version_info.SMC = tmp;
error |= (0 != result);
return error ? -1 : 0;
}
static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
{
/* Program additional LP registers
* that are no longer programmed by VBIOS
*/
cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
return 0;
}
static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
{
return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
? true : false;
}
static int fiji_populate_requested_graphic_levels(struct pp_hwmgr *hwmgr,
struct amd_pp_profile *request)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
(hwmgr->smu_backend);
struct SMU73_Discrete_GraphicsLevel *levels =
smu_data->smc_state_table.GraphicsLevel;
uint32_t array = smu_data->smu7_data.dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
SMU73_MAX_LEVELS_GRAPHICS;
uint32_t i;
for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
levels[i].ActivityLevel =
cpu_to_be16(request->activity_threshold);
levels[i].EnabledForActivity = 1;
levels[i].UpHyst = request->up_hyst;
levels[i].DownHyst = request->down_hyst;
}
return smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
array_size, SMC_RAM_END);
}
const struct pp_smumgr_func fiji_smu_funcs = {
.smu_init = &fiji_smu_init,
.smu_fini = &smu7_smu_fini,
.start_smu = &fiji_start_smu,
.check_fw_load_finish = &smu7_check_fw_load_finish,
.request_smu_load_fw = &smu7_reload_firmware,
.request_smu_load_specific_fw = NULL,
.send_msg_to_smc = &smu7_send_msg_to_smc,
.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
.download_pptable_settings = NULL,
.upload_pptable_settings = NULL,
.update_smc_table = fiji_update_smc_table,
.get_offsetof = fiji_get_offsetof,
.process_firmware_header = fiji_process_firmware_header,
.init_smc_table = fiji_init_smc_table,
.update_sclk_threshold = fiji_update_sclk_threshold,
.thermal_setup_fan_table = fiji_thermal_setup_fan_table,
.thermal_avfs_enable = fiji_thermal_avfs_enable,
.populate_all_graphic_levels = fiji_populate_all_graphic_levels,
.populate_all_memory_levels = fiji_populate_all_memory_levels,
.get_mac_definition = fiji_get_mac_definition,
.initialize_mc_reg_table = fiji_initialize_mc_reg_table,
.is_dpm_running = fiji_is_dpm_running,
.populate_requested_graphic_levels = fiji_populate_requested_graphic_levels,
.is_hw_avfs_present = fiji_is_hw_avfs_present,
};